1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    高一數(shù)學(xué)教案

    時間:2023-11-08 07:28:06 高一數(shù)學(xué)教案 我要投稿

    高一數(shù)學(xué)教案模板

      作為一名無私奉獻(xiàn)的老師,時常需要用到教案,借助教案可以更好地組織教學(xué)活動。那么應(yīng)當(dāng)如何寫教案呢?以下是小編整理的高一數(shù)學(xué)教案模板,希望對大家有所幫助。

    高一數(shù)學(xué)教案模板

    高一數(shù)學(xué)教案模板1

      一、教學(xué)過程

      1、復(fù)習(xí)

      反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

      求出函數(shù)y=x3的反函數(shù)。

      2、新課

      先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象:

      教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。

      生2:這是y=x3的反函數(shù)y=的圖象。

      師:對,但是怎么會得到這個圖象,請大家討論。

      (學(xué)生展開討論,但找不出原因。)

      師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

      (生1將他的制作過程重新重復(fù)了一次。)

      生3:問題出在他選擇的次序不對。

      師:哪個次序?

      生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時,他先選擇xA3,后選擇xA,作出來的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。

      師:是這樣嗎?我們請生1再做一次。

      (這次生1在做的過程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

      師:看來問題確實(shí)是出在這個地方,那么請同學(xué)再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

      (學(xué)生再次陷入思考,一會兒有學(xué)生舉手。)

      師:我們請生4來告訴大家。

      生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。

      師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學(xué)們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?

      (多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的.圖象,于是教師進(jìn)一步追問。)

      師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

      生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。

      師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?

      (學(xué)生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進(jìn)一步明確。)

      師:我其實(shí)是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?

      (學(xué)生重新開始觀察這兩個函數(shù)的圖象,一會兒有學(xué)生舉手。)

      生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。

      師:能說說是關(guān)于哪條直線對稱嗎?

      生6:我還沒找出來。

      (接下來,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

      學(xué)生通過移動點(diǎn)A(點(diǎn)B、C隨之移動)后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。

      生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。

      師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。

      (學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)

      教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

      最后教師與學(xué)生一起總結(jié):

      點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對稱;

      函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。

      二、反思與點(diǎn)評

      1、在開學(xué)初,我就教學(xué)幾何畫板4.0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時,不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫板4、04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4.0進(jìn)行教學(xué)。

      2、荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念。

      計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。

      在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

      當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。

      3、在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計(jì)不甚妥當(dāng),本來是想要學(xué)生回答兩個函數(shù)圖象對稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。

    高一數(shù)學(xué)教案模板2

      目標(biāo):

      (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法

      (2)使學(xué)生初步了解“屬于”關(guān)系的意義

      (3)使學(xué)生初步了解有限集、無限集、空集的意義

      重點(diǎn):集合的基本概念

      教學(xué)過程:

      1、引入

      (1)章頭導(dǎo)言

      (2)集合論與集合論的—————康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)

      2、講授新課

      閱讀教材,并思考下列問題:

      (1)有那些概念?

      (2)有那些符號?

      (3)集合中元素的特性是什么?

      (4)如何給集合分類?

      (一)有關(guān)概念:

      1、集合的概念

      (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象、

      (2)集合:把一些能夠確定的不同的`對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合、

      (3)元素:集合中每個對象叫做這個集合的元素、

      集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……

      2、元素與集合的關(guān)系

      (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

      (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

      要注意“∈”的方向,不能把a(bǔ)∈A顛倒過來寫、

      3、集合中元素的特性

      (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了、

      (2)互異性:集合中的元素一定是不同的

      (3)無序性:集合中的元素沒有固定的順序、

      4、集合分類

      根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:

      (1)把不含任何元素的集合叫做空集Ф

      (2)含有有限個元素的集合叫做有限集

      (3)含有無窮個元素的集合叫做無限集

      注:應(yīng)區(qū)分,0等符號的含義

      5、常用數(shù)集及其表示方法

      (1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合、記作N

      (2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集、記作N—或N+

      (3)整數(shù)集:全體整數(shù)的集合、記作Z

      (4)有理數(shù)集:全體有理數(shù)的集合、記作Q

      (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合、記作R

      注:(1)自然數(shù)集包括數(shù)0、

      (2)非負(fù)整數(shù)集內(nèi)排除0的集、記作N—或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z—

      課堂練習(xí):教材第5頁練習(xí)A、B

      小結(jié):本節(jié)課我們了解集合論的發(fā)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)

      課后作業(yè):第十頁習(xí)題1—1B第3題

    高一數(shù)學(xué)教案模板3

      一、教學(xué)目標(biāo)

      1、知識與技能:

      (1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

      (2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

      (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

      (4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

      2、過程與方法:

      (1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

      (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。

      3、情感態(tài)度與價值觀:

      (1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。

      (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

      二、教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

      難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。

      三、教學(xué)用具

      (1)學(xué)法:觀察、思考、交流、討論、概括。

      (2)實(shí)物模型、投影儀。

      四、教學(xué)過程

      (一)創(chuàng)設(shè)情景,揭示課題

      1、由六根火柴最多可搭成幾個三角形?(空間:4個)

      2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?

      3、展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體。

      問題:請根據(jù)某種標(biāo)準(zhǔn)對以上空間物體進(jìn)行分類。

      (二)、研探新知

      空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺;

      旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。

      1、棱柱的結(jié)構(gòu)特征:

      (1)觀察棱柱的幾何物體以及投影出棱柱的圖片,思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?

      (學(xué)生討論)

      (2)棱柱的'主要結(jié)構(gòu)特征(棱柱的概念):

      ①有兩個面互相平行;

      ②其余各面都是平行四邊形;

      ③每相鄰兩上四邊形的公共邊互相平行。

      (3)棱柱的表示法及分類:

      (4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點(diǎn)。

      2、棱錐、棱臺的結(jié)構(gòu)特征:

      (1)實(shí)物模型演示,投影圖片;

      (2)以類似的方法,根據(jù)出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。

      棱錐:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形。

      棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

      3、圓柱的結(jié)構(gòu)特征:

      (1)實(shí)物模型演示,投影圖片——如何得到圓柱?

      (2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。

      4、圓錐、圓臺、球的結(jié)構(gòu)特征:

      (1)實(shí)物模型演示,投影圖片

      ——如何得到圓錐、圓臺、球?

      (2)以類似的方法,根據(jù)圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。

      5、柱體、錐體、臺體的概念及關(guān)系:

      探究:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時,它們能否互相轉(zhuǎn)化?

      圓柱、圓錐、圓臺呢?

      6、簡單組合體的結(jié)構(gòu)特征:

      (1)簡單組合體的構(gòu)成:由簡單幾何體拼接或截去或挖去一部分而成。

      (2)實(shí)物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。

      (3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。

      (三)排難解惑,發(fā)展思維

      1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)

      2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

      3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

      (四)鞏固深化

      練習(xí):課本P7練習(xí)1、2;課本P8習(xí)題1、1第1、2、3、4、5題

      (五)歸納整理:由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

    高一數(shù)學(xué)教案模板4

      一、教學(xué)目標(biāo)

      (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

      (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

      (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

      (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

      (5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;

      (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

      二、教學(xué)重點(diǎn)難點(diǎn):

      重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的'理解.

      三、教學(xué)過程

      1.新課導(dǎo)入

      在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實(shí),同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

      初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)

      (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)

      學(xué)生舉例:平行四邊形的對角線互相平. ……(1)

      兩直線平行,同位角相等.…………(2)

      教師提問:“……相等的角是對頂角”是不是命題?……(3)

      (同學(xué)議論結(jié)果,答案是肯定的.)

