- 初三上冊數學教案 推薦度:
- 相關推薦
初三上冊數學教案(精選10篇)
作為一名教學工作者,總不可避免地需要編寫教案,借助教案可以更好地組織教學活動。教案應該怎么寫呢?下面是小編幫大家整理的初三上冊數學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初三上冊數學教案 1
教學目標
1.使學生掌握百分數、小數互化的方法,并能正確的互化。
2.在學習互化的過程中使學生認識到這二者之間的內在聯系,為后面學習百分數的計算和應用打下基礎。
3.在學習的過程中培養學生的分析思維和抽象概括能力。
教學重難點
使學生理解掌握百分數和小數互化的方法。
教學工具
課件
教學過程
一、活動(一)復習準備
1、課件出示復習題。
張宇跳繩個數是陳聰的1.37倍。
王志祥跳繩個數是陳聰的6/5.
劉星宇跳繩個數是陳聰的137.5%.
思考:這三個人誰跳得最多,怎么比較?
2.引入新課。
在生產、工作和生活中進行統計和分析時,為了便于統計和比較,我們常用百分數表示一些數據。除了用百分數表示,還可以用什么數表示?
這節課我們就來學習百分數和小數的互化以及百分數和分數的互化。
二、活動(二)百分數和小數的互化。
(1)回憶小數化分數的過程。
(2)小數要化成百分數,分母應是多少?怎樣使它的分母變成100呢?
三、活動(三)百分數化成小數
1、例1:把0.25,1.4,0.123化成百分數。
、傩祷俜謹捣謳撞竭M行?
、趯W生回答,教師板書:0.25=25/100=25%
③1.4怎樣化成分母是100的分數?根據什么?
、堋白鲆蛔觥:把下面各小數化成百分數。
0.38 1.05 0.055 3
、萦^察例1的各小數,化成百分數后發生了怎樣的.變化?
你所做的練習的各數是不是也發生了同樣的變化?這一變化符合什么?
⑥現在你能很快地把下列小數化成百分數嗎?(口答)
2.5 0.785 0.16
2、例2:把27%,135%,0.4%化成小數。
學生自己試做,學生總結方法
、僬f一說百分數化小數的方法。
②觀察百分數化成小數發生了什么變化?
、郯严旅娓靼俜謹祷尚
15% 80% 3.5%
3、小結。
通過剛才的分析、歸納,誰能說一說百分數和小數怎樣互化?
四、鞏固與提高
1、P80“做一做”
2、練習十九的第2題
五、作業
練習十九的第1題
課后習題
練習十九的第1題
初三上冊數學教案 2
教學目標
知識與技能目標:理解生活中的百分率,掌握求百分率的方法,能正確求出百分率。過程與方法目標:通過自主探究、合作交流,理解常用百分率的含義及計算方法。情感、態度與價值觀目標:體會求百分率的用處和必要性,感受百分率源于生活,滲透數學來源于生活并服務于生活的數學思想。
教學重難點
教學重點:理解生活中常見的百分率的含義。
教學難點:正確計算常見的百分率。
教學過程
一、創設情境,探究導入
1、課件出示
看圖,回答下面的問題。
(1)圖中陰影部分占整個圖形的幾分之幾?用百分數怎樣表示?
(2)圖中空白部分占陰影部分的幾分之幾?用百分數怎樣表示?
2、百分數的意義
我們班有36%的學生參加了美術興趣小組。
世界總人口中大約有50%的人口年齡低于25歲。
一瓶農夫果園飲料中果汁含量大約是10%。
我們班學生的近視率是45%。
3、小剛做了10道題,錯了2道
做對的題數占總題數的幾分之幾?
做錯的題數占總題數的幾分之幾?
做對的題數占總題數的百分之幾?
做錯的題數占總題數的百分之幾?
求a是b的百分之幾和求a是b的幾分之幾方法是相同的,都是:a÷b
4、六年級有學生160人,已達到《國家體育鍛煉標準》(兒童組)的有120人,占六年級學生人數的幾分之幾?六年級有學生160人,已達到《國家體育鍛煉標準》(兒童組)的有120人,占六年級學生人數的百分之幾?
