1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    八年級數(shù)學(xué)教案

    時間:2024-10-25 14:45:41 八年級數(shù)學(xué)教案 我要投稿

    (推薦)八年級數(shù)學(xué)教案

      作為一位不辭辛勞的人民教師,通常會被要求編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那么教案應(yīng)該怎么寫才合適呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

    (推薦)八年級數(shù)學(xué)教案

    八年級數(shù)學(xué)教案1

      一、素質(zhì)教育目標(biāo)

      (一)知識教學(xué)點

      1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。

      2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。

      3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理。

      (二)能力訓(xùn)練點

      1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。

      2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的.能力。

      (三)德育滲透點

      通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。

      (四)美育滲透點

      通過學(xué)習(xí),體會幾何證明的方法美。

      二、學(xué)法引導(dǎo)

      構(gòu)造逆命題,分析探索證明,啟發(fā)講解。

      三、重點·難點·疑點及解決辦法

      1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用。

      2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理。

      3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理

      (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).

    八年級數(shù)學(xué)教案2

      第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理

      1、探究活動一

      內(nèi)容:投影顯示如下地板磚示意圖,引導(dǎo)學(xué)生從面積角度觀察圖形:

      問:你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?

      學(xué)生通過觀察,歸納發(fā)現(xiàn):

      結(jié)論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

      意圖:從觀察實際生活中常見的地板磚入手,讓學(xué)生感受到數(shù)學(xué)就在我們身邊。通過對特殊情形的探究得到結(jié)論1,為探究活動二作鋪墊。

      效果:1.探究活動一讓學(xué)生獨立觀察,自主探究,培養(yǎng)獨立思考的習(xí)慣和能力;

      2.通過探索發(fā)現(xiàn),讓學(xué)生得到成功體驗,激發(fā)進一步探究的熱情和愿望。

      2、探究活動二

      內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?

      (1)觀察下面兩幅圖:

      (2)填表:

      A的面積

      (單位面積)B的面積

      (單位面積)C的面積

      (單位面積)

      左圖

      右圖

      (3)你是怎樣得到正方形C的面積的?與同伴交流(學(xué)生可能會做出多種方法,教師應(yīng)給予充分肯定)。

      學(xué)生的方法可能有:

      方法一:

      如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形。

      方法二:

      如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。

      方法三:

      如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當(dāng)拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。

      (4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?

      學(xué)生通過分析數(shù)據(jù),歸納出:

      結(jié)論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

      意圖:探究活動二意在讓學(xué)生通過觀察、計算、探討、歸納進一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計算是一個難點,為此設(shè)計了一個交流環(huán)節(jié)。

      效果:學(xué)生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結(jié)論2.

      3、議一議

      內(nèi)容:(1)你能用直角三角形的邊長,來表示上圖中正方形的面積嗎?

      (2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?

      (3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的`長度。2中發(fā)現(xiàn)的規(guī)律對這個三角形仍然成立嗎?

      勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。

      數(shù)學(xué)小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。

      意圖:議一議意在讓學(xué)生在結(jié)論2的基礎(chǔ)上,進一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。

      效果:1.讓學(xué)生歸納表述結(jié)論,可培養(yǎng)學(xué)生的抽象概括能力及語言表達能力;

      2.通過作圖培養(yǎng)學(xué)生的動手實踐能力。

    八年級數(shù)學(xué)教案3

      【教學(xué)目標(biāo)】

      一、教學(xué)知識點

      1.命題的組成.

      2.命題真假的判斷。

      二、能力訓(xùn)練要求:

      1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

      2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法

      三、情感與價值觀要求:

      1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一

      2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

      3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值

      【教學(xué)重點】準(zhǔn)確的找出命題的條件和結(jié)論

      【教學(xué)難點】理解判斷一個真命題需要證明

      【教學(xué)方】探討、合作交流

      【教具準(zhǔn)備】投影片

      【教學(xué)過程】

      一、情景創(chuàng)設(shè)、引入新課

      師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?

      新課:

      (1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

      1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。

      2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

      3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

      4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

      5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

      師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

      二、例題講解:

      例1:師:下列命題的條件是什么?結(jié)論是什么?

      1.如果兩個角相等,那么他們是對頂角;

      2.如果a>b,b>c,那么a=c;

      3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;

      4.菱形的四條邊都相等;

      5.全等三角形的面積相等。

      例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。

      2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結(jié)論。

      例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

      師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的'條件,卻不具備命題的結(jié)論,即反例。

      教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

      三、思維拓展:

      拓展1.師:如何證實一個命題是真命題呢?請同學(xué)們分小組交流一下。

      教學(xué)建議:不急于解決學(xué)生怎么證實真命題的問題,可按以下程序設(shè)計教學(xué)過程

      (1)首先給學(xué)生介紹歐幾里得的《原本》

      (2)引出概念:公理、定理,證明

      (3)啟發(fā)學(xué)生,現(xiàn)在如何證實一個命題的正確性

      (4)給出本套教材所選用如下6個命題作為公理

      (5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

      拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

      建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

      練習(xí)書p197習(xí)題6.31

      四、問題式總結(jié)

      師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?

