1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>高中數學教案

    高中數學教案

    時間:2025-05-21 08:00:21 數學教案 我要投稿

    高中數學教案通用15篇

      在教學工作者開展教學活動前,常常要寫一份優秀的教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。如何把教案做到重點突出呢?以下是小編為大家收集的高中數學教案,僅供參考,希望能夠幫助到大家。

    高中數學教案通用15篇

    高中數學教案1

      教學目標:

      1。理解并掌握瞬時速度的定義;

      2。會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;

      3。理解瞬時速度的實際背景,培養學生解決實際問題的能力。

      教學重點:

      會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。

      教學難點:

      理解瞬時速度和瞬時加速度的定義。

      教學過程:

      一、問題情境

      1。問題情境。

      平均速度:物體的運動位移與所用時間的`比稱為平均速度。

      問題一平均速度反映物體在某一段時間段內運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?

      問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的速度.

      2。探究活動:

      (1)計算運動員在2s到2.1s(t∈)內的平均速度。

      (2)計算運動員在2s到(2+?t)s(t∈)內的平均速度。

      (3)如何計算運動員在更短時間內的平均速度。

      探究結論:

      時間區間

      t

      平均速度

      0.1

      -13.59

      0.01

      -13.149

      0.001

      -13.1049

      0.0001

      -13.10049

      0.00001

      -13.100049

      0.000001

      -13.1000049

      當?t?0時,?-13.1,

      該常數可作為運動員在2s時的瞬時速度。

      即t=2s時,高度對于時間的瞬時變化率。

      二、建構數學

      1。平均速度。

      設物體作直線運動所經過的路程為,以為起始時刻,物體在?t時間內的平均速度為。

      可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當?t?0時,極限就是物體在時刻的瞬時速度。

      三、數學運用

      例1物體作自由落體運動,運動方程為,其中位移單位是m,時

      間單位是s,,求:

      (1)物體在時間區間s上的平均速度;

      (2)物體在時間區間上的平均速度;

      (3)物體在t=2s時的瞬時速度。

      分析

      解

      (1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

      (2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

      (3)當?t?0,2+?t?2,從而平均速度的極限為:

      例2設一輛轎車在公路上作直線運動,假設時的速度為,

      求當時轎車的瞬時加速度。

      解

      ∴當?t無限趨于0時,無限趨于,即=。

      練習

      課本P12—1,2。

      四、回顧小結

      問題1本節課你學到了什么?

      1理解瞬時速度和瞬時加速度的定義;

      2實際應用問題中瞬時速度和瞬時加速度的求解;

      問題2解決瞬時速度和瞬時加速度問題需要注意什么?

      注意當?t?0時,瞬時速度和瞬時加速度的極限值。

      問題3本節課體現了哪些數學思想方法?

      2極限的思想方法。

      3特殊到一般、從具體到抽象的推理方法。

      五、課外作業

    高中數學教案2

      教學目標

      進一步熟悉正、余弦定理內容,能熟練運用余弦定理、正弦定理解答有關問題,如判斷三角形的形狀,證明三角形中的三角恒等式。

      教學重難點

      教學重點:熟練運用定理。

      教學難點:應用正、余弦定理進行邊角關系的相互轉化。

      教學過程

      一、復習準備:

      1、寫出正弦定理、余弦定理及推論等公式。

      2、討論各公式所求解的三角形類型。

      二、講授新課:

      1、教學三角形的解的討論:

      ①出示例1:在△ABC中,已知下列條件,解三角形。

      分兩組練習→討論:解的個數情況為何會發生變化?

      ②用如下圖示分析解的情況。(A為銳角時)

      練習:在△ABC中,已知下列條件,判斷三角形的解的情況。

      2、教學正弦定理與余弦定理的活用:

      ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦。

      分析:已知條件可以如何轉化?→引入參數k,設三邊后利用余弦定理求角。

      ②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型。

      分析:由三角形的什么知識可以判別?→求角余弦,由符號進行判斷

      ③出示例4:已知△ABC中,試判斷△ABC的.形狀。

      分析:如何將邊角關系中的邊化為角?→再思考:又如何將角化為邊?