學生獨立思考、同桌交流:嘗試計算,得出結論。
5、談話,導入新課
在我們的日常生活中像這樣的百分率還有很多,如發芽率、及格率、出米率等,它可以幫助我們解決生活中的一些實際問題。
下面,讓我們共同走進百分率,探究它的計算方法(板書:百分率的計算)。
二、學習新知
1、教學例1——在具體情境中認識百分率,探究計算方法
(1)出示例1:六年級有學生160人,已達到《國家體育鍛煉標準》(兒童組)的有120人。六年級學生的達標率是多少?
(2)學生讀題,分析題意,思考達標率的含義,嘗試計算。
(3)指名板演并交流思維過程,集體訂正。
(4)教師小結
指導學生明確達標率是百分率的一種,它的含義即“達標人數是測試總人數的百分之幾”,與“求一個數是另一個數的幾分之幾”問題的計算方法相同,因此用“達標人數÷測試總人數”就行;因為百分率是百分數,計算結果應是百分數形式,所以完整的計算方法應是“達標率=達標人數除以測試總人數×100%”。
談話:《國家學生體質健康標準》要求小學生體質健康達標率不得低于60%,通過計算、比較,說明我們班學生的體質是達到健康標準的,這也是百分率的'價值所在。
2、教學例2——掌握百分率計算方法,認識百分率的價值
(1)出示例2:科學課上,五(2)班同學做的種子發芽實驗結果如下:
種子名稱實驗種子總數發芽數發芽率
綠豆80 78
花生50 46
大蒜20 19
(2)學生讀題,弄清已知條件和問題,討論發芽率的含義,嘗試計算各種種子的發芽率。 (3)指名學生交流發芽率的含義及計算方法,板演算式,集體訂正。
(4)比較,認識發芽率在生產實踐中的價值。
通過計算我們發現哪種種子的發芽率要高一些?哪種要低一些呢?講解:發芽率對于農民種田是十分重要的,他們需要根據發芽率的高低,決定種子品種和播種面積。
3、小組合作探究,尋找生活中的百分率,總結百分率計算公式。
(1)談話,明確合作學習要求:在實際生活中,像命中率、達標率、發芽率等這樣的百分率還有很多,請小組四位同學在一起開動腦筋、積極協作,尋找生活中的百分率,寫出它的計算方法,比一比哪個小組找得最多。
(2)小組合作,尋找生活中的百分率,探究其含義及其計算方法,寫出計算公式,教師巡視了解小組合作情況及結果。
(3)小組代表匯報本組收集的百分率,闡明其含義,在投影儀上展示計算方法,師生共同訂正。
(4)羅列不同百分率的計算方法,引導學生發現共同點,總結百分率的計算公式:?率=量?除以總數量×100%
(5)舉實例,加深對百分率計算公式的認識,掌握百分率計算方法。
4、某縣種子推廣站,用300粒玉米種子作發芽試驗,結果發芽的種子有288粒。求發芽率。
5、探討、交流:生活中的百分率哪些可能大于100%?哪些只會等于或小于100%?.
三、鞏固練習
1、填一填
、俚竟鹊某雒茁适85%,是指( )
的千克數占( )的千克數的百
分之八十五。
、诩讛凳且覕档4/5,乙數是甲數的
( )%。
、20÷( )= 4/8 =( )∶24=( )%
2、選一選:
種一批樹,活了100棵,死了1棵,求成活率的正確算式是( )。
一根鋼管截成2段,第一段長米,第二段占全長的60%,這兩段鋼管比較( )。布置作業
1、小組合作,整理生活中常見的百分率的計算方法,寫在數學書第86頁上。
2、完成練習二十第2、3、4題。
四、課堂小結
今天你有什么收獲?生談收獲
初三上冊數學教案 3
教學目標
1、通過觀察、類比,使學生理解和掌握比的基本性質,并會運用這個性質把比化成最簡單的整數比。
2、通過學習,培養學生觀察、類比的能力,滲透轉化的數學思想方法,培養學生思維的靈活性。
3、通過教學,使學生學會與人合作的意識,并能與他人互相交流思維的過程和結果。
教學重難點
教學重點:理解比的基本性質,掌握化簡比的方法。
教學難點:化簡比與求比值的不同。
教學過程
一、創設情境,生成問題
師:同學們,昨天我們剛剛學習了有關比的意義,誰能說說
1、什么叫比?
