七年級上冊數學教案(通用15篇)
作為一名默默奉獻的教育工作者,往往需要進行教案編寫工作,借助教案可以讓教學工作更科學化。那么問題來了,教案應該怎么寫?以下是小編為大家收集的七年級上冊數學教案,希望對大家有所幫助。
七年級上冊數學教案 1
一、教學目標
。ㄒ唬┲R教學點
1、了解;方程算術解法與代數解法的區別。
2、掌握:代數解法解簡易方程。
(二)能力訓練點
1、通過代數解法解簡易方程的學習使學生認識問題頭腦不僵化,培養其創造性思維的能力。
2、通過代數法解簡易方程進一步培養學生運算能力和邏輯思維能力。
。ㄈ┑掠凉B透點
1、培養學生實事求是的科學態度,用發展的眼光看問題的辯證唯物主義思想。
2、滲透化“未知”為“已知”的化歸思想。
(四)美育滲透點
通過用新的方法解簡易方程,使學生初步領略數學中的方法美。
二、學法引導
1、教學方法:引導發現法。注意教學中民主意識和學生的主體作用的體現。
2、學生學法:識記→練習反饋
三、重點、難點、疑點及解決辦法
1、重點:代數解法解簡易方程。
2、難點:解方程時準確把握兩邊都加上(或減去)、乘以(或除以)同一適當的數。
3、疑點:代數解法解簡易方程的依據。
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片。
六、師生互動活動設計
教師創設情境,學生解決問題。教師介紹新的'方法,學生反復練習。
七、教學步驟
(一)創設情境,復習導入
(出示投影1)
引例:班上有37名同學,分成人數相等的兩隊進行拔河比賽,恰好余3人當裁判員,每個隊有多少人?
師:該問題如何解決呢?請同學們考慮好后寫在練習本上。
學生活動:解答問題,一個學生板演、
師生共同訂正,對照板演學生的做法,師問:有無不同解法?
學生活動:回答問題,一個學生板演,其他學生比較兩種解法。
問;這兩種解法有什么不同呢?
學生活動:積極思索,回答問題、(一是列算式的解法,二是列方程的解法)。
師:很好、為了敘述問題方便,我們分別把這兩種解法叫做算術解法和代數解法、小學學過的應用題可用算術方法也可用代數方法解、有時算術方法簡便,有時代數方法簡便,但是隨著學習的逐步展開,遇到的問題越來越復雜,使用代數解法的優越性將會體現的越來越充分,因此,在初中代數課上,將把方程的知識作為一個重要的內容來學習、當然,在開始學習方程時,還是要從簡單的方程入手,即簡易方程、引出課題。
[板書]1、5簡易方程
(二)探索新知,講授新課
師:談到方程,同學們并不陌生,你能說明什么叫方程嗎?
學生活動:踴躍舉手,回答問題。
[板書]含有未知數的等式叫方程
接問:你還知道關于方程的其他概念嗎?
學生活動:積極思考并回答。
[板書]方程的解;解方程
追問:能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說明、學生活動:互相討論后回答、(使方程左右兩邊相等的未知數的值叫做方程的解;求方程的解的過程叫解方程。
師:好!這是小學學的解方程的方法。在初中代數課上,我們要從另一角度來解,還以上邊這個方程為例。
[板書]
學生活動:相互討論達成共識(合理。因把x=5代入方程3x+9=24,左邊=右邊,所以x=5是方程的解)
七年級上冊數學教案 2
一、有理數的意義
1、有理數的分類
知識點:大于零的數叫正數,在正數前面加上“﹣”(讀作負)號的數叫負數;如果一個正數表示一個事物的量,那么加上“﹣”號后這個量就有了完全相反的意義;3,5.2也可寫作+3,+,+5.2;零既不是正數,也不是負數。
2、數軸
知識點:數軸是數與圖形結合的工具;數軸:規定了原點、正方向和單位長度的直線;數軸的三元素:原點、正方向、單位長度,這三元素缺一不可,是判斷一條直線是否是數軸的根本依據;數軸的作用:1)形象地表示數(因為所有的有理數都可以用數軸上的點表示,以后會知道數軸上的每一個點并不都表示有理數),2)通過數軸從圖形上可直觀地解釋相反數,幫助理解絕對值的意義,3)比較有理數的大。篴)右邊的數總比左邊的數大,b)正數都大于零,c)負數都小于零,d)正數大于一切負數
3、相反數
知識點:只有符號不同的兩個數互為相反數;在數軸上表示互為相反數的兩個點到原點的距離相等且分別在原點的.兩邊;規定:0的相反數是0。
4、絕對值
