1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    八年級數(shù)學(xué)教案

    時間:2022-11-29 18:36:57 八年級數(shù)學(xué)教案 我要投稿

    八年級數(shù)學(xué)教案【熱】

      作為一名辛苦耕耘的教育工作者,就不得不需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。我們應(yīng)該怎么寫教案呢?下面是小編為大家收集的八年級數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

    八年級數(shù)學(xué)教案【熱】

    八年級數(shù)學(xué)教案1

      教學(xué)目標:

      1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

      2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。

      3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。

      4、能利和計算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

      教學(xué)重點:

      體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

      教學(xué)難點:

      對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

      教學(xué)方法:

      歸納教學(xué)法。

      教學(xué)過程:

      一、知識回顧與思考

      1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

      一般地對于n個數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。

      如某公司要招工,測試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學(xué),語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項測試成績的權(quán)。

      中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

      眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)。

      如3,2,3,5,3,4中3是眾數(shù)。

      2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

      (1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

      (2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的'影響,且計算較繁。

      (3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

      (4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。

      3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

      算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當加權(quán)平均數(shù)中的權(quán)相等時,就是算術(shù)平均數(shù)。

      4、利用計算器求一組數(shù)據(jù)的平均數(shù)。

      利用科學(xué)計算器求平均數(shù)的方法計算平均數(shù)。

      二、例題講解:

      某校規(guī)定:學(xué)生的平時作業(yè)、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學(xué)期總評成績,小亮的平時作業(yè)、期中練習、期末考試的數(shù)學(xué)成績依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評成績是多少?

      三、課堂練習:

      復(fù)習題A組

      四、小結(jié):

      1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。

      2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

      五、作業(yè):

      復(fù)習題B組、C組(選做)

    八年級數(shù)學(xué)教案2

      教學(xué)目標:

      1、知識目標:探索圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合)。

      2、能力目標:

      ①經(jīng)歷對具有旋轉(zhuǎn)特征的圖形進行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。

      ②能夠按要求作出簡單平面圖形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。

      3、情感體驗點:培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習數(shù)學(xué)的興趣。

      重點與難點:

      重點:圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合);

      難點:綜合利用各種變換關(guān)系觀察圖形的形成。

      疑點:基本圖案不同,形成方式不同。

      教學(xué)方法:

      新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開教學(xué)。

      教學(xué)過程設(shè)計:

      1、情境導(dǎo)入

      播放自制圖形形成的影片,如圖351。

      2、充分利用本課時引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經(jīng)過適當?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過平移嗎?能經(jīng)過軸對稱嗎?還有其它方式嗎?

      問題本身為學(xué)生創(chuàng)設(shè)了一個探究圖形之間變化關(guān)系的情景,圖形雖十簡單,但變換方式綜合性強,可以讓學(xué)生自由發(fā)揮,各抒已見,后由教師進行適當歸納小結(jié):

      (1)整個圖形可以看做是由一個十字組成部分通過連續(xù)七次平移前后的圖形共同組成;

      (2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;

      (3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;

      (4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。

      (學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)

      3、通過上述問題的討論,我們看到圖形的平移、旋轉(zhuǎn),軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計圖案的主要手段。

      4、利用想一想你能將圖352的左圖,通過平移或旋轉(zhuǎn)得到右圖嗎?

      學(xué)生議論或動手操作會發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時,要充分利用它們各自的性質(zhì)、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進一步讓學(xué)生思考,從而得到結(jié)論是可能的。

      5、例1、怎樣將圖353中的.甲圖變成乙圖案?

      通過相對簡單活潑的問題,讓學(xué)生能運用圖形變換的幾種不同方式解答問題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)

      例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

      留給學(xué)生充足的時間討論交流。

      (師):哪位同學(xué)有好好方法,請告訴大家!

      (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時針方向旋轉(zhuǎn)900 。

      (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時針方向旋轉(zhuǎn)2700 。

      明確可以通過不同的辦法達到同樣的效果,激勵學(xué)生動手動腦。

      5、學(xué)習小結(jié)

      (1)內(nèi)容總結(jié)

      兩個圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對稱)

      (2)方法歸納

      ①了解并知道圖案變化的一般方法。

      ②圖案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問題的習慣。

      6、目標檢測

      圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經(jīng)過怎樣的變換而得到?

