1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級下冊數學教案

    八年級下冊數學教案

    時間:2025-06-02 07:06:12 賽賽 八年級數學教案 我要投稿

    八年級下冊數學教案(通用12篇)

      作為一名教職工,常常需要準備教案,教案是實施教學的主要依據,有著至關重要的作用。那么寫教案需要注意哪些問題呢?下面是小編幫大家整理的八年級下冊數學教案,歡迎閱讀,希望大家能夠喜歡。

    八年級下冊數學教案(通用12篇)

      八年級下冊數學教案 1

      教學目標

      1、 理解并掌握等腰三角形的判定定理及推論

      2、 能利用其性質與判定證明線段或角的相等關系.

      教學重點:

      等腰三角形的判定定理及推論的運用

      教學難點:

      正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.

      教學過程:

      一、復習等腰三角形的性質

      二、新授:

      I提出問題,創設情境

      出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.

      學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.

      II引入新課

      1.由性質定理的題設和結論的變化,引出研究的`內容——在△ABC中,苦∠B=∠C,則AB= AC嗎?

      作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?

      2.引導學生根據圖形,寫出已知、求證.

      2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

      強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.

      4.引導學生說出引例中地質專家的測量方法的根據.

      III例題與練習

      1.如圖2

      其中△ABC是等腰三角形的是 [ ]

      2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).

      ②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).

      ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

      ④若已知 AD=4cm,則BC______cm.

      3.以問題形式引出推論l______.

      4.以問題形式引出推論2______.

      例: 如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

      分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.

      練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

      (2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

      練習:P53練習1、2、3。

      IV課堂小結

      1.判定一個三角形是等腰三角形有幾種方法?

      2.判定一個三角形是等邊三角形有幾種方法?

      3.等腰三角形的性質定理與判定定理有何關系?

      4.現在證明線段相等問題,一般應從幾方面考慮?

      V布置作業:P56頁習題12.3第5、6題

      八年級下冊數學教案 2

      教學目的

      1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

      2. 熟識等邊三角形的性質及判定.

      2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

      教學重點:

      等腰三角形的性質及其應用。

      教學難點:

      簡潔的邏輯推理。

      教學過程

      一、復習鞏固

      1.敘述等腰三角形的性質,它是怎么得到的?

      等腰三角形的`兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。

      等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

      2.若等腰三角形的兩邊長為3和4,則其周長為多少?

      二、新課

      在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

      等邊三角形具有什么性質呢?

      1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

      2.你能否用已知的知識,通過推理得到你的猜想是正確的?

      等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

      3.上面的條件和結論如何敘述?

      等邊三角形的各角都相等,并且每一個角都等于60°。

      等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

      等邊三角形也稱為正三角形。

      例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。

      分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

      問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

      問題2:求∠1是否還有其它方法?

      三、練習鞏固

      1.判斷下列命題,對的打“√”,錯的打“×”。

      a.等腰三角形的角平分線,中線和高互相重合( )

      b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )

      2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。

      3.P54練習1、2。

      四、小結

      由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

      五、作業:

      1.課本P57第7,9題。

      2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數。

      八年級下冊數學教案 3

      一、教學目標

      1. 掌握等腰梯形的判定方法.

      2. 能夠運用等腰梯形的性質和判定進行有關問題的論證和計算,進一步培養學生的分析能力和計算能力.

      3. 通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想

      二、教法設計

      小組討論,引導發現、練習鞏固

      三、重點、難點

      1.教學重點:等腰梯形判定.

      2.教學難點:解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線).

      四、課時安排

      1課時

      五、教具學具準備

      多媒體,小黑板,常用畫圖工具

      六、師生互動活動設計

      教師復習引入,學生閱讀課本;學生在教師引導下探索等腰梯形的判定,歸納小結梯形轉化的常見的輔助線

      七、教學步驟

      【復習提問】

      1.什么樣的四邊形叫梯形,什么樣的'梯形是直角梯形、等腰梯形?

      2.等腰梯形有哪些性質?它的性質定理是怎樣證明的?

      3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?

      我們已經掌握了等腰梯形的性質,那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.

      【引人新課】

      等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.

      前面我們用等腰三角形的定理證明了等腰梯形的性質定理,現在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

      例1已知:如圖,在梯形 中, , ,求證: .