知識點:一個數a的絕對值就是數軸上表示數a的點與原點的距離,數a的絕對值記作∣a∣;絕對值的意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,零的絕對值是零,即若a>0,則∣a∣=a。若a=0,則∣a∣=0。若a<0,則∣a∣=﹣a;絕對值越大的負數反而。粌蓚點a與b之間的距離為:∣a—b∣。
二、有理數的運算
1、有理數的加法
知識點:有理數的加法法則:
1)同號兩數相加,取相同的符號,并把絕對值相加;
2)異號兩數相加,①絕對值相等時,和為零(即互為相反數的兩個數相加得0);②絕對值不相等時,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
3)一個數和0相加仍得這個數。
加法交換律:a+b=b+a;加法結合律:a+b+c=a+(b+c)
多個有理數相加時,把符號相同的數結合在一起計算比較簡便,若有互為相反的數,可利用它們的和為0的特點。
2、有理數的減法
知識點:有理數的減法法則:減去一個數等于加上這個數的相反數,即a—b=a+(—b)。
注意:運算符號“+”加號、“—”減號與性質符號“+”正號、“—”負號統一與轉化,如a—b中的減號也可看成負號,看作a與b的相反數的和:a+(—b);一個數減去0,仍得這個數;0減去一個數,應得這個數的相反數。
3、有理數的加減混合運算
知識點:有理數的加減法混合運算可以運用減法法則統一成加法運算;加減法混合運算統一成加法運算以后,可以把“+”號省略,使算式變得更加簡潔。
4、有理數的乘法
知識點:乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數和0相乘都得0。
幾個不等于0的數相乘,積的符號由負因數的個數決定;當負因數有奇數個時,積為負;當負因數有偶數個時,積為正。幾個數相乘,有一個因數為0,積就為0。
乘法交換律:ab=ba乘法結合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc
5、有理數的除法
知識點:除法法則1:除以一個數等于乘上這數的倒數,即a÷b==a(b≠0即0不能做除數)。
除法法則2:兩數相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數都得0。
倒數:乘積是1的兩數互為倒數,即a=1(a≠0),0沒有倒數。
注意:倒數與相反數的區別
6、有理數的乘方
知識點:乘方:求n個相同因數的積的運算。乘方的結果叫冪,an中,a叫做底數,n叫做指數。
乘方的符號法則:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數;0的任何次冪都為0。
7、有理數的混合運算
知識點:運算順序:先乘方,再乘除,最后算加減,遇到有括號,先算小括號,再中括號,最后大括號,有多層括號時,從里向外依次進行。
技巧:先觀察算式的結構,策劃好運算順序,靈活進行運算。
七年級上冊數學教案 3
內容:
整式的乘法—單項式乘以多項式P58-59
課型:
新授時間:
學習目標:
1、在具體情景中,了解單項式和多項式相乘的意義。
2、在通過學生活動中,理解單項式和多項式相乘的法則,會用它們進行計算。
3、培養學生有條理的思考和表達能力。
學習重點:
單項式乘以多項式的法則
學習難點:
對法則的理解
學習過程:
1、學習準備
1.敘述單項式乘以單項式的法則
2.計算
(1)(-a2b)?(2ab)3=
(2)(-2x2y)2?(-xy)-(-xy)3?(-x2)
3、舉例說明乘法分配律的應用。
2、合作探究
。ㄒ唬┆毩⑺伎,解決問題
1、問題:一個施工隊修筑一條路面寬為nm的`公路,第一天修筑am長,第二天修筑長bm,第三天修筑長cm,3天工修筑路面的面積是多少?
結合圖形,完成填空。
算法一:3天共修筑路面的總長為(a+b+c)m,因為路面的寬為bm,所以3
天共修筑路面m2.
算法二:先分別計算每天修筑路面的面積,然后相加,則3天修路面m2.
因此,有=。
3.你能用字母表示乘法分配律嗎?
4.你能嘗試單項式乘以多項式的法則嗎?
。ǘ⿴熒骄,合作交流
1、例3計算:
(1)(-2x)(-x2?x+1)(2)a(a2+a)-a2(a-2)
2、練一練
。1)5x(3x+4)(2)(5a2?a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
。ㄈ⿲W習
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?有什么疑惑?
