[熱門]關(guān)于高一數(shù)學(xué)的教案
作為一名專為他人授業(yè)解惑的人民教師,很有必要精心設(shè)計(jì)一份教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么優(yōu)秀的教案是什么樣的呢?下面是小編整理的關(guān)于高一數(shù)學(xué)的教案,希望能夠幫助到大家。
關(guān)于高一數(shù)學(xué)的教案1
教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。
課型:新授課
教學(xué)目標(biāo):
。1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的理解集合“屬于”關(guān)系;
(2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
教學(xué)重點(diǎn):集合的基本概念與表示方法;
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合;
教學(xué)過(guò)程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。
閱讀課本P2—P3內(nèi)容
二、新課教學(xué)
。ㄒ唬┘系挠嘘P(guān)概念
1、集合理論創(chuàng)始人康托爾稱集合為一些確定的`、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。
2、一般地,研究對(duì)象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡(jiǎn)稱集。
3、思考1:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。
4、關(guān)于集合的元素的特征
。1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
。3)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣
5、元素與集合的關(guān)系;
。1)如果a是集合A的元素,就說(shuō)a屬于(belong to)A,記作a∈A
(2)如果a不是集合A的元素,就說(shuō)a不屬于(not belong to)A,記作a A(或a A)(舉例)
6、常用數(shù)集及其記法
非負(fù)整數(shù)集(或自然數(shù)集),記作N
正整數(shù)集,記作Nx或N+;
整數(shù)集,記作Z
有理數(shù)集,記作Q
實(shí)數(shù)集,記作R
。ǘ┘系谋硎痉椒
我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
。1)列舉法:把集合中的元素一一列舉出來(lái),寫在大括號(hào)內(nèi)。
如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},…;
例1、(課本例1)
思考2,引入描述法
說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
(2)描述法:把集合中的元素的公共屬性描述出來(lái),寫在大括號(hào){}內(nèi)。
具體方法:在大括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。
如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2、(課本例2)
說(shuō)明:(課本P5最后一段)
思考3:(課本P6思考)
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
{(x,y)|y= x2+3x+2}與{y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
。ㄈ┱n堂練習(xí)(課本P6練習(xí))
三、歸納小結(jié)
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
四、作業(yè)布置
書面作業(yè):習(xí)題1、1,第1— 4題
關(guān)于高一數(shù)學(xué)的教案2
教學(xué)類型:
探究研究型
設(shè)計(jì)思路:
通過(guò)一系列的猜想得出德.摩根律,但是這個(gè)結(jié)論僅僅是猜想,數(shù)學(xué)是一門科學(xué),所以需要論證它的正確性,因此本節(jié)通過(guò)剖析維恩圖的四部分來(lái)驗(yàn)證猜想的正確性,并對(duì)德摩根律進(jìn)行簡(jiǎn)單的應(yīng)用,因此我們制作了本微課.
教學(xué)過(guò)程:
一、片頭
內(nèi)容:現(xiàn)在讓我們一起來(lái)學(xué)習(xí)《集合的運(yùn)算——自己探索也能發(fā)現(xiàn)的'數(shù)學(xué)規(guī)律(第二講)》。
二、正文講解
1.引入:牛頓曾說(shuō)過(guò):“沒(méi)有大膽的猜測(cè),就做不出偉大的發(fā)現(xiàn)。”
上節(jié)課老師和大家學(xué)習(xí)了集合的運(yùn)算,得出了一個(gè)有趣的規(guī)律。課后,你舉例驗(yàn)證了這個(gè)規(guī)律嗎?
那么,這個(gè)規(guī)律是偶然的,還是一個(gè)恒等式呢?
2.規(guī)律的驗(yàn)證:
試用集合A,B的交集、并集、補(bǔ)集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過(guò)剖析維恩圖來(lái)驗(yàn)證猜想的正確性使用
3.抽象概括:通過(guò)我們的觀察和驗(yàn)證,我們發(fā)現(xiàn)這個(gè)規(guī)律是一個(gè)恒等式。
而這個(gè)規(guī)律就是180年前的`英國(guó)數(shù)學(xué)家德摩根發(fā)現(xiàn)的。
為了紀(jì)念他,我們將它稱為德摩根律。
原來(lái)我們通過(guò)自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。
4.例題應(yīng)用:使用例題形式,將的德摩根定律的結(jié)論加以應(yīng)用,讓學(xué)生更加熟悉集合的運(yùn)算
三、結(jié)尾
通過(guò)這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運(yùn)算問(wèn)題提供了更為簡(jiǎn)便的方法。
希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。
【高一數(shù)學(xué)的教案】相關(guān)文章:
高一的數(shù)學(xué)下教案02-07
職高數(shù)學(xué)高一教案10-13
高一數(shù)學(xué)集合教案08-28
關(guān)于高一數(shù)學(xué)的教案10-21
高一數(shù)學(xué)教案11-27
高一數(shù)學(xué)教案11-08
高一數(shù)學(xué)教案模板11-08