      分析:我們學過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉化為等腰三角形的兩個底角,定理就容易證明了.

      (引導學生口述證明方法,然后利用投影儀出示三種證明方法)

      (1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .

      又由 得 ,因此可得 .

      (2)作高 、 ,通過證 推出 .

      (3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .

      (證明過程略).

      例3 求證:對角線相等的梯形是等腰梯形.

      已知:如圖,在梯形 中, , .

      求證: .

      分析:證明本題的關鍵是如何利用對角線相等的條件來構造等腰三角形.

      在 和 中,已有兩邊對應相等,別人要能證 ,就可通過證 得到 .

      (引導學生說出證明思路,教師板書證明過程)

      說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結論雖不能直接引用,但可以為以后解題提供思路.

      ②延長 到 使 .

      ③分別過 、 作 , , 、 交于點 .

      四邊形 就是所求的等腰梯形.

      解:梯形 周長 .

      答:梯形周長為26cm,面積為 .

      【總結、擴展】

      小結:(由學生總結)

      (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.

      (2)梯形的畫圖:一般先畫出有關的三角形,在此基礎上再畫出有關的平行四邊形,最后得到所求圖形.(三角形奠基法)

      八年級下冊數學教案 4

      知識目標:

      理解函數的概念,能準確識別出函數關系中的自變量和函數

      能力目標:

      會用變化的量描述事物

      情感目標:

      回用運動的觀點觀察事物,分析事物

      重點:

      函數的概念

      難點:

      函數的概念

      教學媒體:

      多媒體電腦,計算器

      教學說明:

      注意區分函數與非函數的關系,學會確定自變量的取值范圍

      教學設計:

      引入:

      信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的.嗎?

      新課:

      問題:(1)如圖是某日的氣溫變化圖。

      ①這張圖告訴我們哪些信息?

      ②這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規律的?

      (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

      ①這表告訴我們哪些信息?

      ②這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

      一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

      范例:例1判斷下列變量之間是不是函數關系:

      (5)長方形的寬一定時,其長與面積;

      (6)等腰三角形的底邊長與面積;

      (7)某人的年齡與身高;

      活動1:閱讀教材7頁觀察1。后完成教材8頁探究,利用計算器發現變量和函數的關系

      思考:自變量是否可以任意取值

      例2一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

      (1)寫出表示y與x的函數關系式。

      (2)指出自變量x的取值范圍。

      (3)汽車行駛200km時,油箱中還有多少汽油?

      解:(1)y=50—0.1x

      (2)0500

      (3)x=200,y=30

      活動2:練習教材9頁練習

      小結:

      (1)函數概念

      (2)自變量,函數值

      (3)自變量的取值范圍確定

      作業:18頁:2,3,4題

      八年級下冊數學教案 5

      教學目的

      通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。

      重點、難點

      1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

      2.難點:找出能表示整個題意的等量關系。

      教學過程

      一、復習

      1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

      本利和=本金×利息×年數+本金

      2.商品利潤等有關知識。

      利潤=售價—成本; =商品利潤率

      二、新授

      問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

      利息—利息稅=48.6

      可設小明爸爸前年存了x元,那么二年后共得利息為

      2.43%×X×2,利息稅為2.43%X×2×20%

      根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6

      問,扣除利息的'20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

      2.43%x·2.80%=48.6

      解方程,得x=1250

      例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

      大家想一想這15元的利潤是怎么來的?

      標價的80%(即售價)-成本=15

      若設這種服裝每件的成本是x元,那么

      每件服裝的標價為:(1+40%)x

      每件服裝的實際售價為:(1+40%)x·80%

      每件服裝的利潤為:(1+40%)x·80%—x

      由等量關系,列出方程:

      (1+40%)x·80%—x=15

      解方程,得x=125

      答:每件服裝的成本是125元。

      三、鞏固練習

      教科書第15頁,練習1、2。

      四、小結

      當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

      五、作業

      教科書第16頁,習題6.3.1,第4、5題。

      八年級下冊數學教案 6

      教學目標:

      1、了解什么是比例,能夠正確地表示比例關系。

      2、掌握比例的性質,能夠靈活地運用比例的性質進行解題。

      3、通過練習,提高解決實際問題的能力。

      教學重點:

      1、比例的概念及表示方法。

      2、比例的性質。

      3、比例的`應用。

      教學難點:

      1、比例的應用。

      2、解決實際問題的能力。

      教學過程:

      一、引入(5分鐘)

      1、教師出示一張比例圖,讓學生猜測比例的含義。

      2、學生回答后,教師講解比例的概念及表示方法。

      二、講解(15分鐘)

      1、教師講解比例的性質。

      2、教師通過例題讓學生掌握比例的應用。

      三、練習(30分鐘)

      1、教師出示一些比例題目,讓學生在課堂上完成。

      2、學生完成后,教師講解答案及解題方法。

      四、鞏固(10分鐘)

      1、教師出示一些實際問題,讓學生運用比例的知識進行解決。

      2、學生完成后,教師講解答案及解題方法。

      五、作業(5分鐘)

      1、教師布置相關作業。

      2、學生完成后,交給教師批改。

      教學反思:

      通過本節課的教學,學生們對比例的概念及表示方法有了更深入的了解,掌握了比例的性質,并通過練習提高了解決實際問題的能力。但是,教學過程中還存在一些問題,比如有些學生對比例的應用還不夠熟練,需要加強練習。因此,下一節課需要針對這些問題進行更加深入的講解和練習。

      八年級下冊數學教案 7

      一、教學目標

      1.掌握矩形的定義,知道矩形與平行四邊形的關系.

      2.掌握矩形的性質定理.

      3.使學生能應用矩形定義、性質等知識,解決簡單的證明題和計算題,進一步培養學生的分析能力.

      4.通過性質的學習,體會矩形的應用美.

      二、教法設計

      觀察、啟發、總結、提高,類比探討,討論分析,啟發式.

      三、重點、難點及解決辦法

      1.教學重點:矩形的性質及其推論.

      2.教學難點:矩形的本質屬性及性質定理的綜合應用.

      四、課時安排

      1課時

      五、教具學具準備

      教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具

      六、師生互動活動設計

      教具演示、創設情境,觀察猜想,推理論證

      七、教學步驟

      【復習提問】

      什么叫平行四邊形?它和四邊形有什么區別?

      【引入新課】

      我們已經知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質外,還有它的特殊性質,同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).

      【講解新課】

      制一個活動的平行四邊形教具,堂上進行演示圖,使學生注意觀察四邊形角的變化,當變到一個角是直角時,指出這時平行四邊形是矩形,使學生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯系和區別).

      矩形的性質:

      既然矩形是一種特殊的平行四邊形,就應具有平行四邊形性質,同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的條件,因而它就增加了一些特殊性質.

      繼續演示教具,當它變成矩形時,學生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結論),指出觀察出來的結論不能做為定理,需要證明.引導學生利用平行四邊形角的性質證明得出.

      矩形性質定理1:矩形的四個角都是直角.

      矩形性質定理2:矩形對角線相等.

      由矩形性質定理2我們可以得到

      推論:直角三角形斜邊上的中線等于斜邊的一半.

      (這實際上是 △的`一個重要性質,即 △斜邊中點到三頂點的距離相等,它在求線段長或線段部分關系時經常用到)

      例1 已知如圖1 矩形 的兩條對角線相交于點, , ,求矩形對角線的長.(按教材的格式)

      (強調這種計算題的解題格式,防止學生離開幾何元素之間的關系,而單純進行代數計算)

      【總結、擴展】

      1.小結:(用投影打出)

      (1)矩形、平行四邊形、四邊形從屬關系如圖.

      (2)矩形性質.

      1.具有平行四邊形的所有性質.

      2.特有性質:四個角都是直角,對角線相等.

      3.思考題:已知如圖, 是矩形 對角線交點, 平分 , ,求 的度數

      八、布置作業

      教材P158中2、5,P195中7.

      八年級下冊數學教案 8

      教學目標

      1、初步掌握頻率分布直方圖的概念,能繪制有關連續型統計量的直方圖;

      2、讓學生進一步經歷數據的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

      教學重點

      掌握頻率分布直方圖概念及其應用;

      教學難點

      繪制連續統計量的直方圖

      教學過程

      Ⅰ.提出問題,創設情境,引入新課:

      問題:我們班準備從63名同學中挑選出身高相差不多的40名同學參加比賽,那么這個想法可以實現嗎?應該選擇身高在哪個范圍的學生參加?