。ㄋ模┳晕覝y試
1、教科書P59練習3,結合解題,單項式乘以多項式的幾何意義。
2、判斷題
(1)-2a(3a-4b)=-6a2-8ab()
(2)(3x2-xy-1)?x=x3-x2y-x()
(3)m2-(1-m)=m2--m()
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于()
A.-1B.0C.1D.無法確定
4、計算(2009賀州中考)
。-2a)?(a3-1)=
5、(3m)2(m2+mn-n2)=
。ㄎ澹⿷猛卣
1、計算
(1)2a(9a2-2a+3)-(3a2)?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一個梯形的上底長(4m+3n)cm,下底長(2m+n)cm,高為3m2ncm,求此梯形的面積。
3、一塊邊長為xcm的正方形地磚,因需要被裁掉一塊2cm寬的長條,為剩下部分面積是多少?
七年級上冊數學教案 4
一、知識與技能
能判斷一個數是正數還是負數,能用正數或負數表示生活中具有相反意義的量。
二、過程與方法
借助生活中的實例理解有理數的意義,體會負數引入的必要性和有理數應用的廣泛性。
三、情感態度與價值觀
培養學生積極思考,合作交流的意識和能力。
教學重、難點與關鍵
1、重點:正確理解負數的意義,掌握判斷一個數是正數還是負數的方法。
2、難點:正確理解負數的概念。
3、關鍵:創設情境,充分利用學生身邊熟悉的事物,加深對負數意義的理解。
教具準備
投影儀。
教學過程
四、課堂引入
我們知道,數是人們在實際生活和生活需要中產生,并不斷擴充的。人們由記數、排序、產生數1,2,3,…;為了表示“沒有物體”、“空位”引進了數“0”,測量和分配有時不能得到整數的結果,為此產生了分數和小數。
在生活、生產、科研中經常遇到數的表示與數的運算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現的新數:—3,—2,—2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%。
五、講授新課
。1)、像—3,—2,—2.7%這樣的數(即在以前學過的0以外的數前面加上負號“—”的數)叫做負數。而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負數具有相反的意義,我們把這樣的數(即以前學過的0以外的數)叫做正數,有時在正數前面也加上“+”(正)號,例如,+3,+2,+0.5,+,…就是3,2,0.5,…一個數前面的“+”、“—”號叫做它的符號,這種符號叫做性質符號。
(2)、中國古代用算籌(表示數的工具)進行計算,紅色算籌表示正數,黑色算籌表示負數。
(3)、數0既不是正數,也不是負數,但0是正數與負數的分界數。
(4)、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度。
用正負數表示具有相反意義的量
。5)、把0以外的數分為正數和負數,起源于表示兩種相反意義的量。正數和負數在許多方面被廣泛地應用。在地形圖上表示某地高度時,需要以海平面為基準,通常用正數表示高于海平面的某地的海拔高度,負數表示低于海平面的某地的。海拔高度。例如:珠穆朗瑪峰的.海拔高度為8844m,吐魯番盆地的海拔高度為—155m。記錄賬目時,通常用正數表示收入款額,負數表示支出款額。
。6)、請學生解釋課本中圖1.1—2,圖1.1—3中的正數和負數的含義。
。7)、你能再舉一些用正負數表示數量的實際例子嗎?
(8)、例如,通常用正數表示汽車向東行駛的路程,用負數表示汽車向西行駛的路程;用正數表示水位升高的高度,用負數表示水位下降的高度;用正數表示買進東西的數量,用負數表示賣出東西的數量。
六、鞏固練習
課本第3頁,練習1、2、3、4題。
七、課堂小結
為了表示現實生活中的具有相反意義的量,我們引進了負數。正數就是我們過去學過的數(除0外),在正數前放上“—”號,就是負數,但不能說:“帶正號的數是正數,帶負號的數是負數”,在一個數前面添上負號,它表示的是原數意義相反的數。如果原數是一個負數,那么前面放上“—”號后所表示的數反而是正數了,另外應注意“0”既不是正數,也不是負數。
八、作業布置
1、課本第5頁習題1.1復習鞏固第1、2、3題。
七年級上冊數學教案 5
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
有以下數字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
。1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
。2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的`板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
七年級上冊數學教案 6
【學習目標】:
1、掌握正數和負數概念;
2、會區分兩種不同意義的量,會用符號表示正數和負數;
3、體驗數學發展是生活實際的需要,激發學生學習數學的興趣。
【重點難點】:
正數和負數概念
【教學過程】:
一、知識鏈接:
1、小學里學過哪些數請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數和分數夠用了嗎?有沒有比0小的數?如果有,那叫做什么數?
二、自主學習
1、正數與負數的產生
。1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子:。
(2)負數的產生同樣是生活和生產的需要
2、正數和負數的表示方法
(1)一般地,我們把上升、運進、零上、收入、前進、高出等規定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規定為負的。正的量就用小學里學過的數表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數前面放上“—”(讀作負)號來表示,如上面的`—3、—8、—47。
(2)活動:兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數表示.