      建議:可對學(xué)生進行提示性引導(dǎo),如:命題的構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

      作業(yè):書p197習(xí)題6.32、3

      板書設(shè)計:

      定義與命題

      課時2

      條件

      1.命題的結(jié)構(gòu)特征

      結(jié)論

      1.假命題——可以舉反例

      2.命題真假的判別

      2.真命題——需要證明 學(xué)生活動一——

      探索命題的結(jié)構(gòu)特征

      學(xué)生觀察、分組討論,得出結(jié)論:

      (1)這五個命題都是用“如果……那么……”形式敘述的

      (2)這五個命題都是由已知得到結(jié)論

      (3)這五個命題都有條件和結(jié)論

      學(xué)生活動二——

      探索命題的條件和結(jié)論

      生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

      學(xué)生活動三

      探索命題的真假——如何判斷假命題

      生:可以舉一個例子,說明命題1是不正確的,如圖:

      已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

      生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

      生:由此說明:命題1、2是不正確的

      生:命題3、4、5是正確的

      學(xué)生活動四

      探索命題的真假——如何證實一個命題是真命題

      學(xué)生交流:

      生:用我們以前學(xué)過的觀察、實驗、驗證特例等方法

      生:這些方法往往并不可靠

      生:能夠根據(jù)已知道的真命題證實呢?

      生:那已經(jīng)知道的真命題又是如何證實的?

      生:那可怎么辦呢?

      生:可通過證明的方法

      學(xué)生分小組討論得出結(jié)論

      生:命題的結(jié)構(gòu)特征:條件和結(jié)論

      生:命題有真假之分

      生:可以通過舉反例的方法判斷假命題

      生:可通過證明的方法證實真命題

    八年級數(shù)學(xué)教案4

       一、學(xué)習(xí)目標(biāo)及重、難點:

      1、了解方差的定義和計算公式。

      2、理解方差概念的產(chǎn)生和形成的過程。

      3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

      重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

      難點:理解方差公式

      二、自主學(xué)習(xí):

      (一)知識我先懂:

      方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

      我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用

      來表示。

      給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。

      (二)自主檢測小練習(xí):

      1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。

      2、甲、乙兩組數(shù)據(jù)如下:

      甲組:10 9 11 8 12 13 10 7;

      乙組:7 8 9 10 11 12 11 12.

      分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.

      三、新課講解:

      引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

      甲:9、10、 10、13、7、13、10、8、11、8;

      乙:8、13、12、11、10、12、7、7、10、10;

      問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )

      (2)哪種農(nóng)作物的.苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )

      歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

      我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。

      (一)例題講解:

      例1、 段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?、

      測試次數(shù) 第1次 第2次 第3次 第4次 第5次

      段巍 13 14 13 12 13

      金志強 10 13 16 14 12

      給力提示:先求平均數(shù),在利用公式求解方差。

      (二)小試身手

      1、.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

      甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

      經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定

      去參加比賽。

      1、求下列數(shù)據(jù)的眾數(shù):

      (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

      2、8年級一班46個同學(xué)中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學(xué)生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?

      四、課堂小結(jié)

      方差公式:

      給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。

      每課一首詩:求方差,有公式;先平均,再求差;

      求平方,再平均;所得數(shù),是方差。

      五、課堂檢測:

      1、小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

      小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

      小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

      如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

      六、課后作業(yè):必做題:教材141頁 練習(xí)1、2 選做題:練習(xí)冊對應(yīng)部分習(xí)題

      七、學(xué)習(xí)小札記:

      寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

    八年級數(shù)學(xué)教案5

      教學(xué)建議

      知識結(jié)構(gòu)

      重難點分析

      本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

      本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

      教法建議

      1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

      2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

      教學(xué)設(shè)計示例

      一、教學(xué)目標(biāo)

      1.掌握中位線的概念和三角形中位線定理

      2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

      3.能夠應(yīng)用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學(xué)生的計算能力

      4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力

      5. 通過一題多解,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣

      二、教學(xué)設(shè)計

      畫圖測量,猜想討論,啟發(fā)引導(dǎo).

      三、重點、難點

      1.教學(xué)重點:三角形中位線的概論與三角形中位線性質(zhì).

      2.教學(xué)難點:三角形中位線定理的證明.

      四、課時安排

      1課時

      五、教具學(xué)具準(zhǔn)備

      投影儀、膠片、常用畫圖工具

      六、教學(xué)步驟

      【復(fù)習(xí)提問】

      1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

      2.說明定理的證明思路.

      3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

      分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

      4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)

      【引入新課】

      1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.