      延伸拓展:

      1、鏈接生活

      鏈接一:奧運會的五環(huán)旗圖案是大家熟悉的圖案,請你根據(jù)所學(xué)知識分析它的形成。(用課本知識解釋生活中的圖形變換)

      鏈接二:夏季是荷花盛開的季節(jié),同學(xué)們都贊美過它出淤泥而不染的品質(zhì),很多同學(xué)曾畫過荷花,請你用所學(xué)知識再畫一朵荷花,看與以前有什么不同的感受(讓學(xué)生進一步體會數(shù)學(xué)與生活的密切聯(lián)系)

      實踐探索:

      ①實踐活動列舉實例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對稱及其組合)

      ②鞏固練習課本74頁中的習題3.6。

      板書設(shè)計:

      3.5它們是怎樣變過來的。

      軸對稱、平移、旋轉(zhuǎn)的性質(zhì)例題;

      圖形之間的變換關(guān)系;

    八年級數(shù)學(xué)教案3

      教學(xué)目標:

      1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

      2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標準差和方差,能借助計算器求出相應(yīng)的數(shù)值。

      教學(xué)重點:

      會計算某些數(shù)據(jù)的極差、標準差和方差。

      教學(xué)難點:

      理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。

      教學(xué)準備:

      計算器,投影片等

      教學(xué)過程:

      一、創(chuàng)設(shè)情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學(xué)生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時讓學(xué)生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)

      2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

      2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。

      3、在甲、丙兩廠中,你認為哪個廠雞腿質(zhì)量更符合要求?為什么?

      (在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時導(dǎo)致學(xué)生思想認識上的.矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標準差和方差作鋪墊。

      三、講解概念:

      方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

      設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

      則s2= ,

      而s= 稱為該數(shù)據(jù)的標準差(既方差的算術(shù)平方根)

      從上面計算公式可以看出:一組數(shù)據(jù)的極差,方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。

      四、做一做

      你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標準差嗎?你認為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學(xué)生回顧了用計算器求平均數(shù)的步驟,并自由探索求方差的詳細步驟)

      五、鞏固練習:課本第172頁隨堂練習

      六、課堂小結(jié):

      1、怎樣刻畫一組數(shù)據(jù)的離散程度?

      2、怎樣求方差和標準差?

      七、布置作業(yè):習題5.5第1、2題。

    八年級數(shù)學(xué)教案4

      第三十四學(xué)時:14.2.1平方差公式

      一、學(xué)習目標:

      1.經(jīng)歷探索平方差公式的過程。

      2.會推導(dǎo)平方差公式,并能運用公式進行簡單的運算。

      二、重點難點

      重點:平方差公式的推導(dǎo)和應(yīng)用;

      難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

      三、合作學(xué)習

      你能用簡便方法計算下列各題嗎?

      (1)20xx×1999(2)998×1002

      導(dǎo)入新課:計算下列多項式的積.

      (1)(x+1)(x—1);

      (2)(m+2)(m—2)

      (3)(2x+1)(2x—1);

      (4)(x+5y)(x—5y)。

      結(jié)論:兩個數(shù)的`和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

      即:(a+b)(a—b)=a2—b2

      四、精講精練

      例1:運用平方差公式計算:

      (1)(3x+2)(3x—2);

      (2)(b+2a)(2a—b);

      (3)(—x+2y)(—x—2y)。

      例2:計算:

      (1)102×98;

      (2)(y+2)(y—2)—(y—1)(y+5)。

      隨堂練習

      計算:

      (1)(a+b)(—b+a);

      (2)(—a—b)(a—b);

      (3)(3a+2b)(3a—2b);

      (4)(a5—b2)(a5+b2);

      (5)(a+2b+2c)(a+2b—2c);

      (6)(a—b)(a+b)(a2+b2)。

      五、小結(jié)

      (a+b)(a—b)=a2—b2

    八年級數(shù)學(xué)教案5

      教學(xué)目標:

      1、經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強對圖形欣賞的意識。

      2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計軸對稱圖形。

      教學(xué)重點

      本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關(guān)于L的軸對稱點的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計軸對稱圖形是本節(jié)課的難點。

      教學(xué)方法

      動手實踐、討論。

      教學(xué)工具

      課件

      教學(xué)過程:

      一、 先復(fù)習軸對稱圖形的定義,以及軸對稱的相關(guān)的性質(zhì):

      1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

      2.軸對稱的三個重要性質(zhì)______________________________________________

      _____________________________________________________________________

      二、提出問題:

      二、探索練習:

      1. 提出問題:

      如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

      你能畫出這個圖案的另一半嗎?

