數學七年級上冊教案優秀(15篇)
作為一名辛苦耕耘的教育工作者,通常需要用到教案來輔助教學,教案是保證教學取得成功、提高教學質量的基本條件。我們該怎么去寫教案呢?下面是小編為大家收集的數學七年級上冊教案,希望能夠幫助到大家。
數學七年級上冊教案1
教學目標:
知識目標:有理數的概念,有理數的分類,熟練的寫出某集合中的數。
過程與方法:感受分類的思想,分類的依據。
情感態度價值觀:感受數的對稱美
課堂教學過程
一.情境問題:
到目前為止,你能舉出哪些數,你能把這些數分類嗎?你的分類依據是什么?有理數:整數正整數,0,負整數。
分數正分數,負分數。
有理數:正有理數
負有理數。
二.嘗試應用:
1課本第8頁練習。補充:整數集合,負整數集合,分數集合。
2判斷:1.正整數和負整數統稱為整數。
2、小數不是有理數。
3正數和負數統稱為有理數。
4分數包括正分數和負分數。
三。補償提高:
將下列的數填在相應的括號中。
-8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.
正整數集合:
負整數集合:
正分數集合:
負分數集合:
正數集合:
分數集合:
非正數集合:
自然數集合:
思考:既是正數又是整數的數是什么數?既是負數又是分數的數是什么數?
四。小結與反思:
本節課用到得思想,重要知識,注意問題,你的.疑惑。
教后反思:
本節對有理數的分類:按正負來分,按整數和分數來分。明確分類標準。能正確的寫出某些數的集合。
本節需要學生熟練。再有理數的分類的探討上二班較流暢,但是正負來分為落實好。
數學七年級上冊教案2
【學習目標】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,學會檢驗一個數值是不是方程的解的方法。
【重點難點】能驗證一個數是否是一個方程的解。
1.某工廠加強節能措施,去年下半年與上半年相比,月平均用電量減少2 000度,全年用電15萬度,如果設上半年每月平均用電x度,那么所列方程正確的是( )
A.6x+6(x-2 000)=150 000
B.6x+6(x+2 000)=150 000
C.6x+6(x-2 000)=15
D.6x+6(x+2 000)=15
2.李紅買了8個蓮蓬,付50元,找回38元.設每個蓮蓬的價格為x元,根據題意,列出方程為________.
3.一個正方形花圃邊長增加2 m,所得新正方形花圃的周長是28 m,則原正方形花圃的邊長是多少?(只列方程)
《3.1.等式的性質》同步四維訓練含答案
知識點一:等式的性質1
1.下列變形錯誤的是(D )
A.若a=b,則a+c=b+c
B.若a+2=b+2,則a=b
C.若4=x-1,則x=4+1
D.若2+x=3,則x=3+2
2.已知m+a=n+b,根據等式的性質變形為m=n,那么a,b必須符合的條件是(C )
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1從算式到方程》同步練習含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故選B.
根據方程解的'定義,將方程的解代入方程,就可得一個關于字母a的一元一次方程,從而可求出a的值.
本題考查了方程的解的定義,解決本題的關鍵在于:根據方程的解的定義將x=3代入,從而轉化為關于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7沒有未知數,不是方程;
D、2x<5不是等式,不是方程;
故選:A.
根據方程的定義:含有未知數的等式叫方程解答即可.數或整式
數學七年級上冊教案3
復習目標
1、 經歷猜測、試驗、收集與分析試驗結果等活動過程。
2、 初步體驗有些事件的發生是確定的,有些則是不確定的,能區分確定事件與不確定事件。
3、 知道事件發生的可能性是有大小的,能對一些簡單事件發生的可能性作出描述,能列舉出簡單試驗所有可能發生的結果,并和同伴交換想法。
復習內容
一、基礎知識填空
1.在一定條件下,肯定會發生的事情稱為 必然事件 ;在一定條件下,一定不會發生的事情稱為 不可能事件 ;必然 事件與 不可能 事件都是確定 的;在一定條件下,可能會發生,也可能不會發生的事件稱為 不確定 事件。
2.在“轉盤游戲”中,哪個區域的面積大,則指針落到該區域的 可能性 大。
二、典型例題
例題1:下列事件中,哪些是必然事件?哪些是不可能事件,哪些是不確定事件?
(1)一年有12個月; (2)擲一枚一元硬幣,停止后國徽朝上;
(3)明天要下雪; (4)1/4周角=1直角;
(5)任意買一張電影票座位號是奇數;(6)小明的生日是2月30日;
(7)一條魚在白云中飛翔。
分析與解:(1)、(4)是必然事件;(6)、(7)是不可能事件;
(2)、(3)、(5)是不確定事件。因為(6)中2月只有28天,不可能有30日,所以是不可能事件。
注意:在判別事件是確定還是不確定,關鍵是根據一定的條件弄清它是一定會發生或一定不會發生,還是無法肯定它會不會發生。
例題2:醫院的護士給病人注射青霉素類藥水時,要先做皮試。但根據有關數據顯示,只有大約千分之一的人對青霉素過敏,但護士為什么每次都這樣做呢?這樣做是不是多此一舉?
分析與解:青霉素過敏的可能性只有千分之一,但它總是有可能發生的,我們不能確定每一個注射的病人都不會過敏,因此“青霉素過敏”這一事件是可能事件。為了每位病人的生命安全,一定要先做皮試,此種做法不是多此 一舉。
注意:“不太可能事件”雖然可能性很小,但它仍有可能發生。
例題3:一只螞蟻在如圖所示的一塊地板上爬行,這塊地板由黑白兩種不同顏色外其它完全相同的地磚鋪成,爬行一段時間后,螞蟻停在哪種顏色地磚上的可能性大,為什么?