      (結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)

      2.三角形中位線性質(zhì)

      了解了三角形中位線的`定義后,我們來研究一下,三角形中位線有什么性質(zhì).

      如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

      三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

      應(yīng)注意的兩個問題:①為便于同學(xué)對定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當(dāng)一個命題有多種證明方法時,要選用比較簡捷的方法證明.

      由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

      (l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.

      (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

      (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

      上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

      (證明過程略)

      例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.

      (由學(xué)生根據(jù)命題,說出已知、求證)

      已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

      求證:四邊形EFGH是平行四邊形.‘

      分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

      證明:連結(jié)AC.

      ∴ (三角形中位線定理).

      同理,

      ∴GH EF

      ∴四邊形EFGH是平行四邊形.

      【小結(jié)】

      1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

      2.三角形中位線定理及證明思路.

      七、布置作業(yè)

      教材P188中1(2)、4、7

    八年級數(shù)學(xué)教案6

      一、學(xué)習(xí)目標(biāo):

      讓學(xué)生了解多項式公因式的意義,初步會用提公因式法分解因式

      二、重點難點

      重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來

      難點:讓學(xué)生識別多項式的公因式。

      三、合作學(xué)習(xí):

      公因式與提公因式法分解因式的概念。

      三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)

      既ma+mb+mc = m(a+b+c)

      由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。

      四、精講精練

      例1、將下列各式分解因式:

      (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

      例2把下列各式分解因式:

      (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

      (3) a(x-3)+2b(x-3)

      通過剛才的'練習(xí),下面大家互相交流,總結(jié)出找公因式的一般步驟。

      首先找各項系數(shù)的____________________,如8和12的公約數(shù)是4.

      其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的

      課堂練習(xí)

      1.寫出下列多項式各項的公因式。

      (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

      2.把下列各式分解因式

      (1)8x-72 (2)a2b-5ab

      (3)4m3-6m2 (4)a2b-5ab+9b

      (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

      五、小結(jié):

      總結(jié)出找公因式的一般步驟。:

      首先找各項系數(shù)的大公約數(shù),其次找各項中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的

      注意:(a-b)2=(b-a)2

      六、作業(yè)

      1、教科書習(xí)題

      2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx

      4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

    八年級數(shù)學(xué)教案7

      一、教學(xué)目標(biāo)

      ①經(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨立思考、集體協(xié)作的能力。

      ②理解整式除法的算理,發(fā)展有條理的思考及表達能力。

      二、教學(xué)重點與難點

      重點:整式除法的運算法則及其運用。

      難點:整式除法的運算法則的推導(dǎo)和理解,尤其是單項式除以單項式的運算法則。

      三、教學(xué)準(zhǔn)備

      卡片及多媒體課件。

      四、教學(xué)設(shè)計

      (一)情境引入

      教科書第161頁問題:木星的質(zhì)量約為1.90×1024噸,地球的質(zhì)量約為5.98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?

      重點研究算式(1.90×1024)÷(5.98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

      注:教科書從實際問題引入單項式的除法運算,學(xué)生在探索這個問題的過程中,將自然地體會到學(xué)習(xí)單項式的除法運算的必要性,了解數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。

      (二)探究新知

      (1)計算(1.90×1024)÷(5.98×1021),說說你計算的根據(jù)是什么?

      (2)你能利用(1)中的方法計算下列各式嗎?

      8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

      (3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?

      注:教師可以鼓勵學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。

      單項式的。除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進行。探究活動的安排,是使學(xué)生通過對具體的特例的計算,歸納出單項式的`除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分?jǐn)?shù)的約分進行。在這些活動過程中,學(xué)生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強調(diào)的。

      (三)歸納法則

      單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

      注:通過總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語言表達自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

      (四)應(yīng)用新知

      例2計算:

      (1)28x4y2÷7x3y;

      (2)—5a5b3c÷15a4b。

      首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學(xué)生口述,教師板書的形式完成。口述和板書都應(yīng)注意展示法則的應(yīng)用,計算過程要詳盡,使學(xué)生盡快熟悉法則。

      注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學(xué)生來講,難免會出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問題。

      鞏固新知教科書第162頁練習(xí)1及練習(xí)2。

      學(xué)生自己嘗試完成計算題,同桌交流。

      注:在獨立解題和同伴的相互交流過程中讓學(xué)生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動參與學(xué)習(xí)的習(xí)慣。

      (五)作業(yè)

      1、必做題:教科書第164頁習(xí)題15.3第1題;第2題。

      2、選做題:教科書第164頁習(xí)題15.3第8題

    八年級數(shù)學(xué)教案8

      一、教學(xué)目標(biāo)

      1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

      2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

      3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

      二、重點、難點和難點的突破方法:

      1、重點:認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

      2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

      3、難點的突破方法:

      首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:

      中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

      教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

      在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。

      三、例習(xí)題的意圖分析

      1、教材P143的例4的意圖

      (1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。

      (2)、這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

      (3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。

      (4)、這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。

      2、教材P145例5的意圖

      (1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

      (2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

      (3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

      四、課堂引入

      嚴(yán)格的`講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。

      五、例習(xí)題的分析

      教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

      教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。

      六、隨堂練習(xí)

      1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

      1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

      求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

      假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

      2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:

      1匹1.2匹1.5匹2匹

      3月12臺20臺8臺4臺

      4月16臺30臺14臺8臺

      根據(jù)表格回答問題:

      商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

      假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?