2、比與除法和分數有什么關系?
(生自由發言)我們以前還學過了分數的基本性質和除法中的商不變性質,還記得嗎?誰來說一說?
課前準備:
同桌互相說一說:
1.除法中商不變的性質是什么?你能舉例說明嗎?
2.舉例說明分數的基本性質。
二、探索交流,解決問題
1、猜測比的基本性質
除法有“商不變性質”,分數也有“分數的基本性質”,根據比與除法和分數的關系,同學們猜想看看,比有沒有基本性質?如果有,這條基本性質的內容是什么?(學生猜測,并相互補充)
2、驗證猜測:學生以四人小組為單位,討論研究。
匯報(預設):
、 6÷8=(6×2)÷(8×2)=12÷16
6:8=(6×2)∶(8×2)=12:16
6:8=(6÷2)∶(8÷2)=3:4
6÷8=(6÷2)÷(8÷2)=3÷4
、 0.4:0.5=0.4÷0.5=0.8
0.4×5=2 0.5×5=2.5
2:2.5=2÷2.5=0.8
、 (3/4)÷(5/4)= (3/4)×(4/5)=3/5=0.6
3/4×(2/3)=1/2 4/5×(2/3)=5/6
1/2 :(5/6)=1/2×(5/6)=0.6
小組派代表說明驗證過程,其他同學補充說明。
結論:比的前項和后項同時乘或除以相同的數(0除外),比值不變,這叫做比的基本性質。(板書課題)
問:為什么0除外?(生自由回答)
這句話中你覺得哪些字比較重要?
相同的數可以是什么數?
不可以是什么數?
說一說:比的基本性質與商不變性質和分數的基本性質有什么聯系和區別?
3、比的性質的應用
①最簡整數比
師:我們在學習分數的基本性質時,利用它化簡分數,約分,通分,其實我們學習比的基本性質也可以用來化簡比,把比化成最簡整數比,知道什么是最簡整數比嗎?(生自由發言)
結論:最簡整數比就是比的前項和后項都是整數,而且比的前項和后項的公因數是1,這就是最簡整數比。
討論:
怎樣理解“最簡單的整數比”這個概念?
小組里議一議。
師小結:必須是一個比;前項、后項必須是整數,不能是分數或小數;前項與后項互質。
②教學例1:化成最簡整數比
課件出示例題,
寫出這兩面聯合國旗的長和寬的比,并化成最簡單的整數比。
課件出示例題的兩面旗的圖,
這兩個比有什么關系呢?仔細觀察,這兩個比的前項,后項是怎么變化的,存在著怎樣一個變化規律呢?
生獨立解決,小組交流匯報方法。
15∶10
15 : 10=(15÷5):(10÷5)=3:2
想:5是15和10的什么數?為什么要除以5?
180 : 120=(15÷___):(10÷___)=3:2
想:除以什么呢?
這兩個比的什么變了,什么沒有變?
把下面的比化成最簡單的整數比。
0.75:2 1/6:2/9
三、鞏固應用,內化提高
1、看誰的眼睛看得準?(根據比的基本性質判斷下面各題)
2、把下面各比化成最簡單的`整數比。
應用這個性質可以把一個比化成最簡單的整數比?
(1).需要怎樣做才能化成最簡單的整數比?
(2).這樣做到底有什么根據?
3、歸納化簡比的方法:
(1)整數比
——比的前后項都除以它們的最大公約數→最簡比。
(2)小數比
——比的前后項都擴大相同的倍數→整數比→最簡比。
(3)分數比
——比的前后項都乘它們分母的最小公倍數→整數比→最簡比。
四、課堂小結
通過今天的學習,你又學習了哪些知識?什么是比的基本性質?應用比的基本性質如何把整數比、分數比、小數比化成最簡單的整數比?