分析與解:
因為白色的塊數是10,黑色的塊數是6,白色區域的面積大,所以螞蟻停在白顏色地磚上的可能性大。
注意:有關可能性問題,有時可通過比較各種區域所占面積的大小來確定。
例題4:袋中有4只紅球、2只白球、1只黃球,這些球除了顏色以外完全相同,小華認為袋中共有三種不同顏色的球,所以從袋中任意摸出一球,摸到紅球、 白球、黃球的可能性一樣大,小強認為三種球的數量不同,摸到紅球、白球、黃球的.可能性肯定也不同,你認為誰說的正確,并說明理由。
分析與解:
注意:此題中摸到各種顏色球的可能性大小只與該球的顏色有關,與該球的大小、形狀等其它因素無關。
三、課時
1、能舉例說明生活中的不確定事件,并能用“不可能”、“有可能”、“幾乎不可能” 等詞語描述它們發生的可能性大小。
2、了解事件發生的可能性是有大小的,并初步學會求不確定事件的可能性大小。
3、能養成獨立思考的習慣,學會與同伴充分交流的良好學習方式。
四、課外作業
數學七年級上冊教案4
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的.信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1、有以下數字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
數學七年級上冊教案5
第一課時
教學目的
讓學生通過獨立思考,積極探索,從而發現;初步體會數形結合思想的作用。
重點、難點
1.重點:通過分析圖形問題中的數量關系,建立方程解決問題。
2.難點:找出“等量關系”列出方程。
教學過程
一、復習提問
1.列一元一次方程解應用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據這個等量關系,確定如何設未知數。
(4)當長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發現了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積最大呢?并加以驗證。
實際上,如果兩個正數的和不變,當這兩個數相等時,它們的積最大,通過以后的學習,我們就會知道其中的道理。
三、鞏固練習
教科書第14頁練習1、2。
第l題等量關系是:圓柱的體積=長方體的體積。
第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。
四、小結
運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯系實際,積極探索,找出等量關系。
五、作業
教科書第16頁,習題6.3.1第1、2、3。
第二課時
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
三課時
教學目的
借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數。
教學過程
一、復習
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數量關系是什么?
路程=速度×時間 速度=路程 / 時間
二、新授
例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?
畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的`路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。
三、鞏固練習
教科書第17頁練習1、2。
四、小結
有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。
四、作業
教科書習題6.3.2,第1至5題。
第四課時
教學目的
1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。
2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全
部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:
1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現由甲獨做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1、本節課主要分析了工作問題中工作量、工作效率和工作時間之間的關系,即 工作量=工作效率×工作時間工作效率= 工作時間
2、解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業
教科書習題6.3.3第1、2題。
數學七年級上冊教案6
學習目標:
1.了解算術平方根的概念,會用根號表示數的算術平方根;
2. 會用平方運算求某些非負數的算術平方根;
3.能運用算術平方根解決一些簡單的.實際問題.
學習重點:
會用平方運算求某些非負數的算術平方根,能運用算術平方根解決一些簡單的實際問題.
學習難點:
區別平方根與算術平方根
掌握本章基本概念與運算,能用本章知識解決實際問題.
【知識與技能】
【過程與方法】
通過梳理本章知識點,挖掘知識點間的聯系,并應用于實際解題中.
【情感態度】
領悟分類討論思想,學會類比學習的方法.
【教學重點】
本章知識梳理及掌握基本知識點.
【教學難點】
應用本章知識解決實際與綜合問題.
一、知識框圖,整體把握
【教學說明】
1.通過構建框圖,幫助學生回憶本節所有基本概念和基本方法.
2.幫助學生找出知識間聯系,如平方與開平方,平方根與立方根,有理數與實數等等.
二、釋疑解惑,加深理解
1.利用平方根的概念解題
在利用平方根的概念解題時,主要涉及平方根的性質:正數有兩個平方根,且它們互為相反數;以及平方根的非負性:被開方數為非負數,算術平方根也為非負數.
例1已知某數的平方根是a+3及2a-12,求這個數.
分析:由題意可知,a+3與2a-12互為相反數,則它們的和為0.解:根據題意可得,a+3+2a-12=0.
解得a=3.
∴a+3=6,2a-12=-6.
∴這個數是36.
【教學說明】
負數沒有平方根,非負數才有平方根,它們互為相反數,而0是其中的一個特例.
2.比較實數的大小
除常用的法則比較實數大小外,有時要根據題目特點選擇特別方法.
數學七年級上冊教案7
總課時:1課時
一、教學目標:
(一)教學知識點
1.與身邊熟悉的 事物做比較 感受百萬分之一等較小的數據 并用科學記數法表示較小的數據.
2 .近似數和有效數字 并按要求取近似數.
3.從統計圖中獲取信息 并用統計圖形象地表示數據.
(二)能力訓練要求
1.體會描述較小 數據的方法 進一步發展數感.
2.了解近似數和有效數字的概念 能按要求取近似數 體會近似數的意義在生活中的作用.
3.能讀懂統計圖中的信息 并能收集、整理、描述和分析數據 有效、形象地用統計圖描述數據 發展統計觀念.
(三)情感與價值觀要求:
1.培養學生用數學的意識和信心 體會數學的應用價值. 2.發展學生的`創新能力和克服困難的勇氣.
二、教學重點:
1.感受較小的數據.
2.用科學記數法表示較小的數.
3.近似數和有效數字 并能按要求取近似數.
4.讀懂統計圖 并能形象、有效地用統計圖描述數據.
教學難點:形象、有效地用統計圖描述數據.