      答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。

      2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。

      七、課后練習(xí)

      1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

      2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

      3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

      A.97、96 B.96、96.4 C.96、97 D.98、97

      4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

      A.24、25 B.23、24 C.25、25 D.23、25

      5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

      溫度(℃) -8 -1 7 15 21 24 30

      天數(shù)3 5 5 7 6 2 2

      請你根據(jù)上述數(shù)據(jù)回答問題:

      (1).該組數(shù)據(jù)的中位數(shù)是什么?

      (2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

      答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

    八年級數(shù)學(xué)教案9

      一、創(chuàng)設(shè)情境導(dǎo)入新課

      1、介紹七巧板

      師:你們玩過七巧板嗎?你知道七巧板是由哪些不同的圖形組成的嗎?

      一千多年前,中國人發(fā)明了七巧板。七巧板是由七塊圖形組成的,它可以拼出豐富的圖案來。外國人管它叫“中國魔板”,在他們看來,沒有哪一種智力玩具比它更神奇的了。

      2、導(dǎo)入:今天就讓我們一起來認(rèn)識其中的一個圖形—平行四邊形。(出示課題)

      【設(shè)計意圖:以學(xué)生喜愛的“七巧板”為切入點,引發(fā)學(xué)生的學(xué)習(xí)熱情。】

      二、嘗試探索建立模型

      (一)認(rèn)一認(rèn)形成表象

      師:老師這兒的圖形就是平行四邊形。改變方向后問:它還是平行四邊形嗎?

      不管平行四邊形的方向怎樣變化,它都是一個平行四邊形。(圖貼在黑板上)

      (二)找一找感知特征

      1、在例題圖中找平行四邊形

      師:老師這有幾幅圖,你能在這上面找到平行四邊形嗎?

      2、尋找生活中的平行四邊形

      師:其實在我們周圍也有平行四邊形,你在哪些地方見過平行四邊形?(可相機出示:活動衣架)

      (三)做一做探究特征

      1、剛才我們在生活中找到了一些平行四邊形,現(xiàn)在你能利用手邊的材料做出一個平行四邊形嗎?

      2、在小組里交流你是怎么做的并選代表在班級里匯報。

      3、剛才同學(xué)們成功的做出了一個平行四邊形,在做的過程中,你有什么發(fā)現(xiàn)或收獲嗎?你是怎樣發(fā)現(xiàn)的?(小組交流)

      4、全班交流,師小結(jié)平行四邊形的。特征。(兩組對邊分別平行并且相等;對角相等;內(nèi)角和是360度。)

      【設(shè)計意圖:新課程強調(diào)體驗性學(xué)習(xí),學(xué)生學(xué)習(xí)不僅要用腦子去想,而且還要用眼睛看,用耳去聽,用嘴去說,用手去做,即用自己的身體去親身經(jīng)歷,用自己的心靈去感悟。這里通過認(rèn)平行四邊形、找平行四邊形和做平行四邊形,使學(xué)生經(jīng)歷由表象到抽象的過程。在一系列的活動中,讓學(xué)生感悟到了平行四邊形的特征。】

      (四)練一練鞏固表象

      完成想想做做第1、2題

      (五)畫一畫認(rèn)識高、底

      1、出示例題,你能量出平行四邊形兩條紅線間的距離嗎?(學(xué)生在自制的圖上畫)說說你是怎么量的?

      2、師:剛才你們畫的這條垂直線段就是平行四邊形的高。這條對邊就是平行四邊形的底。

      3、平行四邊形的高和底書上是怎么說的呢?(學(xué)生看書)

      4、這樣的高能畫多少條呢?為什么?你能畫出另一組對邊上的高,并量一量嗎?(機動)

      5、教學(xué)“試一試”。(學(xué)生各自量,交流時強調(diào)底與高的對應(yīng)關(guān)系)

      6、畫高(想想做做第5題)(提醒學(xué)生畫上直角標(biāo)記)

      三、動手操作鞏固深化

      1、完成想想做做第3、4題

      第3題:拼一拼、移一移,說說怎樣移的?