      3、小結:三角形解的情況的討論;判斷三角形類型;邊角關系如何互化。

    高中數學教案3

      教學目標

      (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。

      (2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。

      (3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點。

      (4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。

      (5)進一步理解數形結合的思想方法。

      教學建議

      教材分析

      (1)知識結構

      曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質。曲線方程的概念和求曲線方程的問題又有內在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質則更在其后,本節不予研究。因此,本節涉及曲線方程概念和求曲線方程兩大基本問題。

      (2)重點、難點分析

      ①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想。

      ②本節的難點是曲線方程的概念和求曲線方程的方法。

      教法建議

      (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系。曲線與方程對應關系的基礎是點與坐標的對應關系。注意強調曲線方程的完備性和純粹性。

      (2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。

      (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。

      (4)從集合與對應的觀點可以看得更清楚:

      設 表示曲線 上適合某種條件的點 的集合;

      表示二元方程的解對應的點的坐標的集合。

      可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

      (5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的.方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。

      這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即

      文字語言中的幾何條件 數學符號語言中的等式 數學符號語言中含動點坐標 , 的代數方程 簡化了的 , 的代數方程

      由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程。”

      (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。

    高中數學教案4

      一、單元教學內容

      (1)算法的基本概念

      (2)算法的基本結構:順序、條件、循環結構

      (3)算法的基本語句:輸入、輸出、賦值、條件、循環語句

      二、單元教學內容分析

      算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力

      三、單元教學課時安排:

      1、算法的基本概念3課時

      2、程序框圖與算法的基本結構5課時

      3、算法的基本語句2課時

      四、單元教學目標分析

      1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

      2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

      3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

      4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

      五、單元教學重點與難點分析

      1、重點

      (1)理解算法的含義(2)掌握算法的基本結構(3)會用算法語句解決簡單的實際問題

      2、難點

      (1)程序框圖(2)變量與賦值(3)循環結構(4)算法設計

      六、單元總體教學方法

      本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

      七、單元展開方式與特點

      1、展開方式

      自然語言→程序框圖→算法語句

      2、特點

      (1)螺旋上升分層遞進(2)整合滲透前呼后應(3)三線合一橫向貫通(4)彈性處理多樣選擇

      八、單元教學過程分析

      1.算法基本概念教學過程分析

      對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的'思想,了解算法的含義,能用自然語言描述算法。

      2.算法的流程圖教學過程分析

      對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

      3.基本算法語句教學過程分析

      經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

      4.通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

      九、單元評價設想

      1.重視對學生數學學習過程的評價

      關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

      2.正確評價學生的數學基礎知識和基本技能

      關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

    高中數學教案5

      教學目標

      1.了解映射的概念,象與原象的概念,和一一映射的概念.

      (1)明確映射是特殊的對應即由集合 ,集合 和對應法則f三者構成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應;

      (2)能準確使用數學符號表示映射, 把握映射與一一映射的區別;

      (3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.

      2.在概念形成過程中,培養學生的觀察,比較和歸納的能力.

      3.通過映射概念的學習,逐步提高學生對知識的探究能力.

      教學建議

      教材分析

      (1)知識結構

      映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數也是特殊的映射,它們之間的關系可以通過下圖表示出來,如圖:

      由此我們可從集合的包含關系中幫助我們把握相關概念間的區別與聯系.

      (2)重點,難點分析

      本節的教學重點和難點是映射和一一映射概念的形成與認識.

      ①映射的概念是比較抽象的概念,它是在初中所學對應的基礎上發展而來.教學中應特別強調對應集合 B中的唯一這點要求的理解;

      映射是學生在初中所學的對應的基礎上學習的,對應本身就是由三部分構成的整體,包括集 合A和集合B及對應法則f,由于法則的不同,對應可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿足一對一和多對一的對應就能體現出“任一對唯一”.

      ②而一一映射又在映射的基礎上增加新的要求,決定了它在學習中是比較困難的.

      教法建議

      (1)在映射概念引入時,可先從學生熟悉的`對應入手, 選擇一些具體的生活例子,然后再舉一些數學例子,分為一對多、多對一、多對一、一對一四種情況,讓學生認真觀察,比較,再引導學生發現其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學生的認識從感性認識到理性認識.

      (2)在剛開始學習映射時,為了能讓學生看清映射的構成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學生可以比較直觀的認識映射,而后再選擇用抽象的數學符號表示映射,比如:

      (3)對于學生層次較高的學校可以在給出定義后讓學生根據自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學生從中發現映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學生層次較低的學校,則可以由教師給出一些例子讓學生觀察,教師引導學生發現映射的特點,一起概括.最后再讓學生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

      (4)關于求象和原象的問題,應在計算的過程中總結方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數解)加深對映射的認識.