教學過程:.創設情景 引入新課
三.講授新課:
請你用熟悉的事物描述 一些較小的數據:大象是世界上最大的陸棲動物 它的體重可達幾噸。世界第一高峰——珠穆朗瑪峰 它的海拔高度約為8848米。
1.哪些數據用科學記數法表示比較方便?舉例說明.
2.用科學記數法表示下列各數:
(1)水由氫原子和氧原子組成 其中氫原子的直徑約為0.000 000 0001米.
(2)生物學家發現一種病毒的長度約為0.000043毫米;
(3)某種鯨的體重可達136 000 000千克;
(4)20xx年5月19日 國家郵政局特別發行“萬眾一心 抗擊‘非典’”郵票 收入全部捐給 衛生部門 用以支持抗擊“非典”斗爭 其郵票的發行量為12 500 000枚.
四.課時小結:我們這節課回顧了以下知識:
1.又一次經 歷感受 了百萬分之一 進一步體會描述較小數據的方法:與身邊事物比較 進一步學習了利 用科學記數法表示較小的數據.
2.在實際情景中進一步體會到了近似 數的意義和作用 并按要求取近似數和有效數字.
3.又一次欣賞了形象的統計圖 并從中獲取有用的信息.
(1)根據上表中的數據 制作統計圖表示這些主要河流的河長情況 你的統計圖要盡可能的形象.
(2)從上表中的數據可以看出 河流的河長與流域面積有什么樣的聯系?
(3)在中國地形圖上找出主要河流 你認為河流年徑流量與河流所處的地理位置有關系嗎?
制作形象的統計圖 首先要處理好數據 即從表格中計算出這幾條河流長度的比例 然后選擇最大或最小作為基準量 按比例形象畫出即可.
(1)形象統計圖(略)只要合理即可.
(2)從表中的數據看出 河流越長 其流域面積越大.
(3)河流的年徑流量與河流所處的位置有關系.
五.課后作業:試卷
數學七年級上冊教案8
教學目標
(一)通過復習一位數乘整百整十數不進位的口算,學生理解并掌握一位數乘兩位數進位乘法的口算方法,能正確地進行一位數乘兩位數的口算。
(二)通過學生自己動手擺一擺,學生參與到知識的形成過程中,掌握口算的方法,能夠比較熟練地進行口算。
教學重點和難點
重點:在理解的基礎上,掌握用一位數乘的口算過程。
難點:理解并掌握滿十向前一位進“1”的算理。
教學過程 設計
(一)復習準備
投影出示口算題:
(用紙板覆蓋,一題一題出示)
10×5
14×2
100×7
130×2
20×3
34×2
200×4
210×3
教師提問:14×2請你說一說口算過程。(學生回答10×2=20,4×2=8,20+8=28)
教師追問:那么你能不能說一說140×2又是怎樣口算的呢?(同座位的兩個小朋友互相說一說)然后請同學回答(把140看成14個十,先用10個十乘以2是20個十也就是200,4個十乘以2是8個十也就是80,200加上80等于280)
教師揭示課題:(板書:一位數乘兩位數、乘整百整十數)
(二)學習新課
出示例1:板書:口算14×3.
想一想 14×3的意義是什么?(3個14是多少)
根據14×3的意義,用小棒擺出來。
想口算的順序,先拿出表示10×3=30,3個十的小棒是30,再拿出表示4×3=12,3個4的小棒是12,合起來是42,30+12=42.
板書:14×3=42.
比較14×3與14×2兩道口算的異同:
(同桌或四人小組的`同學互相啟發進行討論)然后請同學回答:兩道題口算過程是一樣的。都是先乘以被乘數的十位上的數,再乘以個位上的數,只是14乘以3,個位上的數相乘,滿 了十,最后一步是整十加上兩位數。
做一做
投影出示:
16×2=
26×3=
25×2=
要求同學在練習本上直接寫出結果。再把這幾道題分別寫在小黑板上,請幾個同學直接寫在小黑板上。待同學寫完后集體訂正。
分別請同學說出口算過程。
16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.
26×3,25×2分別請同學互相說,集體說,個人說。反復敘述口算過程。
出示例2:板書:口算:140×3=
請同學想一想應該怎樣做,然后試做。(教師巡視,個別指導一下)做完后,小組同學互相說一說自己是怎樣做的。
集中起來說出不同的想法:
因為14×3=42,那么140×3只需在42后面添上一個0得420.
把140看成14個十,14個十乘3得42個十,即420.
3乘14得42,然后再在得數后面添上一個0.
以上這幾種算法,要給肯定,尤其第三種方法,給予表揚和鼓勵。
做一做
投影出示:
130×5=
380×2=
150×6=
每人在自己本上直接寫出結果。四人小組進行討論,能用幾種方法說出口算過程。
小結 今天我們學習了“一位數乘兩位數、乘整十整百數”,在學習這部分內容時,要注意個位上、十位上滿十向前一位進“1”。
(三)鞏固反饋
1、基本練習:(投影出示)
首先看完題后,想一想這里是什么意思,然后填在書上,填完后同桌兩個同學互相說一說。最后集體訂正。
2、填空練習:(投影出示)
明確題目要求后,在課本上填括號。
訂正時請同學說出口算過程,左面三道題,被乘數添一個0,再請同學說出結果,并說明口算過程。
3、找朋友游戲。
15×3
18×2
12×5
14×4
35×2
220×4
240×3
25×4
310×3
32×3
26×2
160×6
12×4
16×5
14×3
36×2
120×4
160×5
240×2
260×2
題目卡片貼在黑板上,(或在投影上一題一題出示)答案卡片發到同學手中,當題目出示后,答案就是它的朋友。
45
36
60
56
70
880
720
100
910
96
52
960
48
90
72
42
480
900
480
520
4、文字敘述題。
投影片出示,同學們在作業 本上做。四個同學寫在小黑板上,訂正時用。
(1)乘數是7,被乘數是12,積是多少?