      吸引學(xué)生讓學(xué)生有一種解決難點的想法。

      2.分析問題:

      分析圖案:這個圖案是由重要六個點構(gòu)成的,要將這個圖案的另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個圖案中六個點的`對應(yīng)點即可

      問題轉(zhuǎn)化成:已知對稱軸和一個點A,要畫出點A關(guān)于L的對應(yīng)點 ,可采用如下方法:`

      在學(xué)生掌握已知一個點畫對應(yīng)點的基礎(chǔ)上,解決上述給出的問題,使學(xué)生有一條較明確的思路。

      三、對所學(xué)內(nèi)容進行鞏固練習:

      1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

      2. 試畫出與線段AB關(guān)于直線L的線段

      3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

      小 結(jié): 本節(jié)課學(xué)習了已知對稱軸L和一個點如何畫出它的對應(yīng)點,以及如何補全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計軸對稱圖形。

      教學(xué)后記:學(xué)生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高

    八年級數(shù)學(xué)教案6

      教學(xué)目標

      1.知識與技能

      領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

      2.過程與方法

      經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

      3.情感、態(tài)度與價值觀

      培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

      重、難點與關(guān)鍵

      1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.

      2.難點:靈活地應(yīng)用公式法進行因式分解.

      3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的

      教學(xué)方法

      采用“自主探究”教學(xué)方法,在教師適當指導(dǎo)下完成本節(jié)課內(nèi)容.

      教學(xué)過程

      一、回顧交流,導(dǎo)入新知

      【問題牽引】

      1.分解因式:

      (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

      (3)x2-0.01y2.

      【知識遷移】

      2.計算下列各式:

      (1)(m-4n)2;(2)(m+4n)2;

      (3)(a+b)2;(4)(a-b)2.

      【教師活動】引導(dǎo)學(xué)生完成下面兩道題,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

      3.分解因式:

      (1)m2-8mn+16n2(2)m2+8mn+16n2;

      (3)a2+2ab+b2;(4)a2-2ab+b2.

      【學(xué)生活動】從逆向思維的角度入手,很快得到下面答案:

      解:

      (1)m2-8mn+16n2=(m-4n)2;

      (2)m2+8mn+16n2=(m+4n)2;

      (3)a2+2ab+b2=(a+b)2;

      (4)a2-2ab+b2=(a-b)2.

      【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

      二、范例學(xué)習,應(yīng)用所學(xué)

      【例1】把下列各式分解因式:

      (1)-4a2b+12ab2-9b3;

      (2)8a-4a2-4;

      (3)(x+y)2-14(x+y)+49;(4)+n4.

      【例2】如果x2+axy+16y2是完全平方,求a的值.

      【思路點撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

      三、隨堂練習,鞏固深化

      課本P170練習第1、2題.

      【探研時空】

      1.已知x+y=7,xy=10,求下列各式的.值.

      (1)x2+y2;(2)(x-y)2

      2.已知x+=-3,求x4+的值.

      四、課堂總結(jié),發(fā)展?jié)撃?/p>

      由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

      a2-b2=(a+b)(a-b);

      a2±ab+b2=(a±b)2.

      在運用公式因式分解時,要注意:

      (1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運用公式分解.

      五、布置作業(yè),專題突破

    八年級數(shù)學(xué)教案7

      一、學(xué)習目標

      1.使學(xué)生了解運用公式法分解因式的意義;

      2.使學(xué)生掌握用平方差公式分解因式

      二、重點難點

      重點:掌握運用平方差公式分解因式。

      難點:將單項式化為平方形式,再用平方差公式分解因式。

      學(xué)習方法:歸納、概括、總結(jié)。

      三、合作學(xué)習

      創(chuàng)設(shè)問題情境,引入新課

      在前兩學(xué)時中我們學(xué)習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

      如果一個多項式的各項,不具備相同的.因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習另外的一種因式分解的方法——公式法。

      1.請看乘法公式

      左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

      利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

      a2—b2=(a+b)(a—b)

      2.公式講解

      如x2—16

      =(x)2—42

      =(x+4)(x—4)。

      9m2—4n2

      =(3m)2—(2n)2

      =(3m+2n)(3m—2n)。

      四、精講精練

      例1、把下列各式分解因式:

      (1)25—16x2;(2)9a2—b2。

      例2、把下列各式分解因式:

      (1)9(m+n)2—(m—n)2;(2)2x3—8x。

      補充例題:判斷下列分解因式是否正確。

      (1)(a+b)2—c2=a2+2ab+b2—c2。

      (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

      五、課堂練習

      教科書練習。

      六、作業(yè)

      1、教科書習題。

      2、分解因式:x4—16x3—4x4x2—(y—z)2。

      3、若x2—y2=30,x—y=—5求x+y。

    八年級數(shù)學(xué)教案8

      一、教學(xué)目標:

      1、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題

      2、會用計算器求加權(quán)平均數(shù)的值

      3、會運用樣本估計總體的方法來獲得對總體的認識

      二、重點、難點:

      1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

      2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

      三、教學(xué)過程:

      1、復(fù)習

      組中值的定義:上限與下限之間的中點數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2.