      (5)在教學方法上可以采用啟發,討論的形式,讓學生在實例中去觀察,比較,啟發學生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結,教師要起到點撥和深化的作用.

      教學設計方案

      2.1映射

      教學目標(1)了解映射的概念,象與原象及一一映射的概念.

      (2)在概念形成過程中,培養學生的觀察,分析對比,歸納的能力.

      (3)通過映射概念的學習,逐步提高學生的探究能力.

      教學重點難點::映射概念的形成與認識.

      教學用具:實物投影儀

      教學方法:啟發討論式

      教學過程:

      一、引入

      在初中,我們已經初步探討了函數的定義并研究了幾類簡單的常見函數.在高中,將利用前面集合有關知識,利用映射的觀點給出函數的定義.那么映射是什么呢?這就是我們今天要詳細的概念.

      二、新課

      在前一章集合的初步知識中,我們學習了元素與集合及集合與集合之間的關系,而映射是重點研究兩個集合的元素與元素之間的對應關系.這要先從我們熟悉的對應說起(用投影儀打出一些對應關系,共6個)

      我們今天要研究的是一類特殊的對應,特殊在什么地方呢?

      提問1:在這些對應中有哪些是讓A中元素就對應B中唯一一個元素?

      讓學生仔細觀察后由學生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)

      提問2:能用自己的語言描述一下這幾個對應的共性嗎?

      經過師生共同推敲,將映射的定義引出.(主體內容由學生完成,教師做必要的補充)

    高中數學教案6

      三維目標:

      1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;

      2、過程與方法:

      (1)能夠從現實生活或其他學科中提出具有一定價值的統計問題;

      (2)在解決統計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。

      3、情感態度與價值觀:通過對現實生活和其他學科中統計問題的提出,體會數學知識與現實世界及各學科知識之間的聯系,認識數學的重要性。

      4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數法的步驟,并能靈活應用相關知識從總體中抽取樣本。

      教學方法:

      講練結合法

      教學用具:

      多媒體

      課時安排:

      1課時

      教學過程:

      一、問題情境

      假設你作為一名食品衛生工作人員,要對某食品店內的一批小包裝餅干進行衛生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?

      二、探究新知

      1、統計的有關概念:總體:在統計學中,所有考察對象的全體叫做總體、個體:每一個考察的`對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數目叫做樣本的容量、統計的基本思想:用樣本去估計總體、

      2、簡單隨機抽樣的概念一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。

      下列抽樣的方式是否屬于簡單隨機抽樣?為什么?

      (1)從無限多個個體中抽取50個個體作為樣本。

      (2)箱子里共有100個零件,從中選出10個零件進行質量檢驗,在抽樣操作中,從中任意取出一個零件進行質量檢驗后,再把它放回箱子。

      (3)從8臺電腦中,不放回地隨機抽取2臺進行質量檢查(假設8臺電腦已編好號,對編號隨機抽取)

      3、常用的簡單隨機抽樣方法有:

      (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。

      思考?你認為抽簽法有什么優點和缺點:當總體中的個體數很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現要抽取8位同學出來做游戲,請設計一個抽取的方法,要使得每位同學被抽到的機會相等。

      分析:可以把57位同學的學號分別寫在大小,質地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個抽出8張紙片,再選出紙片上的學號對應的同學即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續取n次;第三步:將取出的n個號簽上的號碼所對應的n個個體作為樣本。

      (2)隨機數法的定義:利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣,叫隨機數表法,這里僅介紹隨機數表法。怎樣利用隨機數表產生樣本呢?下面通過例子來說明,假設我們要考察某公司生產的500克袋裝牛奶的質量是否達標,現從800袋牛奶中抽取60袋進行檢驗,利用隨機數表抽取樣本時,可以按照下面的步驟進行。第一步,先將800袋牛奶編號,可以編為000,001,799。

      第二步,在隨機數表中任選一個數,例如選出第8行第7列的數7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數7開始向右讀(讀數的方向也可以是向左、向上、向下等),得到一個三位數785,由于785<799,說明號碼785在總體內,將它取出;

      繼續向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。

      三、課堂練習

      四、課堂小結

      1、簡單隨機抽樣的概念一般地,設一個總體的個體數為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。

      2、簡單隨機抽樣的方法:抽簽法隨機數表法

      五、課后作業

      P57練習1、2

      六、板書設計

      1、統計的有關概念

      2、簡單隨機抽樣的概念

      3、常用的簡單隨機抽樣方法有:(1)抽簽法(2)隨機數表法

      4、課堂練習

    高中數學教案7

      教學目標:

      1.理解流程圖的選擇結構這種基本邏輯結構.