(3)閱讀P2的內容
3、正數、負數的概念
1)大于0的數叫做,小于0的數叫做。
2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【課堂練習】:
1、P3第1,2題(直接做在課本上)。
2、小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3、已知下列各數:?13,?2,3.14,+3065,0,-239;54
則正數有_____________________;負數有____________________。
4、下列結論中正確的是????????????????()
A、0既是正數,又是負數
C、0是最大的負數
【要點歸納】:
正數、負數的概念:
。1)大于0的數叫做,小于0的數叫做。
。2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【拓展訓練】:
1、零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2、地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地、
3、“甲比乙大-3歲”表示的意義是______________________。
4、如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數分別表示潛水艇和鯊魚的高度。
【課后作業】P5第1、2題
七年級上冊數學教案 7
教學目的
1、了解一元一次方程的概念。
2、掌握含有括號的一元一次方程的解法。
重點、難點
1、重點:解含有括號的一元一次方程的解法。
2、難點:括號前面是負號時,去括號時忘記變號。
教學過程
一、復習提問
1、解下列方程:
。1)5x—2=8(2)5+2x=4x
2、去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=3283+x=(45+x)y—5=2y+1問:它們有什么共同特征?
只含有一個未知數,并且含有未知數的式子都是整式,未知數的次數是1,這樣的.方程叫做一元一次方程。
例1、判斷下列哪些是一元一次方程
x=3x—2x—=—1
5x2—3x+1=02x+y=1—3y=5
例2、解方程(1)—2(x—1)=4
。2)3(x—2)+1=x—(2x—1)
強調去括號時把括號外的因數分別乘以括號內的每一項,若括號前面是“—”號,注意去掉括號,要改變括號內的每一項的符號。
補充:解方程3x—[3(x+1)—(1+4)]=1
說明:方程中有多重括號時,一般應按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習
教科書第9頁,練習,1、2、3。
四、小結
學習了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業
1、教科書第12頁習題6。
2、第1題。
七年級上冊數學教案 8
【教學目標】
知識與技能:了解并掌握數據收集的基本方法。
過程與方法:在調查的過程中,要有認真的態度,積極參與。
情感、態度與價值觀:體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。
【教學重難點】
重點:掌握統計調查的基本方法。
難點:能根據實際情況合理地選擇調查方法。
【教學過程】
講授新課
像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的.50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數據呢?
學生小組討論、交流,學生代表回答。
師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?
。1)你班中的同學是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數量;
。3)某種玉米種子的發芽率;
。4)學校門口十字路口每天7:00~7:10時的車流量。
七年級上冊數學教案 9
教學目的:
(一)知識點目標:
1、了解正數和負數是怎樣產生的。
2、知道什么是正數和負數。
3、理解數0表示的量的意義。
(二)能力訓練目標:
1、體會數學符號與對應的思想,用正、負數表示具有相反意義的量的符號化方法。
2、會用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:
知道什么是正數和負數,理解數0表示的量的意義。
教學難點:
理解負數,數0表示的量的意義。
教學方法:
師生互動與教師講解相結合。
教具準備:
地圖冊(中國地形圖)。
教學過程:
引入新課:
活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?
內容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的.數-----正數和負數。
講授新課:
1、自然數的產生、分數的產生。
2、章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±0.5、-9的意義。
3、正數、負數的定義:我們把以前學過的0以外的數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。
舉例說明:3、2、0.5、等是正數(也可加上“十”)
-3、-2、-0.5、-等是負數。
4、數0既不是正,也不是負數,0是正數和負數的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地X銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1的第1、2、4、5題。
活動與探究:在一次數學測驗中,X班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
七年級上冊數學教案 10
教學目的
1、了解一元一次方程的概念。
2、掌握含有括號的一元一次方程的解法。
重點、難點
1、重點:解含有括號的一元一次方程的解法。
2、難點:括號前面是負號時,去括號時忘記變號。
教學過程
一、復習提問
1、解下列方程:
。1)5x—2=8(2)5+2x=4x
2、去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=3283+x=(45+x)y—5=2y+1問:它們有什么共同特征?