      63名學生的身高數據如下:

      158158160168159159151158159

      168158154158154169158158158

      159167170153160160159159160

      149163163162172161153156162

      162163157162162161157157164

      155156165166156154166164165

      156157153165159157155164156

      解:(確定組距)最大值為172,最小值為149,他們的差為23

      (身高x的變化范圍在23厘米,)

      (分組劃記)頻數分布表:

      身高(x)劃記頻數(學生人數)

      149≤x<1522

      152≤x<1556

      155≤x<15812

      158≤x<16119

      161≤<16410

      164≤x<1678

      167≤x<1704

      170≤x<1732

      從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學生中選隊員

      (繪制頻數分布直方圖如課本P72圖12.2-3)

      探究:上面對數據分組時,組距取3,把數據分成8個組,如果組距取2或4,那么數據應分成幾個組,這樣做能否選出身高比較整齊的隊員?

      分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。

      歸納:組距和組數的確定沒有固定的標準,要憑借經驗和研究的具體問題來決定,通常數據越多,分成的組數也越多,當數據在100個以內時,根據數據的多少通常分為5~12個組。

      我們還可以用頻數折線圖來描述頻數分布的'情況。頻數折線圖可以在頻數分布直方圖的基礎上畫出來。

      首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數為0的點,在上方圖的左邊取(147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數折線圖。

      頻數折線圖也可以不通過直方圖直接畫出。

      根據表12.2-2,求了各個小組兩個端點的平均數,而這些平均數稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數,以各小組的組中值為橫坐標,各小組對應的頻數為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數分布折線圖如課本P73圖。

      II課堂小結:

      (1)怎樣制作頻數分布直方圖和頻數分布折線圖

      (2)組距和組數沒有確定標準,當數據在1000個以內時,通常分成5~12組

      (3)如果取個長方形上邊的中點,可以得到頻數折線圖

      (4)求各小組兩個斷點的平均數,這些平均數叫組中值。

      八年級下冊數學教案 9

      教學目標:

      知識與技能

      1、掌握直角三角形的判別條件,并能進行簡單應用;

      2、進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型、

      3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論、

      情感態度與價值觀

      敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識、

      教學重點

      運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論、

      教學難點

      會辨析哪些問題應用哪個結論、

      課前準備

      標有單位長度的細繩、三角板、量角器、題篇

      教學過程:

      復習引入:

      請學生復述勾股定理;使用勾股定理的前提條件是什么?

      已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

      創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法、

      這樣做得到的是一個直角三角形嗎?

      提出課題:能得到直角三角形嗎

      講授新課:

      1、如何來判斷?(用直角三角板檢驗)

      這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?

      就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的.三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

      2、繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:

      5,12,13; 6, 8, 10; 8,15,17、

      (1)這三組數都滿足a2 +b2=c2嗎?

      (2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

      3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

      滿足a2 +b2=c2的三個正整數,稱為勾股數、

      4、例1 一個零件的形狀如左圖所示,按規定這個零件中 ∠A和∠DBC都應為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

      隨堂練習:

      1、下列幾組數能否作為直角三角形的三邊長?說說你的理由、

      ⑴9,12,15; ⑵15,36,39;

      ⑶12,35,36; ⑷12,18,22、

      2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、

      3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、

      4、習題1、3

      課堂小結:

      1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

      2、滿足a2 +b2=c2的三個正整數,稱為勾股數、勾股數擴大相同倍數后,仍為勾股數、

      八年級下冊數學教案 10

      重難點分析

      本節的重點是矩形的性質和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。矩形的這些性質和判定定理即是平行四邊形性質與判定的延續,又是以后要學習的正方形的基礎。

      本節的難點是矩形性質的靈活應用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是矩形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。

      教法建議

      根據本節內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:

      1.矩形的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

      2.矩形在現實中的實例較多,在講解矩形的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.

      3. 如果條件允許,教師在講授這節內容前,可指導學生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

      4. 在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.