      2.能識別和理解簡單的框圖的功能.

      3. 能運用三種基本邏輯結構設計流程圖以解決簡單的問題.

      教學方法:

      1. 通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.

      2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.

      教學過程:

      一、問題情境

      1.情境:

      某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為

      其中(單位:)為行李的重量.

      試給出計算費用(單位:元)的一個算法,并畫出流程圖.

      二、學生活動

      學生討論,教師引導學生進行表達.

      解 算法為:

      輸入行李的重量;

      如果,那么,

      否則;

      輸出行李的重量和運費.

      上述算法可以用流程圖表示為:

      教師邊講解邊畫出第10頁圖1-2-6.

      在上述計費過程中,第二步進行了判斷.

      三、建構數學

      1.選擇結構的'概念:

      先根據條件作出判斷,再決定執行哪一種

      操作的結構稱為選擇結構.

      如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行.

      2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判

      斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;

      (2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;

      (3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執

      行,但或兩個框中可以有一個是空的,即不執行任何操作;

      (4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和

      兩個退出點.

      3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?

    高中數學教案8

      教學目標:

      1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關系.

      2.會求一些簡單函數的反函數.

      3.在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識.

      4.進一步完善學生思維的深刻性,培養學生的逆向思維能力,用辯證的觀點分析問題,培養抽象、概括的能力.

      教學重點:求反函數的方法.

      教學難點:反函數的概念.

      教學過程

      教學活動

      設計意圖一、創設情境,引入新課

      1.復習提問

      ①函數的概念

      ②y=f(x)中各變量的意義

      2.同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數.在這種情況下,我們說t=是函數S=vt的反函數.什么是反函數,如何求反函數,就是本節課學習的內容.

      3.板書課題

      由實際問題引入新課,激發了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.

      二、實例分析,組織探究

      1.問題組一:

      (用投影給出函數與;與()的圖象)

      (1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱.是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

      (2)由,已知y能否求x?

      (3)是否是一個函數?它與有何關系?

      (4)與有何聯系?

      2.問題組二:

      (1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

      (2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

      (3)函數 ()的定義域與函數()的值域有什么關系?

      3.滲透反函數的概念.

      (教師點明這樣的函數即互為反函數,然后師生共同探究其特點)

      從學生熟知的函數出發,抽象出反函數的概念,符合學生的認知特點,有利于培養學生抽象、概括的能力.

      通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發展區"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎.

      三、師生互動,歸納定義

      1.(根據上述實例,教師與學生共同歸納出反函數的定義)

      函數y=f(x)(x∈A) 中,設它的值域為 C.我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數.這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數.記作: .考慮到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫成.

      2.引導分析:

      1)反函數也是函數;

      2)對應法則為互逆運算;

      3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;

      4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

      5)函數y=f(x)與x=f(y)互為反函數;

      6)要理解好符號f;

      7)交換變量x、y的原因.

      3.兩次轉換x、y的對應關系

      (原函數中的自變量x與反函數中的函數值y 是等價的,原函數中的.函數值y與反函數中的自變量x是等價的)

      4.函數與其反函數的關系

      函數y=f(x)

      函數

      定義域

      A

      C

      值 域

      C

      A

      四、應用解題,總結步驟

      1.(投影例題)

      【例1】求下列函數的反函數

      (1)y=3x-1 (2)y=x 1

      【例2】求函數的反函數.

      (教師板書例題過程后,由學生總結求反函數步驟.)

      2.總結求函數反函數的步驟:

      1° 由y=f(x)反解出x=f(y).

      2° 把x=f(y)中 x與y互換得.

      3° 寫出反函數的定義域.

      (簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?

      (2)的反函數是________.

      (3)(x<0)的反函數是__________.

      在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數.在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握.

      通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解.

      通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養學生分析、思考的習慣,以及歸納總結的能力.

      題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進.并體現了對定義的反思理解.學生思考練習,師生共同分析糾正.