12×7=84
(2)250的3倍是多少?
250×3=750
作業 :看書第1頁。
課堂教學設計說明
本節課教學內容口算“一位數乘兩位數、乘整百整十數”。首先適量并有針對性的練習一些用一位數乘的不進位的乘法口算題,為學習新知識做準備。
講授新課例1時,抓住滿十進一這一難點,以舊知識引出新知識,通過新舊知識的比較,突出新舊知識的連接點,通過學生自己動手、動腦、動口獲取知識,體現以學生為主體。使學生真正悟出新舊知識的內在聯系。
通過形式多樣的練習,達到能準確、迅速地口算的目的。
板書設計
數學七年級上冊教案9
一、教學目標
1、知識與技能
(1)初步了解立體圖形和平面圖形的概念、
(2)能從具體物體中抽象出長方體、正方體、球、圓錐、棱錐、棱柱等立體圖形;能舉出類似長方體、正方體、球、圓錐、棱錐、棱柱的物體實體、
2、過程與方法
(1)過程:在探索實物與立體圖形關系的活動過程中,對具體圖形進行概括,發展幾何直覺、
(2)方法:能從具體事物中抽象出幾何圖形,并用幾何圖形描述一些現實中的物體、
3、情感、態度、價值觀
(1)、形成主動探究的意識,豐富學生數學活動的成功體驗,激發學生對幾何圖形的好奇心,發展學生的審美情趣、
二、教學重點、難點:
教學重點:常見幾何體的識別
教學難點:從實物中抽象幾何圖形、
三、教學過程
1、創設情境,導入新課、
(1)同學們,不知你們有沒有仔細地觀察過我們生活的`周圍,如果你認真觀察的話,你會發現我們生活在一個多姿多彩的圖形世界里、引導學生觀察08年奧運村模型圖,你能從中找到一些你熟悉的圖形嗎?
(2)用幻燈片展示一些實物圖片并引導學生觀察、從城市宏偉的建筑到江南水鄉的小橋流水,從高科技產品到日常小玩意,從四通八達的立交橋到街頭巷尾的交通標志,從古老的剪紙藝術到現代的雕塑,從自然界形態各異的動物到北京的申奧標志……圖形的世界是豐富多彩的
2、直觀感知,識別圖形
(1)對于各種各樣的物體,數學中關注是它們的形狀、大小和位置、
(2)展示一個長方體教具,讓學生分別從整體和局部抽象出幾何圖形、觀察長方體教具的外形,從整體上看,它的形狀是長方體,看不同的側面,得到的是正方形或長方形,只看棱、頂點等局部,得到的是線段、點、
數學七年級上冊教案10
教學目標:
1、了解正數與負數是實際生活的需要。
2、會判斷一個數是正數還是負數。
3、會用正負數表示互為相反意義的量。
教學重點:
會判斷正數、負數,運用正負數表示具有相反意義的量,理解表示具有相反意義的量的意義。
教學難點:
負數的引入。
教與學互動設計:
(一)創設情境,導入新課
課件展示 珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況。
(二)合作交流,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7 ℃和零下5 ℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等。
想一想 以上都是一些具有相反意義的量,你能用小學算術中的數來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規定為負的,正的量用算術里學過的數表示,負的量用學過的數前面加上“—”(讀作負)號來表示(零除外)。
活動 每組同學之間相互合作交流,一同學說出有關相反意義的'兩個量,由其他同學用正負數表示。
討論 什么樣的數是負數?什么樣的數是正數?0是正數還是負數?自己列舉正數、負數。
總結 正數是大于0的數,負數是在正數前面加“—”號的數,0既不是正數,也不是負數,是正數與負數的分界點。
(三)應用遷移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負數表示。
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等。
【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02 g,記作+0.02 g,那么—00.3 g表示什么?
【例3】 某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正。例如,9:15記為—1,10:45記為1等等。依此類推,上午7:45應記為( )
A.3 B.—3 C.—2.5 D.—7.45
【點撥】讀懂題意是解決本題的關鍵。7:45與10:00相差135分鐘。
(四)總結反思,拓展升華
為了表示現實生活中具有相反意義的量引進了負數。正數就是我們過去學過(除零外)的數,在正數前加上“—”號就是負數,不能說“有正號的數是正數,有負號的數是負數”。另外,0既不是正數,也不是負數。
1、下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):
星期 日 一 二 三 四 五 六
(元) +16 +5.0 —1.2 —2.1 —0.9 +10 —2.6
(1)本周小張一共用掉了多少錢?存進了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
(3)如果不用正、負數的方法記賬,你還可以怎樣記賬?比較各種記賬的優劣。
2、數學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4。用“+”表示“站”,“—”(負號)表示“蹲”。
(1)由一個同學大聲喊:+1,—2,—3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:—1,—2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;
(2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲。
(五)課堂跟蹤反饋
夯實基礎
1、填空題:
(1)如果節約用水30噸記為+30噸,那么浪費20噸記為xxx噸。
(2)如果4年后記作+4年,那么8年前記作xxx年。
(3)如果運出貨物7噸記作—7噸,那么+100噸表示xxx。
(4)一年內,小亮體重增加了3 kg,記作+3 kg;小陽體重減少了2 kg,則小陽增加了xxx。
2、中午12時,水位低于標準水位0。5米,記作—0。5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0。5米。
(1)用正數或負數記錄下午1時和下午5時的水位;
(2)下午5時的水位比中午12時水位高多少?
提升能力
3、糧食每袋標準重量是50公斤,現測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49。8公斤。如果超重部分用正數表示,請用正數和負數記錄甲、乙、丙三袋糧食的超重數和不足數。
(六)課時小結
1、與以前相比,0的意義又多了哪些內容?