五、課后延伸:
有一個兩位數,十位上的數和個位上的數的比是2:3。十位上的數加上2,就和個位上的數相等。這個兩位數是多少?
板書設計:
比的基本性質
比的前項和后項同時乘或除以相同的數(0除外),比值不變,這叫做比的基本性質。
初三上冊數學教案 4
教學目標
1、認識扇形統計圖的特點和作用;
2、能聯系百分數的意義,對扇形統計圖提供的信息進行簡單的分析。
3、遇到不理解或不懂的地方,用下劃線和?標記出來。便于交流時提出。
4、自己的建議、體會、方法可以在旁邊作好批注。
教學重難點
1、認識扇形統計圖的特點和作用;
2、能聯系百分數的意義,對扇形統計圖提供的信息進行簡單的分析。
教學工具
課件
教學過程
一、快樂自學
你喜歡運動嗎?調查本班同學喜歡的運動項目。根據下面的統計圖:
六(1)班最喜歡的`運動項目統計圖
1、說一說:從這幅統計圖中你能獲取哪些信息?
2、我知道這是一幅( )統計圖,它的特點是( )。
3、我最喜歡的運動項目是( ),它占全班人數的百分比是( )。要想清楚地知道百分比這樣的信息,我們可以選用( )統計圖。
4、一起來認識扇形統計圖吧!自學教材第107頁,注意拿筆勾畫哦!.
(1)計算出各運動項目占全班人數的百分比。
(2)從扇形統計圖中,你又能獲取哪些信息?
(3)你還能提出什么問題?
二、合作探究。
討論交流:扇形統計圖是怎樣來表示各個數據的?它有什么特點?
1、我發現扇形統計圖中的( )代表單位“1”,表示( ),各個扇形面積表示( ),扇形的大小說明了( )。
2、扇形統計圖的特點是( )。
3、生活中,你還從()見到過扇形統計圖?
三、學習小結
我們已曾經學過的統計圖有條形統計圖,它的特點是();還有()統計圖,它的特點是不但可以表示各部分數量的多少,而且還可以清楚地看出數量的增減變化情況。我們今天又學習了扇形統計圖,它的特點是(),
四、智勇大闖關,我是小擂主
1、第一關:小練兵。
完成練習二十五的第1、2題。
2、第二關
完成練習二十五的第4題。
五、學后反思
1、我的收獲:
2、自我評價:我對我的課堂表現( )
六、作業
1、完成教材P107的“做一做”.
2、練習二十五的第3題
課后習題
1、完成教材P107的“做一做”。
2、練習二十五的第3題。
初三上冊數學教案 5
教學目標
1.使學生學會圓環面積的計算方法,以及圓形與矩形混合圖形的相關計算方法。
2.學會利用已有的知識,運用數學思想方法,推導出圓環面積計算公式,有關于圓形與正方形應用的解答方法。
3.培養學生觀察、分析、推理和概括的能力,發展學生的空間概念。
教學重難點
1教學重點
會利用圓和其他已學的相關知識解決實際問題。
2教學難點
圓與其他圖形計算公式的混合使用。
教學工具
PPT卡片
教學過程
1復習鞏固上節知識,導入新課
2新知探究
2.1圓環面積
一、問題引入
同學們知道光盤可以用來做什么嗎?誰能來描述一下光盤的外觀。
回答(略)。
今天我們就來做一做與光盤相關的數學問題。
二、圓環面積求解
例2.光盤的銀色部分是一個圓環,內圓半徑是50px,外圓半徑是150px。圓環的面積是多少?
步驟:
師:求圓環面積需要先求什么?
