1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-29 13:44:04 八年級數學教案 我要投稿

    關于八年級數學教案模板匯編八篇

      作為一位杰出的教職工,總歸要編寫教案,借助教案可以提高教學質量,收到預期的教學效果。那么應當如何寫教案呢?下面是小編幫大家整理的八年級數學教案8篇,希望對大家有所幫助。

    關于八年級數學教案模板匯編八篇

    八年級數學教案 篇1

      教材分析

      1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

      1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

      2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。

      學情分析

      1、在學習本課之前應具備的基本知識和技能:

      ①同類項的定義。

      ②合并同類項法則

      ③多項式乘以多項式法則。

      2、學習者對即將學習的`內容已經具備的水平:

      在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

      教學目標

      (一)教學目標:

      1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

      2、會推導完全平方公式,并能運用公式進行簡單的計算。

      (二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

      數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。

      (四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

      (五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

      教學重點和難點

      重點:能運用完全平方公式進行簡單的計算。

      難點:會推導完全平方公式

      教學過程

      教學過程設計如下:

      〈一〉、提出問題

      [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問題

      1、[學生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

      (1)原式的特點。

      (2)結果的項數特點。

      (3)三項系數的特點(特別是符號的特點)。

      (4)三項與原多項式中兩個單項式的關系。

      2、[學生回答]總結完全平方公式的語言描述:

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學生回答]完全平方公式的數學表達式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運用公式,解決問題

      1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現身手

      ① (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

      ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

      ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學生小結]

      你認為完全平方公式在應用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      〈五〉、探險之旅

      (1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

      (3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

      (5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

      (7)(2xy2-3x2y) 2=_______________________________

      (8)(2n3-3m3) 2=________________________________

      板書設計

      完全平方公式

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    八年級數學教案 篇2

      一、學習目標:

      1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;

      2、會運用兩數差的平方公式進行計算。

      二、學習過程:

      請同學們快速閱讀課本第27—28頁的內容,并完成下面的.練習題:

      (一)探索

      1、計算: (a - b) =

      方法一: 方法二:

      方法三:

      2、兩數差的平方用式子表示為_________________________;

      用文字語言敘述為___________________________ 。

      3、兩數差的平方公式結構特征是什么?

      (二)現學現用

      利用兩數差的平方公式計算:

      1、(3 - a) 2、 (2a -1) 3、(3y-x)

      4、(2x – 4y) 5、( 3a - )

      (三)合作攻關

      靈活運用兩數差的平方公式計算:

      1、(999) 2、( a – b – c )

      3、(a + 1) -(a-1)

      (四)達標訓練

      1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

      A、a -2ab + 4b B、a -4b

      C、a +4b D、 a - 4ab +4b

      2、填空:

      (1)9x + + 16y = (4y - 3x )

      (2) ( ) = m - 8m + 16

      2、計算:

      ( a - b) ( x -2y )

      3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?

      (四)提升

      1、本節課你學到了什么?

      2、已知a – b = 1,a + b = 25,求ab 的值

    八年級數學教案 篇3

      教學目標

      一、教學知識點:

      1.旋轉的定義.2.旋轉的基本性質.

      二、能力訓練要求:

      1.通過具體實例認識旋轉,理解旋轉的基本涵義.

      2.探索旋轉的基本性質,理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質.

      三、情感與價值觀要求

      1.經歷對生活中與旋轉現象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發展初步的審美能力,增強對圖形欣賞的意識.

      2.通過學習使學生能用數學的眼光看待生活中的有關問題,進一步發展學生的數學觀.

      教學重點:旋轉的基本性質.

      教學難點:探索旋轉的基本性質.

      教學方法:

      1、遵循學生是學習的主人的原則,在為學生創造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。

      2、采用多媒體課件輔助教學。

      教學過程:

      一.巧設情景問題,引入課題

      日常生活中,我們經常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發生改變?汽車方向盤的轉動呢?

      1.在這些轉動的現象中,它們都是繞著一個點轉動的'.

      2.每個物體的轉動都是向同一個方向轉動.

      3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

      4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節課我們就來探討生活中的旋轉.

      二.講授新課

      在數學中,如何定義旋轉呢?在平面內,將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.

      議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.

      (2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的位置,點B旋轉到點E的位置.

      (3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.

      (4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.

      (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

      看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質呢?

      答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.

      因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.

      由此我們得到了旋轉的基本性質:經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.

      [例1](課本68頁例1)

      [師生共析]經演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的度數是360°,一周需要60分,因此每分鐘分針所轉過的度數是6°,這樣20分時,分針逆轉的角度即可求出.

      解:(見課本68頁)

      書上68頁做一做

      三.課堂練習

      課本P69隨堂練習.

      1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.

      四.課時小結

      五.課后作業:課本P69習題3.4 1、2、3.

      六.活動與探究

      1.分析圖中的旋轉現象.過程:讓學生畫圖、找規律,也可讓他們通過剪切,找到旋轉規律.

      結果:旋轉現象為:

      整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

      整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續旋轉90°、180°、270°前后的圖形共同組成的.

      整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.

      2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?

      過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.

      結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.

      整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續旋轉90°、180°、 270°.前后的圖形共同組成的.

      整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.

      板書設計:

      教學反思:本節課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養學生的空間想象能力。

    八年級數學教案 篇4

      知識目標:理解函數的概念,能準確識別出函數關系中的自變量和函數

      能力目標:會用變化的量描述事物

      情感目標:回用運動的觀點觀察事物,分析事物

      重點:函數的概念

      難點:函數的概念

      教學媒體:多媒體電腦,計算器

      教學說明:注意區分函數與非函數的關系,學會確定自變量的取值范圍

      教學設計:

      引入:

      信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的嗎?