      第4題引入:木匠張師傅想把一塊平行四邊形的木板鋸成兩部分,拼成一張長方形桌面,假如你是張師傅,該怎么鋸呢?想試試嗎?找一張平行四邊形的紙試一試。

      2、完成想想做做第6題(課前做好,課上活動。)

      (1)師拿出自做的長方形,捏住對角相反方向拉一拉,看你發(fā)現(xiàn)了什么?師做生觀察,互相交流。

      (2)判斷:長方形是平行四邊形嗎?小組交流然后再說理由,此時老師可問學(xué)生長方形是什么樣的平行四邊形?(特殊)特殊在哪了?

      (3)得出平行四邊形的.特性

      師再捏住平行四邊形的對角向里推。看你發(fā)現(xiàn)了什么?

      師:三角形具有穩(wěn)定性,通過剛才的動手操作,你覺得平行四邊形有什么特性呢?(不穩(wěn)定性、容易變形)

      (4)特性的應(yīng)用

      師:平行四邊形容易變形的特性在生活中有廣泛的應(yīng)用。你能舉些例子嗎?(學(xué)生舉例后閱讀教科書P45“你知道嗎?”)

      【設(shè)計意圖:】

      四、暢談收獲拓展延伸

      1、師:今天這節(jié)課你有什么收獲嗎?

      2、用你手中的七巧板拼我們學(xué)過的圖形。

      3、尋找平行四邊形容易變形的特性在生活中的應(yīng)用。

      【設(shè)計意圖:擴展課堂教學(xué)的有限空間,課內(nèi)課外密切結(jié)合。課結(jié)束時,布置實踐作業(yè),要學(xué)生尋找平行四邊形容易變形的特性在生活中的應(yīng)用,使學(xué)生的課堂學(xué)習(xí)和課后生活聯(lián)系起來,使學(xué)生感受到課堂知識在生活中的應(yīng)用,體驗到生活中時時處處離不開數(shù)學(xué),增強數(shù)學(xué)學(xué)習(xí)的親切感和實用性。整理:

      (1)使方程的右邊為0(2)方程的左邊按x的降冪排列。我們會得到:

      ① ② ③

      你能發(fā)現(xiàn)上面三個方程有什么共同點?

      _____________________叫做一元二次方程。在定義中著重強調(diào)了幾點?哪幾點?如果給你一個方程,讓你判定它是否是一元二次方程,你關(guān)鍵看哪幾方面?

      學(xué)法指導(dǎo)

      學(xué)習(xí)一元二次方程的概念,讓同學(xué)們剖析定義,總結(jié)判定一個方程是否是一元二次方程的方法。

      4、試一試

      下面方程是一元二次方程嗎?為什么?

      ①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

      方法提升:

      由一元二次方程的定義可知,只有同時滿足下列三個條件:①整式方程;②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2,這樣的方程才是一元二次方程,否則缺少其中任何一個條件的方程都不是一元二次方程。

      口訣生成:

      判斷一元二次方程并不難,三個條件要找全:一元,二次,整式判,正確答案就出現(xiàn)。

      5、學(xué)一學(xué)

      一元二次方程都可以化為ax+bx +c =0(a,b,c為常數(shù),a≠0)的形式,稱為一元二次方程的一般形式,其中ax,bx,c分別稱為這個方程的二次項,一次項和常數(shù)項,a,b分別稱為二次項系數(shù),一次項系數(shù)。你能指出下列方程的二次項系數(shù),一次項系數(shù),常數(shù)項嗎?請你用a,b,c表示出來。

    八年級數(shù)學(xué)教案10

      學(xué)習(xí)目標(biāo)

      1、在同一直角坐標(biāo)系中,感受圖形上點的坐標(biāo)變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關(guān)系并能找出變化規(guī)律。

      2、由坐標(biāo)的變化探索新舊圖形之間的變化。

      重點

      1、 作某一圖形關(guān)于對稱軸的對稱圖形,并能寫出所得圖形相應(yīng)各點的坐標(biāo)。

      2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

      難點

      體會極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡單的問題

      學(xué)習(xí)過程(導(dǎo)入、探究新知、即時練習(xí)、小結(jié)、達標(biāo)檢測、作業(yè))

      第一課時

      學(xué)習(xí)過程:

      一、舊知回顧:

      1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。

      2、坐標(biāo)平面內(nèi)點的坐標(biāo)的表示方法____________。

      3、各象限點的坐標(biāo)的特征:

      二、新知檢索:

      1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),

      (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形

      三、典例分析

      例1、

      (1) 將魚的頂點的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

      (2)將魚的頂點的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

      例2、(1)將魚的頂點的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

      (2)將魚的頂點的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

      四、題組訓(xùn)練

      1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。

      (1)這四個點的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

      (2)縱、橫分別加3呢?

      (3)縱、橫分別變成原來的2倍呢?

      歸納:圖形坐標(biāo)變化規(guī)律

      1、 平移規(guī)律:2、圖形伸長與壓縮:

      第二課時

      一、舊知回顧:

      1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。

      中心對稱圖形定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形

      二、新知檢索:

      1、如圖,左邊的魚與右邊的魚關(guān)于y軸對稱。

      1、左邊的'魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

      2、各個對應(yīng)頂點的坐標(biāo)有怎樣的關(guān)系?