      因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習組中值定義.

      應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010.而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù).所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計算量.

      為了更好的理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實際意義.

      2、教材P140探究欄目的意圖

      ①、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法.

      ②、加深了對“權(quán)”意義的理解:當利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán).

      這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義.

      3、教材P140的思考的.意圖.

      ①、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題.

      ②、幫助學(xué)生理解表中所表達出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力.

      4、利用計算器計算平均值

      這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比.一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器.所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單.統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了.

      5、運用樣本估計總體

      要使學(xué)生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況.

    八年級數(shù)學(xué)教案9

      一、素質(zhì)教育目標

      (一)知識教學(xué)點

      1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.

      2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.

      3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.

      (二)能力訓(xùn)練點

      1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.

      2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的'能力.

      (三)德育滲透點

      通過一題多解激發(fā)學(xué)生的學(xué)習興趣.

      (四)美育滲透點

      通過學(xué)習,體會幾何證明的方法美.

      二、學(xué)法引導(dǎo)

      構(gòu)造逆命題,分析探索證明,啟發(fā)講解.

      三、重點·難點·疑點及解決辦法

      1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用.

      2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理.

      3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理

      (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).

    八年級數(shù)學(xué)教案10

      學(xué)習重點:函數(shù)的概念 及確定自變量的取值范圍。

      學(xué)習難點:認識函數(shù),領(lǐng)會函數(shù)的意義。

      【自主復(fù)習知識準備】

      請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。

      【自主探究知識應(yīng)用】

      請看書72——74頁內(nèi)容,完成下列問題:

      1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

      2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。

      3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

      歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。

      補充小結(jié):

      (1)函數(shù)的定義:

      (2)必須是一個變化過程;

      (3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應(yīng)。

      三、鞏固與拓展:

      例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

      (1)寫出表示y與x的函數(shù)關(guān)系式.

      (2)指出自變量x的取值范圍.

      (3) 汽車行駛200千米時,油箱中還有多少汽油?

      【當堂檢測知識升華】

      1、判斷下列變量之間是不是函數(shù)關(guān)系:

      (1)長方形的寬一定時,其長與面積;

      (2)等腰三角形的底邊長與面積;

      (3)某人的年齡與身高;

      2、寫出下列函數(shù)的解析式.

      (1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的'函數(shù)關(guān)系的式子.

      (2)汽車加油時,加油槍的流量為10L/min.

      ①如果加油前,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數(shù)關(guān)系;

      ②如果加油時,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數(shù)關(guān)系.

      (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

      (4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

      八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個問題,每一個環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習的實際和教材的實際進行有針對性的設(shè)置,希望大家喜歡!

    八年級數(shù)學(xué)教案11

      教學(xué)目標:

      1、掌握一次函數(shù)解析式的特點及意義

      2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

      3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律

      教學(xué)重點:

      1、 一次函數(shù)解析式特點

      2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

      教學(xué)難點:

      1、一次函數(shù)與正比例函數(shù)關(guān)系

      2、根據(jù)已知信息寫出一次函數(shù)的表達式。

      教學(xué)過程:

      Ⅰ.提出問題,創(chuàng)設(shè)情境

      問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.

      分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

      s=570-95t.

      說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.

      問題2 小張準備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.

      分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

      問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?

      Ⅱ.導(dǎo)入新課

      上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱

      y是x的正比例函數(shù)。

      例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

      ①y=x-6;②y=2x;③y=;④y=7-x x8

      A、①②③B、①③④ C、①②③④ D、②③④

      例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

      (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);

      (2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);

      (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

      (4)汽車每小時行40千米,行駛的.路程s(千米)和時間t(小時).

      (5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;

      (6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

      (7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

      (2)L=2b+16,L是b的一次函數(shù).

      (3)y=150-5x,y是x的一次函數(shù).

      (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

      (5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

      (6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

      (7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

      例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

      分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

      解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

      若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

      例4 已知y與x-3成正比例,當x=4時,y=3.