      新課:

      問題:(1)如圖是某日的氣溫變化圖。

      ① 這張圖告訴我們哪些信息?

      ② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規律的.?

      (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

      ① 這表告訴我們哪些信息?

      ② 這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

      一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

      范例:例1 判斷下列變量之間是不是函數關系:

      (5) 長方形的寬一定時,其長與面積;

      (6) 等腰三角形的底邊長與面積;

      (7) 某人的年齡與身高;

      活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發現變量和函數的關系

      思考:自變量是否可以任意取值

      例2 一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

      (1) 寫出表示y與x的函數關系式.

      (2) 指出自變量x的取值范圍.

      (3) 汽車行駛200km時,油箱中還有多少汽油?

      解:(1)y=50-0.1x

      (2)0500

      (3)x=200,y=30

      活動2:練習教材9頁練習

      小結:(1)函數概念

      (2)自變量,函數值

      (3)自變量的取值范圍確定

      作業:18頁:2,3,4題

    八年級數學教案 篇5

      1、教材分析

      (1)知識結構

      (2)重點、難點分析

      本節內容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.

      本節內容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點.

      2、 教法建議

      本節課教學模式主要采用“學生主體性學習”的`教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納. 教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:

      (1)參與探索發現,領略知識形成過程

      學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.

      (2)采用“類比”的學習方法,獲取逆定理

      線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系.

      (3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力.

    八年級數學教案 篇6

      數據的波動

      教學目標:

      1、經歷數據離散程度的探索過程

      2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

      教學重點:會計算某些數據的極差、標準差和方差。

      教學難點:理解數據離散程度與三個差之間的關系。

      教學準備:計算器,投影片等

      教學過程:

      一、創設情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

      2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

      2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

      3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

      (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

      三、講解概念:

      方差:各個數據與平均數之差的平方的平均數,記作s2

      設有一組數據:x1, x2, x3,,xn,其平均數為

      則s2= ,

      而s= 稱為該數據的.標準差(既方差的算術平方根)

      從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

      四、做一做

      你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

      五、鞏固練習:課本第172頁隨堂練習

      六、課堂小結:

      1、怎樣刻畫一組數據的離散程度?

      2、怎樣求方差和標準差?

      七、布置作業:習題5.5第1、2題。

    八年級數學教案 篇7

      課時目標

      1.掌握分式、有理式的概念。

      2.掌握分式是否有意義、分式的值是否等于零的識別方法。

      教學重點

      正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

      教學難點:

      正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

      教學時間:一課時。

      教學用具:投影儀等。

      教學過程:

      一.復習提問

      1.什么是整式?什么是單項式?什么是多項式?

      2.判斷下列各式中,哪些是整式?哪些不是整式?

      ①+m2 ②1+x+y2- ③ ④

      ⑤ ⑥ ⑦

      二.新課講解:

      設問:不是整工式子中,和整式有什么區別?

      小結:1.分式的概念:一般地,形如的`式子叫做分式,其中A和B均為整式,B中含有字母。

      練習:下列各式中,哪些是分式哪些不是?

      (1)、、(2)、(3)、(4)、(5)x2、(6)+4

      強調:(6)+4帶有是無理式,不是整式,故不是分式。

      2.小結:對整式、分式的正確區別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區別。

      練習:課后練習P6練習1、2題

      設問:(讓學生看課本上P5“思考”部分,然后回答問題。)

      例題講解:課本P5例題1

      分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

      (板書解題過程。)

      3.小結:分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。

      增加例題:當x取什么值時,分式有意義?

      解:由分母x2-4=0,得x=±2。

      ∴ 當x≠±2時,分式有意義。

      設問:什么時候分式的值為零呢?

      例:

      解:當 ① 分式的值為零

    八年級數學教案 篇8

      教學目的

      1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

      2. 熟識等邊三角形的性質及判定.

      2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

      教學重點

      等腰三角形的性質及其應用。

      教學難點

      簡潔的邏輯推理。

      教學過程

      一、復習鞏固

      1.敘述等腰三角形的性質,它是怎么得到的?

      等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。

      等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

      2.若等腰三角形的兩邊長為3和4,則其周長為多少?

      二、新課

      在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

      等邊三角形具有什么性質呢?

      1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

      2.你能否用已知的知識,通過推理得到你的猜想是正確的?

      等邊三角形是特殊的'等腰三角形,由等腰三角形等邊對等角的性質得到B=C,又由B+C=180,從而推出B=C=60。

      3.上面的條件和結論如何敘述?

      等邊三角形的各角都相等,并且每一個角都等于60。

      等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

      等邊三角形也稱為正三角形。

      例1.在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數。

      分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

      問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

      問題2:求1是否還有其它方法?

      三、練習鞏固

      1.判斷下列命題,對的打,錯的打。

      a.等腰三角形的角平分線,中線和高互相重合( )

      b.有一個角是60的等腰三角形,其它兩個內角也為60( )

      2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數。

      四、小結

      由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60。三線合一性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

      五、作業

      1.課本P127─7,9

      2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

      EOD的度數。

      (一)課本P127─1、3、4、8題.

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級下冊數學教案01-01

    八年級數學教案人教版01-03

    八年級數學教案【薦】12-06

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    【熱門】八年級數學教案11-29

    八年級數學教案【熱】11-29

    人教版八年級數學教案11-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲欧美日韩国产综合一区 | 先锋资源不卡在线视频 | 亚洲欧美高清在线观 | 亚洲熟女少妇一区二区三区视频 | 中文字幕亚洲一区一区 | 日本三级2020高潮 |