      3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關(guān)于y軸對稱,那么左邊的魚各個頂點的坐標(biāo)將發(fā)生怎樣的變化?

      三、典例分析,如圖所示,

      1、右圖的魚是通過什么樣的變換得到 左圖的魚的。

      2、如果將右邊的魚的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。

      3、如果將右邊的魚的縱、橫坐標(biāo)都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系

      四、題組練習(xí)

      1、將坐標(biāo)作如下變化時,圖形將怎樣變化?

      ① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

      ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

      2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標(biāo)。

      3、 如圖,作字母M關(guān)于y軸的軸對稱圖形,并寫出所得圖形相應(yīng)各端點的坐標(biāo)。

      4、 描出下圖中楓葉圖案關(guān)于x軸的軸對稱圖形的簡圖。

      學(xué)習(xí)筆記

    八年級數(shù)學(xué)教案11

      一、教材分析教材的地位和作用:

      本節(jié)內(nèi)容是第一課時《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

      二、學(xué)情分析

      八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實例和動手實踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實可行的。

      三、教學(xué)目標(biāo)及重點、難點的確定

      根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點、難點如下:

      (一)教學(xué)目標(biāo):

      1、知識技能

      (1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.

      (2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.

      (3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.

      2、過程與方法目標(biāo)

      經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實踐能力、抽象思維和語言表達能力.

      3、情感、態(tài)度與價值觀

      通過對生活中數(shù)學(xué)問題的探究,進一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。

      (二)教學(xué)重點:軸對稱圖形和軸對稱的有關(guān)概念.

      (三)教學(xué)難點:軸對稱圖形與軸對稱的聯(lián)系、區(qū)別

      .四、教法和學(xué)法設(shè)計

      本節(jié)課根據(jù)教材內(nèi)容的特點和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的:

      【教法策略】采用以直觀演示法和實驗發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。

      【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

      【輔助策略】我利用多媒體課件輔助教學(xué),適時呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強直觀效果,提高課堂效率

      五、說程序設(shè)計:

      新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實的有意義的,有利于學(xué)生進行觀察、試驗、猜測、驗證、推理與交流等數(shù)學(xué)活動。為了達到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進行了設(shè)計。

      (一)、觀圖激趣、設(shè)疑導(dǎo)入。

      出示圖片,設(shè)計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

      [設(shè)計意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,

      (二)、實踐探索、感悟特征.

      《活動一(課件演示)觀察這些圖形有什么特點?》在這個環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機,還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

      為了進一步認(rèn)識軸對稱圖形的特點又出示了一組練習(xí)

      (練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

      [設(shè)計意圖]通過這個練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的`或傾斜的。

      (練習(xí)2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識面。

      (三)、動手操作、再度探索新知。

      將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。

      再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結(jié)合圖形加以認(rèn)識。

      (四)、鞏固練習(xí)、升華新知。

      出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,

      在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

      (課件演示)軸對稱圖形及兩個圖形成軸對稱區(qū)別與聯(lián)系

      (五)、綜合練習(xí)、發(fā)展思維。

      1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

      2、判斷:

      生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。

      (1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

      0123456789ABCDEFGH

      3、像這樣寫法的漢字哪些是軸對稱圖形?

      口工用中由日直水清甲

      (這幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計,不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

      (六)歸納小結(jié)、布置作業(yè)

      [設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。作業(yè)布置要有層次,照顧學(xué)生個體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

      六、設(shè)計說明

      這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點、遵循學(xué)生的認(rèn)知規(guī)律。通過六個環(huán)節(jié)的教學(xué)設(shè)計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。

    八年級數(shù)學(xué)教案12

      一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1、平移

      2、平移的性質(zhì):

      ⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;

      ⑵對應(yīng)線段平行且相等,對應(yīng)角相等。

      ⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

      (4)平移后的圖形與原圖形全等。

      3、簡單的'平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;

      ⑵需要平移的方向;

      ⑶需要平移的距離或一個對應(yīng)點的位置。

      ②作平移后的圖形的方法:

      ⑴找出關(guān)鍵點;

      ⑵作出這些點平移后的對應(yīng)點;

      ⑶將所作的對應(yīng)點按原來方式順次連接,所得的;

      二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。

      1、旋轉(zhuǎn)

      2、旋轉(zhuǎn)的性質(zhì)

      ⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。

      ⑶任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

      ⑷旋轉(zhuǎn)前后的兩個圖形全等。

      3、簡單的旋轉(zhuǎn)作圖

      ⑴已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。

      ⑵已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

      ⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

      ③探索該圖案的形成過程,類型有:

      ⑴平移變換;

      ⑵旋轉(zhuǎn)變換;

      ⑶軸對稱變換;

      ⑷旋轉(zhuǎn)變換與平移變換的組合;