      (1)寫出y與x之間的函數(shù)關(guān)系式;

      (2)y與x之間是什么函數(shù)關(guān)系;

      (3)求x=2.5時,y的值.

      解 (1)因為 y與x-3成正比例,所以y=k(x-3).

      又因為x=4時,y=3,所以3= k(4-3),解得k=3,

      所以y=3(x-3)=3x-9.

      (2) y是x的一次函數(shù).

      (3)當x=2.5時,y=3×2.5=7.5.

      1. 2

      例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).

      (1)當此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.

      (2)當此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

      分析 (1)當此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.

      (2)當此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.

      解 (1) y=30-12x.(0≤x≤2.5)

      (2) y=12x-30.(2.5≤x≤6.5)

      例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內(nèi),只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

      分析 因為在只打開進油管的8分鐘內(nèi)、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.

      解 在第一階段:y=3x(0≤x≤8);

      在第二階段:y=16+x(8≤x≤16);

      在第三階段:y=-2x+88(24≤x≤44).

      Ⅲ.隨堂練習

      根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

      2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應(yīng)繳水費y元。(1)寫出每月用水量不

      超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

      Ⅳ.課時小結(jié)

      1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

      2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達式。

      Ⅴ.課后作業(yè)

      1、已知y-3與x成正比例,且x=2時,y=7

      (1)寫出y與x之間的函數(shù)關(guān)系.

      (2)y與x之間是什么函數(shù)關(guān)系.

      (3)計算y=-4時x的值.

      2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.

      3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

      4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時這些樹約有多高.

      5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

    八年級數(shù)學(xué)教案12

      教學(xué)內(nèi)容

      本節(jié)課主要介紹全等三角形的概念和性質(zhì).

      教學(xué)目標

      1.知識與技能

      領(lǐng)會全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念.

      2.過程與方法

      經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角.

      3.情感、態(tài)度與價值觀

      培養(yǎng)觀察、操作、分析能力,體會全等三角形的應(yīng)用價值.

      重、難點與關(guān)鍵

      1.重點:會確定全等三角形的對應(yīng)元素.

      2.難點:掌握找對應(yīng)邊、對應(yīng)角的方法.

      3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊;(2)對應(yīng)邊所對的角是對應(yīng)角,?兩條對應(yīng)邊所夾的角是對應(yīng)角.教具準備

      四張大小一樣的紙片、直尺、剪刀.

      教學(xué)方法

      采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的`實例,加深認識.教學(xué)過程

      一、動手操作,導(dǎo)入課題

      1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?

      2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?

      【學(xué)生活動】動手操作、用腦思考、與同伴討論,得出結(jié)論.

      【教師活動】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個多邊形和三角形.

      學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心.

      【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個圖形叫做全等形,用“≌”表示.

      概念:能夠完全重合的兩個三角形叫做全等三角形.

      【教師活動】在紙版上任意剪下一個三角形,要求學(xué)生手拿一個三角形,做如下運動:平移、翻折、旋轉(zhuǎn),觀察其運動前后的三角形會全等嗎?

      【學(xué)生活動】動手操作,實踐感知,得出結(jié)論:兩個三角形全等.

      【教師活動】要求學(xué)生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊.

      【學(xué)生活動】把兩個三角形按上述要求標上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?

      【交流討論】通過同桌交流,實驗得出下面結(jié)論:

      1.任意放置時,并不一定完全重合,?只有當把相同的角旋轉(zhuǎn)到一起時才能完全重合.

      2.這時它們的三個頂點、三條邊和三個內(nèi)角分別重合了.

      3.完全重合說明三條邊對應(yīng)相等,三個內(nèi)角對應(yīng)相等,?對應(yīng)頂點在相對應(yīng)的位置.

    八年級數(shù)學(xué)教案13

      一、教學(xué)目的

      1.使學(xué)生進一步理解自變量的取值范圍和函數(shù)值的意義.

      2.使學(xué)生會用描點法畫出簡單函數(shù)的圖象.

      二、教學(xué)重點、難點

      重點:1.理解與認識函數(shù)圖象的意義.

      2.培養(yǎng)學(xué)生的看圖、識圖能力.

      難點:在畫圖的三個步驟的列表中,如何恰當?shù)剡x取自變量與函數(shù)的對應(yīng)值問題.