生:內圓和外圓的'面積
師:同學們可以自己做一做,分組交流一下自己的解法。
師:給出計算過程與結果:
三、知識應用
做一做第2題:
一個圓形環島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
師:這是一道典型的圓環面積應用題。通過直徑得到半徑,代入圓環面積公式,很簡單。
2.2圓與正方形
一、問題引入
師:同學們知道蘇州的園林吧。大家有沒有觀察過園林建筑的窗戶?它有很多很漂亮的設計,也有很多很常見的圖形,比如五邊形、六邊形、八邊形等等。其中外圓內方或者外方內圓是一種很常見的設計。
師:不僅是在園林中,事實上在中國的建筑和其他的設計中都經常能見到“外圓內方”和“外方內圓”,比如這座沈陽的方圓大廈、商標等等。下面我們來認識一下這種圓形與正方形結合起來構成的圖形。
二、知識點
例3:圖中的兩個圓半徑是1m,你能求出正方形和圓之間部分的面積嗎?
步驟:
師:題目中都告訴了我們什么?
生:左圖圓的半徑=正方形的邊長的一半=1m;右圖圓的面積=正方形對角線的一半=1m
師:分別要求的是什么?
生:一個求正方形比圓多的面積,一個求圓比正方形多的面積。
師:應該怎么計算呢?
歸納總結
如果兩個圓的半徑都是r,結果又是怎樣的呢?
當r=1時,與前面的結果完全一致。
四、知識應用
70頁做一做:
下圖是一面我國唐代外圓內方的銅鏡。銅鏡的直徑是600px。外面的圓與內部的正方形之間的面積是多少?
師:同學們用我們剛剛學過的知識來解答一下這道題目吧。
解:銅鏡的半徑是300px
5.3隨堂練習
若還有足夠時間,課堂練習練習十五第5/6/7題。
(可以邀請同學板書解題過程)
6 小結
1)今天我們共同研究了什么?
今天我們在已知圓和正方形的面積公式的前提下,探索了圓環和“外圓內方”“外方內圓”圖形的面積計算方法。這不是要求同學們記住這些推導出來的公式,而是希望同學們能過明白推導的方法,以后遇到類似的問題可以自己運用學過的知識來解決問題。
2)在日常生活中經常需要去求圓的面積,譬如說:蒙古包做成圓形的是因為可以最大化地利用居住面積,植物根莖的橫截面是圓形的,也是因為可以最大化的吸收水分。我們還可以再舉出其他的一些例子,如裝菜的盤子、車輪為什么要做成圓形的?大家需要多看多想!
初三上冊數學教案 6
一、素質教育目標
。ㄒ唬┲R教學點
使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系。
。ǘ┠芰τ柧汓c
逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力。
。ㄈ┑掠凉B透點
培養學生獨立思考、勇于創新的精神。
二、教學重點、難點
1、重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用。
2、難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用。
三、教學步驟
。ㄒ唬┟鞔_目標
1、復習提問
(1)、什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答。因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施。
(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書)。
(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”。
2、導入新課
根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值!边@是否是真命題呢?引出課題。
。ǘ、整體感知
關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明。引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式。在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明。
。ㄈ┲攸c、難點的學習和目標完成過程
1、通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍。
2、這時少數反應快的`學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂。因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神。
3、教師板書:
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
sinA=cos(90°-A),cosA=sin(90°-A)。
4、在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆。因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固。
已知∠A和∠B都是銳角,(1)把cos(90°-A)寫成∠A的正弦。
(2)把sin(90°-A)寫成∠A的余弦。
這一練習只能起到鞏固定理的作用。為了運用定理,教材安排了例3.
。2)已知sin35°=0.5736,求cos55°;
。3)已知cos47°6′=0.6807,求sin42°54′。
(1)問比較簡單,對照定理,學生立即可以回答。(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學生自己發現35°與55°的角,47°6′分42°54′的角互余,從而根據定理得出答案,因此(2)、(3)問在課堂上應該請基礎好一些的同學講清思維過程,便于全體學生掌握,在三個問題處理完之后,將題目變形:
(2)已知sin35°=0.5736,則cos______=0.5736.
(3)cos47°6′=0.6807,則sin______=0.6807,以培養學生思維能力。
為了配合例3的教學,教材中配備了練習題2.
。2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′。
學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用。
教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處。同時,做例3也為下一節查正余弦表做了準備。
。ㄋ模┬〗Y與擴展
1、請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分。
2、本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值。
四、布置作業
初三上冊數學教案 7
【學習目標】
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑。
4.熟練掌握圓周角的定理及其推理的靈活運用。
設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題。
【學習過程】
一、溫故知新:
(學生活動)同學們口答下面兩個問題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內在聯系呢?