只含有一個未知數,并且含有未知數的`式子都是整式,未知數的次數是1,這樣的方程叫做一元一次方程。
例1、判斷下列哪些是一元一次方程
x=3x—2x—=—1
5x2—3x+1=02x+y=1—3y=5
例2、解方程(1)—2(x—1)=4
。2)3(x—2)+1=x—(2x—1)
強調去括號時把括號外的因數分別乘以括號內的每一項,若括號前面是“—”號,注意去掉括號,要改變括號內的每一項的符號。
補充:解方程3x—[3(x+1)—(1+4)]=1
說明:方程中有多重括號時,一般應按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習
教科書第9頁,練習,1、2、3。
四、小結
學習了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業
1、教科書第12頁習題6。
2、第1題。
七年級上冊數學教案 11
教學目標:
1、正確理解數軸的意義,理解數軸的三要素。
2、掌握有理數在數軸上的表示法,以及利用數軸比較有理數的大小。
3、理解相反數的意義及求法。
4、對學生滲透數形結合的思想方法,培養學生的觀察、歸納與概括的能力。
重點難點:
1、正確掌握數軸的畫法;用數軸上的點表示有理數;求已知數的相反數。
2、有理數和數軸上的的點的對應關系。
教學方法:
合作探究交流
學法指導:
觀察歸納概括
教學過程:
一、情景引入:
(1)你會讀溫度計嗎?完成課本43頁最上面的讀溫度計的問題。
。2)我們能否用類似溫度計的圖形表示有理數呢?
二、講授新課:認真閱讀課本第43頁至45頁,完成下列問題
。1)畫一條水平直線,在直線上取一點O(叫做▁▁▁),選取某一長度作為▁▁▁▁,規定向右的方向為▁▁▁,就得到了數軸。
于是,+3可以用數軸上位于原點右邊3個單位的點表示,—4可以用數軸上位于原點左邊4個單位的點表示,在數軸上位于原點右邊點表示,在數軸上位于原點左邊1、5的點表示,任何有理數都可以用數軸上的一個點來表示。
三、例題講解、鞏固提高
例1、如圖,指出數軸上A、B、C、D各點表示什么數?
ADCB
–2–10123
解:點A表示—2;點B表示2;點C表示0;
點D表示—1
練習:畫出數軸并用數軸上的點表示下列個數:
—5,0,5,—4,—、
四、繼續探究
2與—2有什么相同點與不同點?它們在數軸上的位置有什么關系?5與—5,與–呢?
如果兩個數只有符號不同,那么我們稱其中一個數為另一個數的相反數,也稱這兩個數互為相反數、特別地0的相反數是0、
在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點的距離相等、
練習:1、5的相反數是▁▁;▁▁的相反數是—3、5。
議一議
數軸上的兩個點,右邊點表示的數與左邊點表示的數有怎樣的.大小關系?
數軸上表示的數,▁▁▁邊的總比▁▁▁邊的大;正數▁▁▁0,負數▁▁▁0,正數▁▁▁負數。
練習:比較大。骸3▁5;0▁—4;—3▁—2、5。
3、合作交流
。1)什么是數軸?怎樣畫數軸。
(2)有理數與數軸上的點之間存在怎樣的關系?
。3)什么是相反數?怎樣求一個數的相反數?
。4)如何利用數軸比較有理數的大?
5、隨堂練習:
(1)下列說法正確的是()
A、數軸上的點只能表示有理數
B、一個數只能用數軸上的一個點表示
C、在1和3之間只有2
D、在數軸上離原點2個單位長度的點表示的數是2
。2)語句:①—5是相反數?②—5與+3互為相反數③—5是5的相反數④—5和5互為相反數⑤0的相反數是0⑥—0=0。上述說法中正確的是()
A、①②⑥B、②③⑤C、①④D、③④⑤⑥
。3)大于—4而小于4的整數有▁▁▁▁▁▁。
。4)用“﹤”或“﹥”號填空
①—5▁▁—7②0▁▁—2③0、01▁▁▁—0、1
。5)寫出下列各數的相反數
3、4,—3,0,a,2a—3。
七年級上冊數學教案 12
一、素質教育目標
(一)知識教學點
1、掌握的三要素,能正確畫出。
2、能將已知數在上表示出來,能說出上已知點所表示的數。
。ǘ┠芰τ柧汓c
1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識。
2、對學生滲透數形結合的思想方法。
。ㄈ┑掠凉B透點
使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。
。ㄋ模┟烙凉B透點
通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
二、學法引導
1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法。
2、學生學法:動手畫,動腦概括的三要素,動手、動腦做練習。
三、重點、難點、疑點及解決辦法
1、重點:正確掌握畫法和用上的點表示有理數。
2、難點:有理數和上的點的對應關系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片。
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
。ǔ鍪就队1)
三個溫度計。其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。
師:三個溫度計所表示的溫度是多少?
生:2℃,—5℃,0℃。
我們能否用類似溫度計的圖形表示有理數呢?