      五、鞏固強化,評價反饋

      1.已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)

      (1)y=-2x 3(xR) (2)y=-(xR,且x)

      ( 3 ) y=(xR,且x)

      2.已知函數f(x)=(xR,且x)存在反函數,求f(7)的值.

      五、反思小結,再度設疑

      本節課主要研究了反函數的定義,以及反函數的求解步驟.互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節研究.

      (讓學生談一下本節課的學習體會,教師適時點撥)

      進一步強化反函數的概念,并能正確求出反函數.反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性."問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.

      六、作業

      習題2.4第1題,第2題

      進一步鞏固所學的知識.

      教學設計說明

      "問題是數學的心臟".一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程.本節教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念.

      反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念.為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規律,程序是從問題出發,研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環節,充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養學生的逆向思維.使學生自然成為學習的主人。

    高中數學教案9

      一、教學目標

      【知識與技能】

      在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

      【過程與方法】

      通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學生探索發現及分析解決問題的實際能力得到提高。

      【情感態度與價值觀】

      滲透數形結合、化歸與轉化等數學思想方法,提高學生的整體素質,激勵學生創新,勇于探索。

      二、教學重難點

      【重點】

      掌握圓的一般方程,以及用待定系數法求圓的'一般方程。

      【難點】

      二元二次方程與圓的一般方程及標準圓方程的關系。

      三、教學過程

      (一)復習舊知,引出課題

      1、復習圓的標準方程,圓心、半徑。

      2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

    高中數學教案10

      【教學目標】

      1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

      2.能根據幾何結構特征對空間物體進行分類。

      3.提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。

      【教學重難點】

      教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

      教學難點:柱、錐、臺、球的結構特征的概括。

      【教學過程】

      1.情景導入

      教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。

      2.展示目標、檢查預習

      3、合作探究、交流展示

      (1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

      (2)組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

      (3)提出問題:請列舉身邊的棱柱并對它們進行分類

      (4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

      (5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。

      (6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

      (7)教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。

      4.質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。

      (1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

      (2)棱柱的任何兩個平面都可以作為棱柱的.底面嗎?

      (3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

      (4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

      (5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

      5、典型例題

      例1:判斷下列語句是否正確。

      ⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

      ⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

      答案 A B

      6、課堂檢測:

      課本P8,習題1.1 A組第1題。

      7.歸納整理

      由學生整理學習了哪些內容

      【板書設計】

      一、柱、錐、臺、球的結構

      二、例題

      例1

      變式1、2

      【作業布置】

      導學案課后練習與提高

      1.1.1柱、錐、臺、球的結構特征

      課前預習學案

      一、預習目標:

      通過圖形探究柱、錐、臺、球的結構特征

      二、預習內容:

      閱讀教材第2—6頁內容,然后填空

      (1)多面體的概念: 叫多面體,

      叫多面體的面, 叫多面體的棱,

      叫多面體的頂點。

      ① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

      ②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

      ③棱臺:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。

      (2)旋轉體的概念: 叫旋轉體, 叫旋轉體的軸。

      ①圓柱: 所圍成的幾何體叫做圓柱

      ②圓錐: 所圍成的幾何

      體叫做圓錐

      ③圓臺: 的部分叫圓臺

      . ④球的定義

      思考:

      (1)試分析多面體與旋轉體有何去別

      (2)球面球體有何去別

      (3)圓與球有何去別

      三、提出疑惑

      同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中

      疑惑點 疑惑內容

    高中數學教案11

      【課題名稱】

      《等差數列》的導入

      【授課年級】

      高中二年級

      【教學重點】

      理解等差數列的概念,能夠運用等差數列的定義判斷一個數列是否為等差數列。

      【教學難點】

      等差數列的性質、等差數列“等差”特點的理解,

      【教具準備】多媒體課件、投影儀

      【三維目標】

      ㈠知識目標:

      了解公差的概念,明確一個等差數列的限定條件,能根據定義判斷一個等差數列是否是一個等差數列;

      ㈡能力目標:

      通過尋找等差數列的共同特征,培養學生的觀察力以及歸納推理的能力;

      ㈢情感目標:

      通過對等差數列概念的歸納概括,培養學生的觀察、分析資料的能力。

      【教學過程】

      導入新課

      師:上兩節課我們已經學習了數列的定義以及給出表示數列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數列的特點。下面我們觀察以下的幾個數列的例子:

      (1)我們經常這樣數數,從0開始,每個5個數可以得到數列:0,5,10,15,20,()

      (2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設置了7個級別,其中較輕的4個級別體重組成的數列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

      (3)為了保證優質魚類有良好的生活環境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數列:18,15.5,13,10.5,8,(),則第六個數應為多少?