2、怎樣用正數和負數表示具有相反意義的量?(用正數表示其中具有一種意義的量,另一種量用負數表示)
數學七年級上冊教案11
教學目標
1.經歷觀察、分析、操作、欣賞以及抽象,歸納等過程,經歷探索圖形平移性質的過程以及與他人合作交流的過程,進一步發展空間觀念,增強審美意識。
2.通過實例認識平移,理解平移的含義,理解平移前后兩個圖形對應點連線平行且相等的性質.
重點、難點
重點:探索并理解平移的性質.
難點:對平移的認識和性質的探索.
教學過程
一、引入新課
1.教師打開幻燈機,投放課本圖5.4-1的圖案.
2.學生觀察這些圖案、思考并回答問題.
(1)它們有什么共同的特點?
(2)能否根據其中的一部分繪制出整個圖案?
3.師生交流.
(1)這引進美麗的圖案是由若干個相同的圖案組合而成的,圖5.4-1 上一排左邊的圖案(不考慮顏色)都有“基本圖形”;中間一個正方形,上、下有正立與倒立的正三角形,如圖(1);上排中間的圖案(不考慮顏色)都有“基本圖形”:正十二邊形, 四周對稱著4個等邊三角形,如圖(2);上排右邊的圖案(不考慮顏色)都有“基本圖形”;正六邊形,內接六角星,如圖(3);下排的左圖中的“基本圖形”是鴿子與橄欖枝; 下排右圖中的“基本圖形”是上、下一對面朝右與面朝左的人頭像組成的圖案.
《5.4平移》同步講義練習和同步練習
1在△ABC中,∠C=90°,AC=BC=5,現將△ABC沿著CB的方向平移到△A′B′C′的位置,若平移的`距離為2,則圖中的陰影部分的面積為 .
2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求陰影部分的面積為 cm2.
3、紿正五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數字是幾,就走幾個邊長,則稱這種走法為一次“移位”.如:小宇在編號為3的頂點上時,那么他應走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達編號為l的頂點;然后從1→2為第二次“移位”.若小宇從編號為2的頂點開始,第20xx次“移位”后,則他所處頂點的編號是 .
《5.4平移》同步測試卷含答案
1. 將圖形平移,下列結論錯誤的是( )
A.對應線段相等
B.對應角相等
C.對應點所連的線段互相平分
D.對應點所連的線段相等
解析: 根據平移的性質,將圖形平移,對應線段相等、對應角相等、對應點所連的線段相等,而對應點所連的線段不一定互相平分,故選C.
12. 國旗上的四個小五角星,通過怎樣的移動可以相互得到( )
A.軸對稱 B.平移 C.旋轉 D.平移和旋轉
解析: 國旗上的四個小五角星通過平移和旋轉可以相互得到.故選D.
數學七年級上冊教案12
【教學目標】
知識與技能:了解并掌握數據收集的基本方法。
過程與方法:在調查的過程中,要有認真的態度,積極參與。
情感、態度與價值觀:體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。
【教學重難點】
重點:掌握統計調查的基本方法。
難點:能根據實際情況合理地選擇調查方法。
【教學過程】
講授新課
像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的.使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數據呢?
學生小組討論、交流,學生代表回答。
師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?
(1)你班中的同學是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數量;
(3)某種玉米種子的發芽率;
(4)學校門口十字路口每天7:00~7:10時的車流量。
數學七年級上冊教案13
教學目的:
1.知識與技能
體會有理數乘法的實際意義;
掌握有理數乘法的運算法則和乘法法則,靈活地運用運算律簡化運算。
2.過程與方法
經歷有理數乘法的推導過程,用分類討論的思想歸納出兩數相乘的法則,感悟中、小學數學中的乘法運算的重要區別。
通過體驗有理數的乘法運算,感悟和歸納出進行乘法運算的一般步驟。
3.情感、態度與價值觀
通過類比和分類的思想歸納乘法法則,發展舉一反三的能力。
教學重點:
應用法則正確地進行有理數乘法運算。
教學難點:
兩負數相乘,積的符號為正。
教具準備:
多媒體。
教學過程:
一、引入
前面我們已經學習了有理數的加法運算和減法運算,今天,我們開始研究有理數的乘法運算.
問題一:有理數包括哪些數?
回答:有理數包括正整數、正分數、負整數、負分數和零.
問題二:小學已經學過的乘法運算,屬于有理數中哪些數的運算?
回答:屬于正有理數和零的乘法運算.或答:屬于正整數、正分數和零的乘法運算.
計算下列各題;
以上這些題,都是對正有理數與正有理數、正有理數與零、零與零的乘法,方法與小學學過的相同,今天我們要研究的有理數的乘法運算,重點就是要解決引入負有理數之后,怎樣進行乘法運算的問題.
二、新課
我們以蝸牛爬行距離為例,為區分方向,我們規定:向左為負,向右為正,為區分時間,我們規定:現在前為負,現在后為正。
如圖,一只蝸牛沿直線l爬行,它現在的位置恰在l上的點O。
1.正數與正數相乘
問題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為
(+2)×(+3)=+6
答:結果向東運動了6米.
2.負數與正數相乘
問題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為
(-2)×(+3)=(-6)
3.正數與負數相乘
問題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
講解:3分后蝸牛應為l上點O左邊6cm處,這可以表示為
(+2)×(-3)=-6
4.負數與負數相乘
問題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
講解:3分前蝸牛應為l上點O右邊6cm處,這可以表示為
(-2)×(-3)=+6
5.零與任何數相乘或任何數與零相乘
問題五:原地不動或運動了零次,結果是什么?
答:結果都是仍在原處,即結果都是零,若用式子表達:
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
綜合上述五個問題得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何數與零相乘都得零.