      ⑸旋轉(zhuǎn)變換與軸對稱變換的組合;

      ⑹軸對稱變換與平移變換的組合。

    八年級數(shù)學(xué)教案13

      學(xué)習(xí)目標(biāo):

      1. 在同一直角坐標(biāo)系中,感受點的坐標(biāo)變化與圖形的變化之間的關(guān)系,并能找出變化規(guī)律。

      2. 通過坐標(biāo)的變化探索新舊圖形之間的變化。

      重點:

      1. 對稱軸的對稱圖形,并且能寫出所得圖形各點的坐標(biāo)。

      2. 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

      難點:

      1. 理解并應(yīng)用直角坐標(biāo)與極坐標(biāo)。

      2. 解決一些簡單的問題。

      學(xué)習(xí)過程:

      第一課時

      一、舊知回顧:

      1. 平面直角坐標(biāo)系定義:在平面內(nèi),兩條垂直且有公共端點的數(shù)軸組成平面直角坐標(biāo)系。

      2. 坐標(biāo)平面內(nèi)點的坐標(biāo)的表示方法是(x,y)。

      3. 各象限點的坐標(biāo)的特征:

      第一象限:x和y坐標(biāo)都是正數(shù)。第二象限:x坐標(biāo)為負(fù)數(shù),y坐標(biāo)為正數(shù)。第三象限:x和y坐標(biāo)都是負(fù)數(shù)。第四象限:x坐標(biāo)為正數(shù),y坐標(biāo)為負(fù)數(shù)。

      二、新知檢索:

      1. 在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形。

      三、典例分析:

      例1、

      (1) 將魚的頂點的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

      (2)將魚的頂點的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

      例2、

      (1)將魚的頂點的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

      (2) 將魚的頂點的橫坐標(biāo)不變,縱坐標(biāo)變成原來的一半,并繪制圖形。分析得到的圖形和原圖形之間有什么不同?

      四、習(xí)題組訓(xùn)練

      1、在平面直角坐標(biāo)系中,將點(0,0)、(2,4)、(2,0)和(4,4)連接形成一個圖案。

      (1)將這四個點的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的一半,然后依次連接得到新圖形。得到的圖形和原圖形之間有什么變化?

      (2)將縱坐標(biāo)和橫坐標(biāo)都增加3,所得到的圖形會發(fā)生怎樣的變化?

      (3)將縱坐標(biāo)和橫坐標(biāo)都乘以2,所得到的圖形會發(fā)生怎樣的變化?

      歸納得出:圖形坐標(biāo)變化的規(guī)律

      1、平移規(guī)律

      2、圖形伸縮規(guī)律

      第二課時

      一、已學(xué)內(nèi)容回顧:

      1、軸對稱圖形的定義:如果一個圖形能夠沿著某條軸翻折成重合的兩部分,那么這個圖形就是軸對稱圖形。

      2、中心對稱圖形的定義:如果一個圖形繞著某個點旋轉(zhuǎn)一定的度數(shù)后與原圖形完全重合,那么這個圖形就是中心對稱圖形。

      二、新學(xué)內(nèi)容引入:

      1、如下圖所示,左邊的魚和右邊的魚是關(guān)于y軸對稱的。

      (1) 左邊的魚可以通過平移、壓縮或拉伸來得到右邊的魚嗎?

      (2) 左邊魚和右邊魚的頂點坐標(biāo)之間有怎樣的關(guān)系?

      (3) 如果將右邊的魚沿著x軸正方向平移1個單位長度,然后通過不改變關(guān)于y軸對稱的`條件,那么左邊的魚的頂點坐標(biāo)會發(fā)生怎樣的變化?

      三、典型例題解析:

      1、如下圖所示,右邊的魚是通過何種變換得到左邊的魚的?

      2、如果將右邊魚的橫坐標(biāo)保持不變,縱坐標(biāo)變成原來的一倍,繪制得到的圖形與原圖形之間有何不同?

      3、如果將右邊魚的縱坐標(biāo)和橫坐標(biāo)都變成原來的一倍,所得到的圖形和原圖形之間有何不同?

      四、習(xí)題組練習(xí):

      1、當(dāng)坐標(biāo)發(fā)生如下變化時,圖形會做出怎樣的變化?