這種表示數的圖形就是今天我們要學的內容—(板書課題)。
【教法說明】從溫度計用標有讀數的刻度來表示溫度的高低這個事實出發,引出本節課所要學的內容—。再從溫度計這個實物形象抽象出來研究。既激發了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養了用數學的意識。
(二)探索新知,講授新課
1、的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當于溫度計上的0℃)。
第二步:規定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向。(相當于溫度計上℃以上為正,0℃以下為負)。
第三步:選擇適當的長度為單位長度(相當于溫度計上每1℃占1小格的長度)。
【教法說明】教師邊講解邊示范,學生跟著一起畫圖。培養學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法。
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
。1)原點表示什么數?
。2)原點右方表示什么數?原點左方表示什么數?
。3)表示+2的點在什么位置?表示—1的點在什么位置?
。4)原點向右0.5個單位長度的A點表示什么數?原點向左個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答。大家思考準備更正或補充。
【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力。
教師根據學生回答給予肯定或否定,糾正后板書。
2、的定義:規定了原點、正方向和單位長度的直線叫做。
向學生提出問題:上為什么要規定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是的依據。
學生活動:同桌之間、前后桌之間討論。使學生從直觀認識上升到理性認識。
3、嘗試反饋,鞏固練習
請大家回答下列問題:
(出示投影2)
。1)有人說一條直線是一條,對不對?為什么?
。2)下列所畫對不對?如果不對,指出錯在哪里?
學生活動:學生思考,不準討論,想好后舉手回答。
讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解。
【教法說明】此組練習的目的是鞏固的概念。
答案:(2)①缺原點,②缺正方向,③不是射線而是直線,④缺單位長度,⑥提醒學生注意在同一數輪上必須用同一單位長度進行度量。⑤⑦是,同時⑦為學習平面直角坐標系打基礎。
4、有理數與上點的關系
通過剛才的學習我們知道所有的有理數都可以用上的點來表示。
例1畫一條,并畫出表示下列各數的點:
1,5,0,—2.5。
學生練習:同學們在練習本上畫一條,然后在上標出各點,一名學生板演。教師巡回指導,發現問題及時糾正。
【教法說明】讓學生動手自己畫,有助于培養學生實際操作能力。例1是把給定的有理數用上的點來表示,完成由“數”到“形”的思維過程,有助于學生加深對概念的理解。
。ǔ鍪就队4)
例2指出上A、B、C、D、E各點分別表示什么數?
先讓學生思考一會,然后學生舉手回答
解:A表示—3;B表示;C表示3;D表示;E表。
【教法說明】例2是讓學生說出上的點表示的有理數,完成了由“形”到“數”的思維過程。例1、例2從各自不同的兩個側面,體現出數形結合,滲透了數形之間相互轉化的數學思想。
5、嘗試反饋,鞏固練習
(出示投影5)
、僬f出下面上A、B、C、D、O、M各點表示什么數?
、趯ⅰ3,1.5,—6,2.25,—5,1
各數用上的點表示出來。
【教法說明】①題由點讀數練習,②題由數找點練習,進一步鞏固加深本節所學的內容。
(三)歸納小結
師:①是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示數與形之間的內在聯系,是幫助學生理解數學、學習數學的重要思想方法。本章有理數的有關性質和運算都是結合進行的
、谡莆杖,正確地畫出,提醒同學們,所有的有理數都可用上的各點來表示,但是反過來不成立,即上的各點,并不是都表示有理數。以后再研究。
八、隨堂練習
1、判斷題
。1)直線就是()
。2)是直線()
。3)任何一個有理數都可以用上的點來表示()
(4)上到原點距離等于3的點所表示的數是+3()
。5)上原點左邊表示的數是負數,右邊表示的數是正數,原點表示的數是0。()
2、畫一條數輪,并畫出表示下列各數的點,—5,0,+3.2,—1.4
九、布置作業
。ā┍刈鲱}:課本第56頁1、2。
(二)選做題:課本第56頁及第57頁B組1。
。ㄈ┧伎碱}:
①在數輪上距原點3個單位長度的點表示的數是_____________