觀察上述(1)~(4)回答:
1.積的符號與因數的符號有什么關系?
2.積的絕對值與因數的絕對值有什么關系?
答:1.若兩個因數的符號相同,則積的符號為正;若兩個因數的符號相反,則積的符號為負.2.積的絕對值等于兩個因數的絕對值的積.
由此我們可以得到:
兩數相乘,同號得正,異號得負,并把絕對值相乘.
(1)~(5)包括了兩個有理數相乘的所有情況,綜合上述各種情況,得到有理數乘法的`法則:
口答:確定下列兩數積的符號:
例題:計算下列各題:
解題步驟:
1.認清題目類型.
2.根據法則確定積的符號.
3.絕對值相乘.
練習:
1.口答下列各題:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一個數與1相乘得原數,一個數與-1相乘,得原數的相反數.
2.在表中的各個小方格里,填寫所在的橫行的第一個數與所在直列的第一個數的積:
3.計算下列各題:
(1)(-36)×(-15);(2)-48×1.25;
4.填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____;-(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____;-1×|-5|=____;
-|-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____.
三、小結
(1)指導學生看書,精讀乘法法則.
(2)強調運用法則進行有理數乘法的步驟.
(3)比較有理數乘法的符號法則與有理數加法的符號法則的區別,以達到進一步鞏固有理數乘法法則的目的.
四、作業
1.計算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16).
2.計算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32).
3.計算:
4.填空:(用“>”或“<”號連接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)當a>0時,a____2a;
(4)當a<0時,a____2a.
板書設計
1.4有理數的乘法
法則:練習
教學設計思路
本節課是在小學已接觸到的乘法、初中剛學習過的有理數的加減法基礎上進行的。通過對實際問題的解決,引入有理數的乘法法則。在講解運動的例子時運用現代化教學手段,把圖形中的“靜”變“動”,增強了直觀性,初步培養想象能力。
教學反思
強調學生與教師一起共同參與教學活動,我們堅持把教學活動過程體現在教學中,又激發學生的思維積極性,讓學生學會分析問題和解決問題。
數學七年級上冊教案14
學習目標
1.掌握多項式、多項式的項及其次數,常數項的概念。
2.確定一個多項式的項、項數和次數。
3.由單項式與多項式歸納出整式概念。
4.在自主探索的學習過程中,引導學生觀察、歸納、理解多項式,并與單項式進行比較,運用化歸思想,讓學到的知識系統化。
重點:掌握整式及多項式的有關概念,掌握多項式的定義、多項式的項和次數,以及常數項等概念。
難點:多項式的次數。
學法指導
從實際問題引入多項式的項,項數和次數的概念,通過具體分析所列式子,歸納多項式,注意和單項式的概念進行比較,幫助學生理解。在掌握單項式和多項式相關概念的過程中,體會式子是解決問題和進行交流的重要工具之一,體會在實際問題情景中運用整式的意義,進一步發展學生數學符號感。
《2.1.3多項式》同步四維訓練含答案
新學期,兩摞規格相同準備發放的數學課本整齊地疊放在講臺上,請根據圖中所給出的數據信息,解答下列問題:
(1)請寫出整齊疊放在桌面上的x本數學課本最上面距離地面的高度(用含x的整式表示);
(2)桌面上有56本與題(1)中相同的數學課本整齊疊放成一摞,若從中取走14本,求余下的數學課本最上面距離地面的高度.
《2.1.2多項式》課時練習含答案
1.下列說法中正確的是( )
A.多項式ax2+bx+c是二次多項式
B.四次多項式是指多項式中各項均為四次單項式
C.-ab2,-x都是單項式,也都是整式
D.-4a2b,3ab,5是多項式-4a2b+3ab-5中的項
2.如果一個多項式是五次多項式,那么它任何一項的次數( )
A.都小于5 B.都等于5
C.都不小于5 D.都不大于5
3.一組按規律排列的多項式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10個式子是( )
A.a10+b19 B.a10-b19
C.a10-b17 D.a10-b21
4.若xn-2+x3+1是五次多項式,則n的值是( )
A.3 B.5 C.7 D.0
5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中單項式有,多項式有.(填序號)
6.一個關于a的二次三項式,二次項系數為2,常數項和一次項系數都是-3,則這個二次三項式為.
7.多項式的二次項系數是.
8.老師在課堂上說:“如果一個多項式是五次多項式……”老師的話還沒有說完,甲同學搶著說:“這個多項式最多只有六項.”乙同學說:“這個多項式只能有一項的'次數是5.”丙同學說:“這個多項式一定是五次六項式.”丁同學說:“這個多項式最少有兩項,并且最高次項的次數是5.”你認為甲、乙、丙、丁四位同學誰說得對,誰說得不對?你能說出他們說得對或不對的理由嗎?
9.如果多項式3xm-(n-1)x+1是關于x的二次二項式,試求m,n的值.
10.四人做傳數游戲,甲任取一個數傳給乙,乙把這個數加1傳給丙,丙再把所得的數平方后傳給丁,丁把所得的數減1報出答案,設甲任取的一個數為a.
(1)請把游戲最后丁所報出的答案用整式的形式描述出來;
(2)若甲取的數為19,則丁報出的答案是多少?