      5. 由于矩形的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

      6.在矩形性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。

      矩形教學設計

      教學目標

      1.知道矩形的定義和矩形與平行四邊形之間的聯系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質;能推出直角三角形斜邊上的中線等于斜邊的一半的性質。

      2.能運用以上性質進行簡單的證明和計算。

      此外,從矩形與平行四邊形的區別與聯系中,體會特殊與一般的關系,滲透集合的思想,培養學生辨證唯物主義觀點。

      引導性材料

      想一想:一般四邊形與平行四邊形之間的相互關系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質;具有一些特殊的性質。

      小學里已學過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學里已學過)等特殊性質,那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應畫在哪里?

      (讓學生初步感知矩形與平行四邊形的從屬關系。)

      演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩定性,演示如圖4.5-2,當平行四邊形的一個內角由銳角變為鈍角的過程中,會發生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。

      問題1:從上面的.演示過程,可以發現:平行四邊形具備什么條件時,就成了矩形?

      說明與建議:教師的演示應充分展現變化過程,從而讓學生深切地感受到短形是無數個平行四邊形中的一個特例,同時,又使學生能正確地給出矩形的定義。

      問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質呢?

      說明與建議:讓學生分組探索,有必要時,教師可引導學生,根據研究平行四邊形獲得的經驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學生,這種探索的基礎是矩形有一個角是直角矩形的四個角都相等(矩形性質定理1),要學生給以證明(即課本例1后練習第1題)。

      學生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質上是一致的,所以不必另列為一個性質。

      學生探索矩形的四條對角線的大小關系時,如有困難,可引導學生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質定理2。

      問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質?

      說明與建議:(1)讓學生先觀察圖4.5-3,并議論猜想,如學生有困難,教師可引導學生觀察圖中的一個直角三角形(如Rt△ABC),讓學生自己發現斜邊上的中線BO與斜線AC的大小關系,然后讓學生自己給出如下證明:

      證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。

      ,AO=CO

      在Rt△ABC中,BO是斜邊AC上的中線,且 。

      直角三角形斜邊上的中線等于斜邊的一半。

      例題解析

      例1:(即課本例1)

      說明:本題難度不大,又有助于學生加深對性質定理的理解,教學中應引導學生探索解法:

      如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數,再從已知條件AOD=120出發,應用矩形的性質可知,ADB=30,另外,還可以引導學生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:

      ∵四邊形ABCD是矩形,

      AC=BD(矩形的對角線相等)。

      又 。

      OA=BO,△AOB是等腰三角形,

      ∵AOD=120,AOB=180- 120= 60

      AOB是等邊三角形。

      BO=AB=4cm,

      BD=2BO=244cm=8cm。

      例2:(補充例題)

      已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。

      (l)猜想:EF與BD具有怎樣的關系?

      (2)試證明你的猜想。

      解:(l)EF垂直平分BD。

      (2)證明:∵ABC=90,點E是AC的中點。

      (直角三角形的斜邊上的中線等于斜邊的一半)。

      同理: 。

      BE=DE。

      又∵EF平分BED。

      EFBD,BF=DF。

      說明:本例是一道不給出結論,需要學生自己觀察---猜想---討論的幾何命題,有助于發展學生的推理(包括合情推理和邏輯推理)能力。如果學生不適應,或有困難,教師可根據實際情況加以引導,這種訓練,重要的不是猜對了沒有?證明了沒有?而是讓學生經歷這樣一種自己研究圖形性質的過程,順便指出:求解本題的重要基礎是識圖技能----能從復雜圖形中分解出如圖4.5-6所示的三個基本圖形。

      課堂練習

      1.課本例1后練習題第2題。

      2.課本例1后練習題第4題。

      小結

      1.矩形的定義:

      2.歸納總結矩形的性質:

      對邊平行且相等

      四個角都是直角

      對角線平行且相等

      3.直角三角形斜邊上的中線等于斜邊的一半。

      4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。

      八年級下冊數學教案 11

      教學目標:

      情意目標:

      培養學生團結協作的精神,體驗探究成功的樂趣。

      能力目標:

      能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

      認知目標:

      了解梯形的概念及其分類;掌握等腰梯形的性質。

      教學重點、難點

      重點:等腰梯形性質的探索;

      難點:梯形中輔助線的添加。

      教學課件:

      PowerPoint演示文稿

      教學方法:

      啟發法、

      學習方法:

      討論法、合作法、練習法

      教學過程:

      (一)導入

      1、出示圖片,說出每輛汽車車窗形狀(投影)

      2、板書課題:5梯形

      3、練習:下列圖形中哪些圖形是梯形?(投影)

      4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

      6、特殊梯形的分類:(投影)

      (二)等腰梯形性質的'探究

      【探究性質一】

      思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

      【操練】

      (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

      (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E。(投影)

      【探究性質二】

      如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質:等腰梯形的兩條對角線相等。

      【探究性質三】

      問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

      問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

      等腰梯形性質:同以底上的兩個內角相等,對角線相等

      (三)質疑反思、小結

      讓學生回顧本課教學內容,并提出尚存問題;

      學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

      八年級下冊數學教案 12

      教學目標:

      1、知識目標:探索圖形之間的變換關系(軸對稱、平移、旋轉及其組合)。

      2、能力目標:

      ①經歷對具有旋轉特征的圖形進行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。

      ②能夠按要求作出簡單平面圖形旋轉后的圖形,并在此基礎上達到鞏固旋轉的有關性質。

      3、情感體驗點:培養學生的觀察能力和審美能力,激發學生學習數學的興趣。

      重點與難點:

      重點:圖形之間的變換關系(軸對稱、平移、旋轉及其組合);

      難點:綜合利用各種變換關系觀察圖形的形成。

      疑點:基本圖案不同,形成方式不同。

      教學方法:

      新授課在教師引導下,以學生的分組討論、合作交流為主展開教學。

      教學過程設計:

      1、情境導入

      播放自制圖形形成的影片,如圖351。

      2、充分利用本課時引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經過適當的旋轉得到其他三部分嗎?能經過平移嗎?能經過軸對稱嗎?還有其它方式嗎?

      問題本身為學生創設了一個探究圖形之間變化關系的情景,圖形雖十簡單,但變換方式綜合性強,可以讓學生自由發揮,各抒已見,后由教師進行適當歸納小結:

      (1)整個圖形可以看做是由一個十字組成部分通過連續七次平移前后的圖形共同組成;

      (2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;

      (3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉90度前后的圖形共同組成;

      (4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。

      (學生可能還有其他不同描述,教師應予以肯定)

      3、通過上述問題的討論,我們看到圖形的平移、旋轉,軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設計圖案的主要手段。

      4、利用想一想你能將圖352的左圖,通過平移或旋轉得到右圖嗎?

      學生議論或動手操作會發現這是不可能的,教材意圖十分明確,要告訴學生并不是所有圖形都可以通過一次平移或旋轉而得到的,從而要求我們今后分析圖形之間的關系時,要充分利用它們各自的性質、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進一步讓學生思考,從而得到結論是可能的。

      5、例1、怎樣將圖353中的'甲圖變成乙圖案?

      通過相對簡單活潑的問題,讓學生能運用圖形變換的幾種不同方式解答問題(先旋轉再平移后等到或先平移后旋轉也可以)

      例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

      留給學生充足的時間討論交流。

      (師):哪位同學有好好方法,請告訴大家!

      (生):以右圖案的中心為旋轉中心,將圖案按逆時針方向旋轉900 。

      (生):以右圖案的中心為旋轉中心,將圖案順逆時針方向旋轉2700 。

      明確可以通過不同的辦法達到同樣的效果,激勵學生動手動腦。

      5、學習小結

      (1)內容總結

      兩個圖案前后變化彩用了哪些方法?(平移、旋轉,軸對稱)

      (2)方法歸納

      ①了解并知道圖案變化的一般方法。

      ②圖案變化的方法很多,在生活中要養成多途徑觀察,思考問題的習慣。

      6、目標檢測

      圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經過怎樣的變換而得到?

    【八年級下冊數學教案】相關文章:

    【推薦】八年級下冊數學教案01-04

    八年級下冊數學教案優秀02-29

    中班下冊數學教案01-17

    蘇教版五下冊數學教案01-05

    (精選)八年級下冊作文07-15

    八年級下冊作文05-20

    初一下冊數學教案01-04

    八年級數學教案12-31

    八年級數學教案12-09

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      视频思思久久免费国产 | 在线精品视频一区二区三区 | 亚洲综合一区欧美激情 | 中文AV免费在线 | 亚洲欧美在线不卡 | 亚洲日韩国产欧美 |