二、自主學習:
自學教材P90---P93,思考下列問題:
1、什么叫圓周角?圓周角的兩個特征:。
2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的.方法回答下面的問題.
(1)一個弧上所對的圓周角的個數有多少個?
(2).同弧所對的圓周角的度數是否發生變化?
(3).同弧上的圓周角與圓心角有什么關系?
3、默寫圓周角定理及推論并證明。
4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質成立嗎?
5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?
三、典型例題:
例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。
例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?
四、鞏固練習:
1、(教材P93練習1)
解:
2、(教材P93練習2)
3、(教材P93練習3)
證明:
4、(教材P95習題24.1第9題)
五、總結反思。
初三上冊數學教案 8
教學內容:
義務教育課程標準實驗教科書(人教版)三年級上冊第三者112頁例1簡單的組合。
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的組合數。
2、經歷探索簡單事物組合規律的過程。
3、培養學生有順序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,激發學生學好數學的信心。
教學重點:
經歷探索簡單事物組合規律的過程。
教學難點:
能用不同的方法準確地計算出組合數。
教具準備:
教學課件學具準備:每生準備主題圖中相關的學具卡片或實物。
教學過程:
。ㄒ唬﹦撛O問題情境:
師:小朋友,你們喜歡老師漂亮一點呢還是喜歡老師丑一點?
生:大多數的小朋友說喜歡老師漂亮。
師:那你們幫助老師打扮打扮。我最喜歡紅色體恤和這三件下衣,到底怎樣搭配最漂亮呢?請小朋友們給老師出出主意。小朋友們紛紛發表自己的意見,并說出了自己的理由。
師:謝謝。你們的建議都不錯。那我這一件上衣、三件下衣能有多少種不同的穿法呢?
老師接著問:那我有兩件上衣、三件下衣又有多少種不同的穿法呢?有說4種、有說5種、也有說6種的,到底有幾種呢?
(二)
1.自主合作探索新知試一試
師:請同學們也試著想一想,如果你覺得直接想象有困難的話可以借助手中的`學具卡片擺一擺。學生活動教師巡視。
2.發現問題學生匯報所寫個數,教師根據巡視的情況重點展示幾份,引導學生發現問題:有的重復了,有的漏寫了。
3.小組討論師:每個同學算出的個數不同,怎樣才能很快算出兩件上衣、三件下衣有多少種不同的穿法呢?并做到不重復不遺漏呢?學生以小組為單位交流討論。
4.小組匯報匯報時可能會出現下面幾種情況:
。1)、無序的。用學具卡片或實物擺,然后再數。
(2)、用連線的方法算出。
。3)、用圖式的方法算出。引導學生及時評價每一種方法的優缺點,使其把適合自己的方法掌握起來。
5.小結教師簡單小結學生所想方法引出練習內容見課本112頁。
(三)拓展應用
數字2、3、4、5、6、7寫出不同的兩位數?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△請你試著擺出其他幾種排法。
初三上冊數學教案 9
一、教學目標:
1、了解作為證明基礎的幾條公理的內容,掌握證明的基本步驟和書寫格式。
2、經歷“探索-發現-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關性質定理和判定定理。
3、結合實例體會反證法的含義。
二、教學重點:
了解作為證明基礎的幾條公理的內容,通過等腰三角形性質證明,掌握證明的基本步驟和書寫格式。
教學難點:能夠用綜合法證明等腰三角形的關性質定理和判定定理(特別是證明等腰三角形性質時輔助線做法)。
三、教學方法:
觀察法。
四、教學過程:
復習:
1、什么是等腰三角形?
2、你會畫一個等腰三角形嗎?并把你畫的等腰三角形栽剪下來。
3、試用折紙的辦法回憶等腰三角形有哪些性質?