②在數輪上表示—6的`點在原點的___________側,距離原點___________個單位長度,表示+6的點在原點的__________側,距離原點____________個單位長度。
【教法說明】由于學生在知識、技能、能力方面發展不盡相同,所以分層次地布置作業,兼顧學習有困難和學有余力的學生,使他們都能達到大綱中規定的基本要求,并使部分學生能發展他們的數學才能。
十、板書設計
隨堂練習答案
1、×√√×√2、略
作業答案
。ㄒ唬┍刈鲱}
1、(1)依次是
。2)依次是
2、依次是
(二)選做題:
3、略B組1、(1)—6,(2)—1,(3)3;(4)0
(三)思考題:①②左,6,右,6
探究活動
。1)在上表示出距離原點3個單位長度和4.5個單位長度的點,并用“<”號將這些點所表示的數排列起來;
(2)寫出比—4大但不大于2的所有整數。
分析:畫時,的三要素:原點、正方向、單位長度缺一不可。
。1)在上,距離原點3個單位長度和4.5個單位長度的點各有兩個,它們分別在原點兩旁且關于原點對稱。畫出這些點,這些點所表示的數的大小就排列出來了;
。2)在上畫出大于—4但不大于2的數的范圍,這個范圍內整數點所表示的整數就是所求!安淮笥2”的意思是小于或等于2。
解:(1)上,距離原點3個單位的點是+3和—3,距離原點4.5個單位的點是+4.5和—4.5。
由圖看出:—4.5<—3<3<4.5
。2)在上畫出大于—4但不大于2的數的范圍。
由圖知,大于—4但不大于2的整數是:—3,—2,—1,0,1,2。
點評:利用,數形結合,是解這一類問題的好方法。
七年級上冊數學教案 13
教學目標
1、知識:認識簡單的空間幾何棱柱、圓柱、圓錐、球等,掌握其中的相同之處和不同之處。
2、能力:通過比較,學會觀察物體間的特征,體會幾何體間的聯系和區別,并能根據幾何體的特征,對其進行簡單分類。
3、情感:有意識地引導學生積極參與到數學活動過程中,培養與他人合作交流的能力。
教學重點:
認識一些基本的幾何體,并能描述這些幾何體的特征。
教學難點:
描述幾何體的特征,對幾何體進行分類。
教學過程:
一、設疑自探
創設情景,導入新課
在小學的時候學習了那些平面圖形和幾何圖形,在生活你還見到那些幾何體?
學生設疑
讓學生自己先思考再提問
教師整理并出示自探題目
、偕畛R姷膸缀误w有那些?
②這些幾何體有什么特征
③圓柱體與棱柱體有什么的.相同之處和不同之處
、軋A柱體與圓錐體有什么的相同之處和不同之處
⑤棱柱的分類
⑥幾何體的分類
學生自探(并有簡明的自學方法指導)
舉例說說生活中的物體那些類似圓柱、圓錐、正方體、長方體、棱柱、球體?
說說它們的區別
二、解疑合探
1、針對圓柱、圓錐、正方體、長方體、棱柱、球體特征的認識不徹底進行再探
2、對這些類似圓柱、圓錐、正方體、長方體、棱柱、球體的分類
活動原則:學困生回答,中等生補充、優等生評價,教師引領點撥提升總結。
三、質疑再探:
說說你還有什么疑惑或問題(由學生或老師來解答所提出的問題)
四、運用拓展:
引導學生自編習題。
請結合本節所學的知識舉例說明生活簡單基本的幾何體,并說說其特征
教師出示運用拓展題。
(要根據教材內容盡可能要試題類型全面且有代表性)
課堂小結
作業布置
五、教后反思
七年級上冊數學教案 14
一、教學目標
1、在了解相反意義量的基礎上,使學生了解正負數的概念和學習正負數的意義。
2、使學生能正確判斷一個數是正數還是負數,明確零既不是正數也不是負數。
3、學會用正負數表示實際問題中具有相反意義的量。
二、教學重點和難點
重點:正負數的概念
難點:負數的概念
三、教具
投影片、實物投影儀
四、教學內容
(一)引入
師:我們知道,為了表示物體的個數和事物的順序,產生了1,2,3,4……這些數,我們把它叫做什么數?
生:自然數
師:為了表示“沒有”,又引入了一個什么數?
生:自然數0
師:當測量和計算的結果不是整數時,又引進了什么數?
生:分數(小數)
師:可見數的概念是隨著生產和生活的需要而不斷發展的。請同學們想一想,在現實生活中是否還存在著別類型的數呢?如吐魯番盆地最低處低于海平面155米,世界最高峰珠穆朗瑪高出海平面8848.13米,我市某天最高氣溫是零上8攝氏度。
請學生用數表示這些量,遭遇表示困難。
師:為了能表示這些量,我們需要引入一種新數這就是本節課所要學習的內容。[板書:1、1正數與負數]
(二)新課教學
1、相反意義的量
師:在現實生活中,我們常常遇到一些具有相反意義的量,比如:(投影片顯示)
(1)汽車向東行駛2.5千米和向西行駛1.5千米;
(2)氣溫從零上6攝氏度下降到零下6攝氏度;
(3)風箏上升10米或下降5米。
引導學生明確具有相反意義的量的特征:(1)有兩個量(2)有相反的意義
請學生舉出一些相反意義的量的實例。
教師歸結:相反意義中的一些常用詞有:盈利與虧損,存入與支出,增加與減少,運進與運出,上升與下降等。
2、正數與負數
師:用小學里學過的數能表示這些具有相反意義的量嗎?如何來表示具有相反意義的量呢?