      三、教學(xué)過程

      復(fù)習提問

      1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

      2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

      3.說出下列各點所在象限或坐標軸:

      新課

      1.畫函數(shù)圖象的方法是描點法.其步驟:

      (1)列表.要注意適當選取自變量與函數(shù)的對應(yīng)值.什么叫“適當”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

      一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標和縱坐標,這就要把自變量與函數(shù)的對應(yīng)值列出表來.

      (2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標,在直角坐標系中描出相應(yīng)的點.

      (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

      一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數(shù)的'曲線(或直線).

      2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.

      小結(jié)

      本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.

      練習

      ①選用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)

      ②補充題:畫出函數(shù)y=5x-2的圖象.

      作業(yè)

      選用課本習題.

      四、教學(xué)注意問題

      1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認識函數(shù)的本質(zhì)特征.

      2.注意充分調(diào)動學(xué)生自己動手畫圖的積極性.

      3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識圖的能力.

    八年級數(shù)學(xué)教案14

      【教學(xué)目標】

      知識目標:

      解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。

      能力目標:

      (1)經(jīng)歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;

      (2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達能力。

      情感目標:

      充分調(diào)動學(xué)生學(xué)習的積極性、主動性

      【教學(xué)重點】

      單項式與多項式的乘法運算

      【教學(xué)難點】

      推測整式乘法的運算法則。

      【教學(xué)過程】

      一、復(fù)習引入

      通過對已學(xué)知識的復(fù)習引入課題(學(xué)生作答)

      1.請說出單項式與單項式相乘的法則:

      單項式與單項式相乘,把它們的`系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。

      (系數(shù)×系數(shù))×(同字母冪相乘)×單獨的冪

      例如:( 2a2b3c) (-3ab)

      解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

      = -6a3b4c

      2.說出多項式2x2-3x-1的項和各項的系數(shù)項分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1

      問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?

      這便是我們今天要研究的問題。

      二、新知探究

      已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)

      現(xiàn)將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc

      上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個別同學(xué)作答,教師作評)

      結(jié)論單項式與多項式相乘的運算法則:

      用單項式分別去乘多項式的每一項,再把所得的積相加。

      用字母表示為:m(a+b+c)=ma+mb+mc

      運算思路:單×多

      轉(zhuǎn)化

      分配律

      單×單

      三、例題講解

      例計算:(1)(-2a2)· (3ab2– 5ab3)

      (2)(- 4x) ·(2x2+3x-1)

      解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

      (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

    八年級數(shù)學(xué)教案15

      一、教學(xué)目標:

      1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

      2、能力目標:

      ①,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系;

      ②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復(fù)制所求的圖形;

      3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

      二、重點與難點:

      重點:圖形連續(xù)變化的特點;

      難點:圖形的劃分。

      三、教學(xué)方法:

      講練結(jié)合。使用多媒體課件輔助教學(xué)。

      四、教具準備:

      多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

      五、教學(xué)設(shè)計:

      創(chuàng)設(shè)情景,探究新知:

      (演示課件):教材上小狗的圖案。提問:

      (1)這個圖案有什么特點?

      (2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?

      (3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

      小組討論,派代表回答。(答案可以多種)

      讓學(xué)生充分討論,歸納總結(jié),老師給予適當?shù)闹笇?dǎo),并對每種答案都要肯定。

      看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?

      小組討論,派代表到臺上給大家講解。

      氣氛要熱烈,充分調(diào)動學(xué)生的積極性,發(fā)掘他們的想象力。

      暢所欲言,互相補充。

      課堂小結(jié):

      在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的`主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。

      課堂練習:

      小組討論。

      小組討論完成。

      例子一定要和大家接觸緊密、典型。

      答案不惟一,對于每種答案,教師都要給予充分的肯定。

      六、教學(xué)反思:

      本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識較強,學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進學(xué)生綜合素質(zhì)的提高。

    【八年級數(shù)學(xué)教案】相關(guān)文章:

    八年級的數(shù)學(xué)教案12-14

    八年級數(shù)學(xué)教案06-18

    八年級上冊數(shù)學(xué)教案11-09

    【薦】八年級數(shù)學(xué)教案12-03

    八年級數(shù)學(xué)教案【熱門】12-03

    八年級數(shù)學(xué)教案【薦】12-06

    【熱】八年級數(shù)學(xué)教案12-07

    【推薦】八年級數(shù)學(xué)教案12-05

    【熱門】八年級數(shù)學(xué)教案11-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产欧美亚洲gif动图 | 亚洲美女福利视频 | 视频一区中文字幕 | 亚洲精品私拍国产 | 亚洲欧洲日产韩国综合 | 亚洲中文字幕mⅴ |