新課講解:
在《證明(一)》一章中,我們已經證明了有關平行線的一些結論,運用下面的公理和已經證明的`定理,我們還可以證明有關三角形的一些結論。
同學們和我一起來回憶上學期學過的公理
本套教材選用如下命題作為公理:
1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
2.兩條平行線被第三條直線所截,同位角相等;
3.兩邊夾角對應相等的兩個三角形全等;(SAS)
4.兩角及其夾邊對應相等的兩個三角形全等;(ASA)
5.三邊對應相等的兩個三角形全等;(SSS)
6.全等三角形的對應邊相等,對應角相等.
由公理5、3、4、6可容易證明下面的推論:
推論兩角及其中一角的對邊對應相等的兩個三角形全等。(AAS)證明過程:
已知:∠A=∠D,∠B=∠E,BC=EF
求證:△ABC≌△DEF
證明:∵∠A+∠B+∠C=180°,
∠D+∠E+∠F=180°
(三角形內角和等于180°)
∴∠C=180°-(∠A+∠B)
∠F=180°-(∠D+∠E)
又∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F
又∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
定理:等腰三角形的兩個底角相等。
這一定理可以簡單敘述為:等邊對等角。已知:如圖,在ABC中,AB=AC。
初三上冊數學教案 10
教學目標
1、了解二次根式的概念、
2、掌握二次根式的基本性質
教學過程
一、提出問題
上一節我們學習了平方根和算術平方根的意義,引進了一個新的記號,現在請同學們思考并回答下面兩個問題:
1、表示什么?
2、a需要滿足什么條件?為什么?
二、合作交流,解決問題
讓學生合作交流,然后回答問題(可以補充),歸納為;
1、當a是正數時,表示a的'算術平方根,即正數a的兩個平方根中的一個正數;
2、當a是零時,表示零,也叫零的算術平方根;
3、a≥0,因為任何一個有理數的平方都大于或等于零
三、歸納特點,引入二次根式概念
1、基本性質、
問題1 你能用一句話概括以上3個結論嗎?
讓一個學生回答、其他學生補充,概括為:(a≥0)表示非負數a的算術平方根,也就是說,(a≥0)是一個非負數,即≥0(a≥0)。
問題2 ()2(a≥0)等于什么?說說你的理由并舉例驗證。
讓學生小組討論或自主探索得出結論:()2=a(a≥0),如()2=4,()2=2等、
以上兩個問題的結論就是基本性質,特別是()2=a(a≥0)可以當公式使用,直接應用于計算。反過來,把()2=a(a≥0)寫成a=()2(a≥0)的形式,這說明:任何一個非負數a都可以寫成一個數的平方的形式、例如:3=()2,3= ()2
提問:
。1)0=()2對不對?
。2)—5=()2對不對?如果不對,錯在哪里?
2、二次根式概念
形如(a≥0)的式子叫做二次根式、
說明:二次根式必須具備以下特點;
。1)有二次根號;
(2)被開方數不能小于0。
讓學生舉出二次根式的幾個例子,并判斷。
四、范例
例1、要使式子有意義,字母x的取值必須滿足什么條件?
提問:
若將式子改為,則字母x的取值必須滿足什么條件?
五、課堂練習
Pl0頁練習1、2、
六、思考提高
我們已經研究了()2(a≥0)等于a,現在研究等于什么
提問:
1、對于抽象問題的研究,常常采用什么策略?
2、在中,a的取值有沒有限制?
3、取一些數值來驗證。通過驗證,你能發現什么規律?
因此,今后我們遇到時,可先改寫成a的絕對值|a|,再按照a取正數值,0還是負數值來取值、例如當x
4、()2與是一樣的嗎?說說你的理由,并與同學交流。
七、小結
1、什么叫做二次根式?你們能舉出幾個例子嗎?
2、二次根式有哪兩個形式上的特點?
3、二次根式有哪些性質?
八、作業
習題22。第1、2、3、4題、
【初三上冊數學教案】相關文章:
初三上冊數學教案12-17
初三數學教案優秀12-09
[精]初三數學教案11-22
關于初三數學教案優秀11-28
初三數學教案(精選13篇)04-02
初三物理上冊教案12-16
化學初三上冊教案06-24
初一數學教案上冊11-19
初三化學上冊教案06-12