      (4)10072,10144,10216,(),10360

      請同學們回答以上的四個問題

      生:第一個數列的第6項為25,第二個數列的第5個數為68,第三個數列的`第6個數為5.5,第四個數列的第4個數為10288。

      師:我來問一下,你是依據什么得到了這幾個數的呢?請以第二個數列為例說明一下。

      生:第二個數列的后一項總比前一項多5,依據這個規律我就得到了這個數列的第5個數為68.

      師:說的很好!同學們再仔細地觀察一下以上的四個數列,看看以上的四個數列是否有什么共同特征?請注意,是共同特征。

      生1:相鄰的兩項的差都等于同一個常數。

      師:很好!那作差是否有順序?是否可以顛倒?

      生2:作差的順序是后項減去前項,不能顛倒!

      師:正如生1的總結,這四個數列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(即等差)。我們叫這樣的數列為等差數列。這就是我們這節課要研究的內容。

      推進新課

      等差數列的定義:一般地,如果一個數列從第2項起,每一項與它的前一項的差都等于同一個常數,那么這個數列就叫做等差數列,這個常數就叫做等差數列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

      師:有哪個同學知道定義中的關鍵字是什么?

      生2:“從第二項起”和“同一個常數”

    高中數學教案12

      教學目標:

      (1)理解子集、真子集、補集、兩個集合相等概念;

      (2)了解全集、空集的意義。

      (3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養學生的符號表示的能力;

      (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

      (5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養學生的數學結合的數學思想;

      (6)培養學生用集合的觀點分析問題、解決問題的能力。

      教學重點:

      子集、補集的概念

      教學難點:

      弄清元素與子集、屬于與包含之間的區別

      教學用具:

      幻燈機

      教學過程設計

      (一)導入新課

      上節課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。

      【提出問題】(投影打出)

      已知xx,xx,xx,問:

      1、哪些集合表示方法是列舉法。

      2、哪些集合表示方法是描述法。

      3、將集M、集從集P用圖示法表示。

      4、分別說出各集合中的元素。

      5、將每個集合中的元素與該集合的關系用符號表示出來、將集N中元素3與集M的關系用符號表示出來。

      6、集M中元素與集N有何關系、集M中元素與集P有何關系。

      【找學生回答】

      1、集合M和集合N;(口答)

      2、集合P;(口答)

      3、(筆練結合板演)

      4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

      5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結合板演)

      6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

      【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節將研究有關兩個集合間關系的問題、

      (二)新授知識

      1、子集

      (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

      記作:xx讀作:A包含于B或B包含A

      當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、

      性質:①xx(任何一個集合是它本身的子集)

      ②xx(空集是任何集合的子集)

      【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

      【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

      因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

      (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

      例:xx,可見,集合xx,是指A、B的所有元素完全相同。

      (3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

      【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的`真子集。”

      集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B。

      【提問】

      (1)xx寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。

      (2)xx判斷下列寫法是否正確

      ①xxAxx②xxAxx③xx④AxxA

      性質:

      (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

      (2)如果xx,xx,則xx。

      例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、

      解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

      【注意】(1)子集與真子集符號的方向。

      (2)易混符號

      ①“xx”與“xx”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如xxR,{1}xx{1,2,3}

      ②{0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。

      如:xx{0}。不能寫成xx={0},xx∈{0}

      例2xx見教材P8(解略)

      例3xx判斷下列說法是否正確,如果不正確,請加以改正、

      (1)xx表示空集;

      (2)空集是任何集合的真子集;

      (3)xx不是xx;

      (4)xx的所有子集是xx;

      (5)如果xx且xx,那么B必是A的真子集;

      (6)xx與xx不能同時成立、

      解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

      (2)不正確、空集是任何非空集合的真子集;

      (3)不正確、xx與xx表示同一集合;

      (4)不正確、xx的所有子集是xx;

      (5)正確

      (6)不正確、當xx時,xx與xx能同時成立、

      例4xx用適當的符號(xx,xx)填空:

      (1)xx;xx;xx;

      (2)xx;xx;

      (3)xx;