      教師提問:什么是命題?

      (學(xué)生進(jìn)行回憶、思考.)

      概念總結(jié):對一件事情作出了判斷的語句叫做命題.

      (教師肯定了同學(xué)的回答,并作板書.)

      由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

      (教師利用投影片,和學(xué)生討論以下問題.)

      例1 判斷以下各語句是不是命題,若是,判斷其真假:

      命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

      初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.

      2.講授新課

      大家看課本(人教版,試驗(yàn)修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

      (片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)

      (1)什么叫做命題?

      可以判斷真假的語句叫做命題.

      判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0

      中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

      (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

      “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

      命題可分為簡單命題和復(fù)合命題.

      不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

      由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

      (4)命題的表示:用p ,q ,r ,s ,……來表示.

      (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)

      我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

      給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

      對于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .

      在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

      3.鞏固新課

      例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

      (1)5 ;

      (2)0.5非整數(shù);

      (3)內(nèi)錯角相等,兩直線平行;

      (4)菱形的對角線互相垂直且平分;

      (5)平行線不相交;

      (6)若ab=0 ,則a=0 .

      (讓學(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

    高一數(shù)學(xué)教案模板5

      一、教學(xué)目標(biāo)

      1、通過高速公路上的實(shí)際例子,引起積極的思考和交流,從而認(rèn)識到生活中處處可以遇到變量間的依賴關(guān)系、能夠利用初中對函數(shù)的認(rèn)識,了解依賴關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系、

      2、培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度、

      二、教學(xué)重點(diǎn):

      在于讓學(xué)生領(lǐng)悟生活中處處有變量,變量之間充滿了關(guān)系

      教學(xué)難點(diǎn):培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度

      三、教學(xué)方法:

      探究交流法

      四、教學(xué)過程

      (一)、知識探索:

      閱讀課文P25頁。實(shí)例分析:書上在高速公路情境下的問題。

      在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?

      2、對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關(guān)系,兩種依賴關(guān)系都有函數(shù)關(guān)系嗎?

      問題小結(jié):

      1、生活中變量及變量之間的依賴關(guān)系隨處可見,并非有依賴關(guān)系的兩個變量都有函數(shù)關(guān)系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應(yīng),才稱它們之間有函數(shù)關(guān)系。

      2、構(gòu)成函數(shù)關(guān)系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應(yīng)。

      3、確定變量的`依賴關(guān)系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。

      (二)、新課探究——函數(shù)概念

      1、初中關(guān)于函數(shù)的定義:

      2、從集合的觀點(diǎn)出發(fā),函數(shù)定義:

      給定兩個非空數(shù)集A和B,如果按照某個對應(yīng)關(guān)系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的數(shù)f(x)與之對應(yīng),那么就把這種對應(yīng)關(guān)系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A、;

      此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習(xí)慣上我們稱y是x的函數(shù)。

      定義域,值域,對應(yīng)法則

      4、函數(shù)值

      當(dāng)x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。

    【高一數(shù)學(xué)教案】相關(guān)文章:

    高一優(yōu)秀數(shù)學(xué)教案09-28

    高一數(shù)學(xué)教案11-05

    【熱門】高一數(shù)學(xué)教案11-26

    【薦】高一數(shù)學(xué)教案11-27

    高一數(shù)學(xué)教案【熱門】11-28

    高一數(shù)學(xué)教案【精】11-29

    人教版高一數(shù)學(xué)教案06-10

    高一數(shù)學(xué)教案優(yōu)秀09-05

    高一數(shù)學(xué)教案函數(shù)12-28

    高一數(shù)學(xué)教案數(shù)列12-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲日本中文字幕天天跟新 | 熟女制服丝袜另类中文字幕 | 日韩亚洲国产激情一区二区 | 亚洲综合中文字幕第36页 | 中文字幕精品视频在线 | 在线不卡高速播放AV电影 |