由師生討論后得出:我們把一種意義的量規定為正的,用“+”(讀作正)號來表示,同時把另一種與它相反意義的量規定為負的,用“-”(讀作負)號來表示。
師:例如,如果零上6℃記作+6℃(讀作正6攝氏度),那么零下6℃記作-6℃(讀作負6攝氏度),請同學們用同樣的方法表示(1)、(2)兩題。
生:(1)如果向東行駛2.5千米記作+2.5千米(讀作正2.5千米),那么向西行駛1.5千米記作-1.5千米(讀作負1.5千米);(2)如果上升10米記作+10米(讀作正10米),那么下降5米記作-5米(讀作負5米)。
師:像+6,+10,+2.5等前面放有“+”號的數叫做正數,像-6,-5,-1.5等前面放有“-”號的數叫做負數。正號可以省略不寫,如+5可以寫成5,但負數的負號能省略不寫嗎?
生:(討論后得出)不能。
師:(以溫度計為例)溫度計中的0不是表示沒有溫度,它通常表示水結成冰時的溫度,是零上溫度與零下溫度的.分界點,因此得出:零既不是正數也不是負數。
(三)、練習
1、學生完成課本第4頁練習1,2,3
2、補充練習
(1)在-2,+2.5,0,-0.35,11中,正數是,負數是;
(2)如果向東為正,那么走-50米表示什么意思?如果向南為正,那么走-50米又表示什么意思?
(3)歐洲人以地面一層記為0,那么1樓、2樓、3樓……就表示為0,1,2……那么地下第二層表示為。
(四)小結
1、引入負數可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數表示,那么另一種量可以用負數表示。
2、在表示具有相反意義的量時,把哪一種意義的量規定為正,可根據實際情況決定。
3、要特別注意零既不是正數也不是負數,建立正負數概念后,當考慮一個數時,一定要考慮它的符號,這與小學里學過的數有很大的區別。
(五)作業
見作業1.1節作業。
七年級上冊數學教案 15
教學目標:
1、了解平移的概念,會進行點的平移,理解平移的性質,能解決簡單的平移問題
2、培養學生的空間觀念,學會用運動的觀點分析問題。
重點:平移的概念和作圖方法。
難點:平移的作圖。
教學過程
一、觀察圖形形成印象
生活中有許多美麗的圖案,他們都有著共同的特點,請同學們欣賞下面圖案。
觀察上面圖形,我們發現他們都有一個局部和其他部分重復,如果給你一個局部,你能復制他們嗎?學生思考討論,借助舉例說明。
二、提出新知實踐探索
平移:
。1)把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
。2)新圖形中的每一點,都是由原圖形中的某一個點移動后得到的,這兩個點是對應點。
。3)連接各組對應的線段平行且相等。圖形的這種變換,叫做平移變換,簡稱平移
探究:設計一個簡單的圖案,利用一張半透明的紙附在上面,繪制一排形狀,大小完全一樣的圖案
引導學生找規律,發現平移特征
三、典例剖析深化鞏固
例如圖,(1)平移三角形ABC,使點A運動到A`,畫出平移后的ΔABC
先觀察探討,再通過點的平移,線段的平移總結規律,給出定義
探究活動可以使學生更進一步了解平移
四、鞏固練習
課本33頁:1,2,4,5,6,7
五、小結
在平移過程中,對應點所連的`線段也可能在一條直線上,當圖形平移的方向是沿著一邊所在直線的方向時,那么此邊上的對應點必在這條直線上。2利用平移的特征,作平行線,構造等量關系是接7題常用的方法。
六、作業
課本P30頁習題5.4第3題
【七年級上冊數學教案】相關文章:
七年級上冊數學教案01-19
七年級上冊數學教案【推薦】06-10
七年級上冊數學教案【精品】10-21
(精選)七年級上冊數學教案優秀09-27
湘教版七年級上冊數學教案01-16
【熱門】七年級上冊數學教案02-25
【熱】七年級上冊數學教案02-25
七年級上冊數學教案人教版11-05
(優選)七年級上冊數學教案07-03
七年級上冊數學教案【熱】08-27