      (4)設xx,xx,xx,則AxxBxxC、

      解:(1)0xx0xx;

      (2)xx=xx,xx;

      (3)xx,xx∴xx;

      (4)A,B,C均表示所有奇數組成的集合,∴A=B=C、

      【練習】教材P9

      用適當的符號(xx,xx)填空:

      (1)xx;xx(5)xx;

      (2)xx;xx(6)xx;

      (3)xx;xx(7)xx;

      (4)xx;xx(8)xx、

      解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

      提問:見教材P9例子

      (二)xx全集與補集

      1、補集:一般地,設S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即

      、

      A在S中的補集xx可用右圖中陰影部分表示、

      性質:xxS(xxSA)=A

      如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

      (2)若A={0},則xxNA=N;

      (3)xxRQ是無理數集。

      2、全集:

      如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。

      注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。

      例如:若xx,當xx時,xx;當xx時,則xx。

      例5xx設全集xx,xx,xx,判斷xx與xx之間的關系。

      解:

      練習:見教材P10練習

      1、填空:

      xx,xx,那么xx,xx。

      解:xx,

      2、填空:

      (1)如果全集xx,那么N的補集xx;

      (2)如果全集,xx,那么xx的補集xx(xx)=xx、

      解:(1)xx;(2)xx。

      (三)小結:本節課學習了以下內容:

      1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

      2、五條性質

      (1)空集是任何集合的子集。ΦxxA

      (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

      (3)任何一個集合是它本身的子集。

      (4)如果xx,xx,則xx、

      (5)xxS(xxSA)=A

      3、兩組易混符號:(1)“xx”與“xx”:(2){0}與

      (四)課后作業:見教材P10習題1、2

    高中數學教案13

      教學準備

      教學目標

      熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。

      掌握兩角和與差的正、余弦公式,能用公式解決相關問題。

      教學重難點

      熟練兩角和與差的正、余弦公式的'正用、逆用和變用技巧。

      教學過程

      復習

      兩角差的余弦公式

      用- B代替B看看有什么結果?

    高中數學教案14

      教學目標:

      1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.

      2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.

      教學重點:

      復數的幾何意義,復數加減法的幾何意義.

      教學難點:

      復數加減法的幾何意義.

      教學過程:

      一 、問題情境

      我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?

      二、學生活動

      問題1 任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數呢?

      問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?

      問題3 任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的',我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?

      問題4 復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?

      三、建構數學

      1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.

      2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.

      3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的幾何意義.

      6.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的.

      四、數學應用

      例1 在復平面內,分別用點和向量表示下列復數4,2+i,-i,-1+3i,3-2i.

      練習 課本P123練習第3,4題(口答).

      思考

      1.復平面內,表示一對共軛虛數的兩個點具有怎樣的位置關系?

      2.如果復平面內表示兩個虛數的點關于原點對稱,那么它們的實部和虛部分別滿足什么關系?

      3.“a=0”是“復數a+bi(a,b∈R)是純虛數”的__________條件.

      4.“a=0”是“復數a+bi(a,b∈R)所對應的點在虛軸上”的_____條件.

      例2 已知復數z=(m2+m-6)+(m2+m-2)i在復平面內所對應的點位于第二象限,求實數m允許的取值范圍.

      例3 已知復數z1=3+4i,z2=-1+5i,試比較它們模的大小.

      思考 任意兩個復數都可以比較大小嗎?

      例4 設z∈C,滿足下列條件的點Z的集合是什么圖形?

      (1)│z│=2;(2)2<│z│<3.

      變式:課本P124習題3.3第6題.

      五、要點歸納與方法小結

      本節課學習了以下內容:

      1.復數的幾何意義.

      2.復數加減法的幾何意義.

      3.數形結合的思想方法.

    高中數學教案15

      第一章:空間幾何體

      1.1.1柱、錐、臺、球的結構特征

      一、教學目標

      1.知識與技能

      (1)通過實物操作,增強學生的直觀感知。

      (2)能根據幾何結構特征對空間物體進行分類。

      (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

      (4)會表示有關于幾何體以及柱、錐、臺的分類。

      2.過程與方法

      (1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

      (2)讓學生觀察、討論、歸納、概括所學的知識。

      3.情感態度與價值觀

      (1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

      (2)培養學生的空間想象能力和抽象括能力。

      二、教學重點、難點

      重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

      難點:柱、錐、臺、球的結構特征的概括。

      三、教學用具

      (1)學法:觀察、思考、交流、討論、概括。

      (2)實物模型、投影儀

      四、教學思路

      (一)創設情景,揭示課題

      1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

      2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。

      (二)、研探新知

      1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

      2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

      3.組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

      4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。

      5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

      6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

      7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。

      8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

      9.教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。

      10.現實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

      (三)質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。

      1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

      2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

      3.課本P8,習題1.1A組第1題。

      4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

      5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

      四、鞏固深化

      練習:課本P7練習1、2(1)(2)