      1、已知點位移的矩陣:

      ① (x,y) → (x,y + 4)

      ② (x,y) → (x,y - 2)

      ③ (x,y) → (1/2x,y)

      ④ (x,y) → (3x,y)

      ⑤ (x,y) → (x,1/2y)

      ⑥ (x,y) → (3x,3y)

      2、在第一象限內(nèi)有一只蝴蝶,現(xiàn)在在第二象限內(nèi)畫出一個與它形狀大小完全一樣的蝴蝶,并標(biāo)出它們的各個頂點坐標(biāo)。

      3、以圖中的字母M為輪廓,在y軸上作出與它關(guān)于軸對稱圖形,并標(biāo)出相應(yīng)端點的坐標(biāo)。

      4、簡要描繪圖示中楓葉圖案關(guān)于x軸對稱的軸對稱圖形。

      學(xué)習(xí)筆記:

    八年級數(shù)學(xué)教案14

      教學(xué)目標(biāo):

      知識目標(biāo):

      1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

      2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

      3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。

      能力目標(biāo):

      1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認(rèn)識現(xiàn)實世界的意識和能力。

      2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。

      情感目標(biāo):

      1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

      2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。

      教學(xué)重點:

      掌握函數(shù)概念。

      判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

      能把實際問題抽象概括為函數(shù)問題。

      教學(xué)難點:

      理解函數(shù)的概念。

      能把實際問題抽象概括為函數(shù)問題。

      教學(xué)過程設(shè)計:

      一、創(chuàng)設(shè)問題情境,導(dǎo)入新課

      『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?

      『生』:摩天輪。

      『師』:你們坐過嗎?

      ……

      『師』:當(dāng)你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?

      『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。

      『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。

      大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表:

      t/分 0 1 2 3 4 5 …… h/米

      t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

      『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?

      『生』:確定。

      『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

      『生』:研究的對象有兩個,是時間t和高度h。

      『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識世界。下面我們就去研究一些有關(guān)變量的問題。

      二、新課學(xué)習(xí)

      做一做

      (1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

      填寫下表:

      層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

      『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。

      (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

      ①計算當(dāng)fenbie為50,60,100時,相應(yīng)的滑行距離S是多少?

      ②給定一個V值,你能求出相應(yīng)的S值嗎?

      解:略

      議一議

      『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

      『生』:相同點是:這三個問題中都研究了兩個變量。

      不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。

      『師』:通過對這三個問題的研究,明確“給定其中某一個變量的'值,相應(yīng)地就確定了另一個變量的值”這一共性。

      函數(shù)的概念

      在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。

      一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

      三、隨堂練習(xí)

      書P152頁 隨堂練習(xí)1、2、3

      四、本課小結(jié)

      初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

      在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。

      函數(shù)的三種表達式:

      圖象;(2)表格;(3)關(guān)系式。

      五、探究活動

      為了加強公民的節(jié)水意識,某市制定了如下用水收費標(biāo)準(zhǔn):每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?

      (答案:Y=1.8x-6或)

      六、課后作業(yè)

      習(xí)題6.1

    八年級數(shù)學(xué)教案15

      一、學(xué)習(xí)目標(biāo)

      1.使學(xué)生了解運用公式法分解因式的意義;

      2.使學(xué)生掌握用平方差公式分解因式

      二、重點難點

      重點:掌握運用平方差公式分解因式。

      難點:將單項式化為平方形式,再用平方差公式分解因式。

      學(xué)習(xí)方法:歸納、概括、總結(jié)。

      三、合作學(xué)習(xí)

      創(chuàng)設(shè)問題情境,引入新課

      在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

      如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的.一種因式分解的方法——公式法。

      1.請看乘法公式

      左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

      利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

      a2—b2=(a+b)(a—b)

      2.公式講解

      如x2—16

      =(x)2—42

      =(x+4)(x—4)。

      9m2—4n2

      =(3m)2—(2n)2

      =(3m+2n)(3m—2n)。

      四、精講精練

      例1、把下列各式分解因式:

      (1)25—16x2;(2)9a2—b2。

      例2、把下列各式分解因式:

      (1)9(m+n)2—(m—n)2;(2)2x3—8x。

      補充例題:判斷下列分解因式是否正確。

      (1)(a+b)2—c2=a2+2ab+b2—c2。

      (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

      五、課堂練習(xí)

      教科書練習(xí)。

      六、作業(yè)

      1、教科書習(xí)題。

      2、分解因式:x4—16x3—4x4x2—(y—z)2。

      3、若x2—y2=30,x—y=—5求x+y。

    【八年級數(shù)學(xué)教案】相關(guān)文章:

    八年級的數(shù)學(xué)教案12-14

    八年級數(shù)學(xué)教案12-09

    八年級《函數(shù)》數(shù)學(xué)教案04-03

    (經(jīng)典)八年級數(shù)學(xué)教案06-25

    【精】八年級數(shù)學(xué)教案12-04

    八年級數(shù)學(xué)教案【精】12-04

    八年級下冊數(shù)學(xué)教案01-01

    八年級上冊數(shù)學(xué)教案11-09

    人教版八年級數(shù)學(xué)教案11-04

    【熱門】八年級數(shù)學(xué)教案11-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      一区二区三区四区精品视频在线播放 | 亚洲国产aⅴ精品一区二区久久 | 亚洲欧美激情综合在线观看 | 亚洲视频之中文字幕 | 久久国产午夜视频影院 | 日本午夜免费啪视频在线 |