      課本P8習題1.1第2、3、4題

      五、歸納整理

      由學生整理學習了哪些內容

      六、布置作業

      課本P8練習題1.1B組第1題

      課外練習課本P8習題1.1B組第2題

      1.2.1空間幾何體的三視圖(1課時)

      一、教學目標

      1.知識與技能

      (1)掌握畫三視圖的基本技能

      (2)豐富學生的空間想象力

      2.過程與方法

      主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

      3.情感態度與價值觀

      (1)提高學生空間想象力

      (2)體會三視圖的作用

      二、教學重點、難點

      重點:畫出簡單組合體的三視圖

      難點:識別三視圖所表示的空間幾何體

      三、學法與教學用具

      1.學法:觀察、動手實踐、討論、類比

      2.教學用具:實物模型、三角板

      四、教學思路

      (一)創設情景,揭開課題

      “橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

      在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

      (二)實踐動手作圖

      1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;

      2.教師引導學生用類比方法畫出簡單組合體的三視圖

      (1)畫出球放在長方體上的三視圖

      (2)畫出礦泉水瓶(實物放在桌面上)的三視圖

      學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。

      作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。

      3.三視圖與幾何體之間的相互轉化。

      (1)投影出示圖片(課本P10,圖1.2-3)

      請同學們思考圖中的三視圖表示的幾何體是什么?

      (2)你能畫出圓臺的三視圖嗎?

      (3)三視圖對于認識空間幾何體有何作用?你有何體會?

      教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發表對上述問題的看法。

      4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

      (三)鞏固練習

      課本P12練習1、2P18習題1.2A組1

      (四)歸納整理

      請學生回顧發表如何作好空間幾何體的三視圖

      (五)課外練習

      1.自己動手制作一個底面是正方形,側面是全等的三角形的'棱錐模型,并畫出它的三視圖。

      2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

      1.2.2空間幾何體的直觀圖(1課時)

      一、教學目標

      1.知識與技能

      (1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。

      (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

      2.過程與方法

      學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

      3.情感態度與價值觀

      (1)提高空間想象力與直觀感受。

      (2)體會對比在學習中的作用。

      (3)感受幾何作圖在生產活動中的應用。

      二、教學重點、難點

      重點、難點:用斜二測畫法畫空間幾何值的直觀圖。

      三、學法與教學用具

      1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

      2.教學用具:三角板、圓規

      四、教學思路

      (一)創設情景,揭示課題

      1.我們都學過畫畫,這節課我們畫一物體:圓柱

      把實物圓柱放在講臺上讓學生畫。

      2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節主要學習的內容。

      (二)研探新知

      1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發表自己的見解,教師及時給予點評。

      畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。

      練習反饋

      根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。

      2.例2,用斜二測畫法畫水平放置的圓的直觀圖

      教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。

      教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。

      3.探求空間幾何體的直觀圖的畫法

      (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

      教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。

      (2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。

      4.平行投影與中心投影

      投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

      5.鞏固練習,課本P16練習1(1),2,3,4

      三、歸納整理

      學生回顧斜二測畫法的關鍵與步驟

      四、作業

      1.書畫作業,課本P17練習第5題

      2.課外思考課本P16,探究(1)(2)

    【高中數學教案】相關文章:

    高中數學教案02-21

    【通用】高中數學教案06-17

    高中數學教案(精品)06-28

    高中數學教案[熱門]07-25

    高中數學教案【合集】07-27

    [精華]高中數學教案07-22

    【熱】高中數學教案11-07

    高中數學教案范文11-07

    高中數學教案范例11-12

    高中高二數學教案02-09

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲精品国产911在线观看 | 久久精品国产亚洲七七 | 亚洲精品一级在线上播放 | 日韩免费一区二区三区高清 | 久久国产精品-国产十精品 中文字幕视频综合网 | 五月婷婷免费视频 |