數學七年級上冊教案15
教學目標和要求:
1.理解單項式及單項式系數、次數的概念。
2.會準確迅速地確定一個單項式的系數和次數。
3.初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
4.通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力。
教學重點和難點:
重點:掌握單項式及單項式的系數、次數的概念,并會準確迅速地確定一個單項式的系數和次數。
難點:單項式概念的建立。
教學方法:
分層次教學,講授、練習相結合。
教學過程:
一、復習引入:
1、 列代數式
(1)若正方形的邊長為a,則正方形的面積是 ( )
(2)若三角形一邊長為a,并且這邊上的高為h,則這個三角形的面積為( )
(3)若x表示正方形棱長,則正方形的體積是( )
(4)若m表示一個有理數,則它的相反數是( )
(5)小明從每月的零花錢中貯存x元錢捐給希望工程,一年下來小明捐款 ( ) 元。
(數學教學要緊密聯系學生的生活實際,這是新課程標準所賦予的任務。讓學生列代數式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育。)
2、 請學生說出所列代數式的意義。
3、 請學生觀察所列代數式包含哪些運算,有何共同運算特征。
由小組討論后,經小組推薦人員回答,教師適當點撥。
(充分讓學生自己觀察、自己發現、自己描述,進行自主學習和合作交流,可極大的激發學生學習的積極性和主動性,滿足學生的表現欲和探究欲,使學生學得輕松愉快,充分體現課堂教學的開放性。)
二、講授新課:
1.單項式:
通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并板書歸納得出的單項式的概念,即由數與字母的乘積組成的代數式稱為單項式。然后教師補充,單獨一個數或一個字母也是單項式,如a,5。
2.練習:判斷下列各代數式哪些是單項式?
(1)abc; (2)b2; (3)-5ab2; (4)y; (5)-xy2; (6)-5。
(加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉入單項式的系數和次數的教學)
3.單項式系數和次數:
直接引導學生進一步觀察單項式結構,總結出單項式是由數字因數和字母因數兩部分組成的。以四個單項式a2h,2πr,abc,-m為例,讓學生說出它們的數字因數是什么,從而引入單項式系數的概念并板書,接著讓學生說出以上幾個單項式的字母因數是什么,各字母指數分別是多少,從而引入單項式次數的概念并板書。
概念:
單項式的系數:單項式中的數字因數。
單項式的次數:在單項式中,所有字母的指數之和。
4.例題:
例1:判斷下列各代數式是否是單項式。如不是,請說明理由;如是,請指出它的系數和次數。
①x+1; ② ; ③πr2; ④-ab。
答:①不是,因為原代數式中出現了加法運算;
②不是,因為原代數式是1與x的商;
③是,它的系數是π,次數是2;
④是,它的系數是-1,次數是3。
例2:下面各題的判斷是否正確?
①-7xy2的系數是7; ②-x2y3與x3沒有系數; ③-ab3c2的次數是0+3+2;
④-a3的系數是-1; ⑤-32x2y3的次數是7; ⑥πr2h的系數是。
通過其中的反例練習及例題,強調應注意以下幾點:
①圓周率π是常數;
②當一個單項式的系數是1或-1時,“1”通常省略不寫,如x2,-a2b等;
③單項式次數只與字母指數有關。
5.游戲:
規則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數和次數;然后交換,看兩小組哪一組回答得快而準。
(學生自行編題是一種創造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養同學之間的競爭意識。)
6.課堂練習:課本p56:1,2。
三、課堂小結:
①單項式及單項式的系數、次數。
②根據教學過程反饋的信息對出現的問題有針對性地進行小結。
③通過判斷一個單項式的系數、次數,培養學生理解運用新知識的能力,已達到本節課的教學目的。
四、作業布置:
課本p59:1,2。
2.1第2課時整式
教學內容
1、 多項式、整式的有關概念
2、正確區分單項式和多項式
教學目標
1、知識與技能
(1)學生理解多項式的概念。
(2)使學生能準確地確定一個多項式的次數和項數。
(3)能正確區分單項式和多項式。
2、過程與方法
通過區別單項式與多項式,培養學生發散思維。
3、情感、態度與價值觀
在本節教學中向學生滲透數學知識來源于生活,又為生活而服務的辯證思想。
教學重、難點
1.重點:多項式的概念及單項式的聯系與區別。
2.難點及關鍵:多項式的次數的確定,多項式中各項的符號問題,以及多項式與單項式的聯系與區別。
教學過程
一、創設情境,導入新課
師:上節課我們學習了單項式的'有關概念,同學們看下面一些問題。
1.下列代數式中,哪些是單項式?是單項式的請指出它的系數與次數。
, , ,2, , ,2.圓的半徑為 ,則半圓的面積為_____________,半圓的總長為_____________.
學生活動:回答上述兩個問題,可以進行搶答,看誰想的全面,回答的準確,教師對回答準確、速度快的給予表揚和鼓勵。
【教法說明】讓學生通過1題回顧有關單項式的一些知識點,再通過2題中半圓周長為 很自然地引出本節內容。
師:上述2題中,表示半圓面積的代數式是單項式嗎?為什么?表示半圓的周長的式子呢?
學生活動:同座進行討論,然后選代表回答。
師:誰能把1題中不是單項式的式子讀出來?(師做相應板書)
學生活動:小組討論, 、 , , 對于這些代數式的結構特點,由小組選代表說明,若不完整,其他同學可做補充。
二、探索新知
師:像以上這樣的式子叫多項式,這節課我們就研究多項式,上面幾個式子都是多項式。
學生活動:討論歸納什么叫多項式。可讓學生互相補充。
教師概括并板書
多項式:幾個單項式的和叫多項式。
師:強調每個單項式的符號問題,使學生引起注意。
練習:下列代數式 , , , , , , , , 中,是多項式的有:
___________________________________________________________.
學生活動:學生搶答以上問題,然后每個學生在練習本上寫出兩個多項式,同桌互相交換打分,有疑問的提出再討論。
【教法說明】通過觀察式子特點,討論歸納多項式的概念,體現了學生的主體作用和參與意識。多項式的概念是本節教學重點,為使學生對概念真正理解,讓學生每個人寫出兩個多項式,可及時反饋學生掌握知識中存在的問題,以便及時糾正。
師:提出問題,多項式 、 , , 各是由幾個單項式相加而得到的?每個單項式各指的是誰?各是幾次單項式?引導學生回答,教師根據學生回答,給予肯定、否定與糾正。
師:在 中,是兩個單項式相加得到,就叫做二項式,兩個單項式中, 次數是1, 次數是1,最高次數是一次,所以我們說這個多項式的次數是一次,整個式子叫做一次二項式。
學生活動:同桌討論, , , ,應怎樣稱謂,然后找學生回答。
師:給予歸納,并做適當板書:
學生活動:通過上例,學生討論多項式的項、次數,然后選代表回答。
根據學生回答,師歸納:
在多項式中,每個單項式叫多項式的項,是幾個單項式的和就叫做幾項式。每一項包含它的符號,如 這一項不是 .多項式里次數最高的項的次數,就叫做多項式次數,即最高次項是幾次,就叫做幾次多項式,不含字母的項叫做常數項。
【教法說明】通過學生對以上幾個多項式的感知,學生對多項式的特片已有了一定的了解,教師可逐步引導,讓學生自己總結歸納一些結論,以訓練學生的口頭表達能力和歸納能力。
師:提出問題:對于多項式 是幾次幾項式呢?多項式的項數,各單項式的次數以及各項字母的指數各是多少呢?
學生活動:討論 (學生應都能準確回答)
師歸納:各項字母的指數,發現多項式的排列是按照字母b的升冪來排列。指出多項式的表達必須按照某個字母的升冪或降冪來排列的。
則 還可以表示為 ,還有嗎?
學生活動:小組討論并展示各組的成果。
三、應用新知,解決問題
1、填表:
2、填空:
(1) 是___次___項式; 是___次____項式; 的常數項是___________.
(2) 是____次____項式,最高次數是_______,最高次項的系數是______,常數項是_______.
3、將下列多項式按照某個字母的升冪,降冪來排列。
學生活動:1題搶答,同桌同學給予肯定或否定,且肯定地說出依據,否定的再說出正確答案;2題學生觀察后,在練習本或投影膠片上完成,部分膠片打出投影,師生一起分析、討論,對所做答案給予肯定或更正。
【教法說明】在此組練習題中,1題目的是以填表的形式感知一個多項式就是單項式的和,多項式的項就是單項式;使學生能進一步了解多項式與單項式的關系,避免死記硬背概念,而不能準確應用于解題中的弊病。2題是在理解概念和完成1題單一問題的基礎上進行綜合訓練,使學生逐步學會使用數學語言。
歸納:單項式和多項式統稱為整式。
說明:教師邊小結邊板書出多項式、單項式,然后再提出它們統稱為整式,并做板書,使所學知識納入知識系統。
四、應用拓展
1、下列各代數式:0, , , , , , 中,單項式有__________,多項式有____________,整式有_____________.
學生活動:觀察后學生回答,互相補充、糾正,提醒學生不能遺漏
【教法說明】數學要領重在于應用,通過上題的訓練,可使學生很清楚地了解單項式、多項式的區別與聯系,它們與整式的關系。
2、單項式 , , 的和_________,它是____次_____項式。
3、 是_____次____項式, 是____次____項式,它的常數項_________.
4、 是_____次_____項式,最高次項是_______,最高次項的系數是_______,常數項是________.
5、 的2倍與 的平方的 的和,用代數式表示__________,它是__________(填單項式或多項式).
學生活動:每個學生先獨立在練習本上完成,然后小組互相交流補充,最后小組選出代表發言。
師:做肯定或否定,強調3題中最高次項的系數是 , 是一個數字,不是字母,因為它只能代表圓周率這一個數值,而一個字母是可以取不同的值的。
【教法說明】本組是在前面掌握了本節課基本知識后安排的一組訓練題,目的是使學生進一步理解多項式的次數與項數,特別是對 這個數字要有一個明確的認識。
6、自編題目練習:
每個學生寫出6個整式,并要求既有單項式,又有多項式,然后交給同桌的同學,完成以下任務,①先找出單項式、多項式,②是單項式的寫出系數與次數,是多項式的寫出是幾次幾項式,最高次數是什么?常數項是什么,然后再互相討論對方的解答是否正確。
【教學說明】自編題目的訓練,一是可活躍課堂氣氛,增強了學生的參與意識;二是可以培養學生的發散思維和逆向思維能力。
師:通過上面編題、解題練習,同學們對整式的概念有了清楚的理解,下面再按老師的要求編題,編一個四次三項式,看誰編的又快又準確,再編一個不高于三次的多項式。
學生活動:學生邊回答師邊板書,然后學生討論是否符合要求。
【教法說明】通過上面訓練,使學生進一步鞏固多項式項數、次數的概念,同時也可以培養學生逆向思維的能力。
五、歸納小結
學生歸納,教師點評
“多項式”的有關概念;在掌握多項式概念時,要注意它的項數和次數。前面我們還學習了單項式,掌握單項式時要注意它的系數和次數。
第二課時作業設計
1.判斷題
(1)-5不是多項式( )
(2) 是二次二項式( )
(3) 是二次三項式( )
(4) 是一次三項式( )
(5) 的最高次項系數是3( )
2.填空題
(1)把上列代數式分別填在相應的括號里
(2)如果代數式 是關于 的三次二項式則 , .
3、把下列各整式填入相應的圈里:
2m,xy3+1,2ab+6,ax2+bx+c,a,單項式 多項式
4、下列多項式分別有幾項?每項的系數和次數分別是多少?
5、多項式 是 次 項式,最高次項是 ,常數項是 ,按字母y的降冪排列為 。
6、下列運算中,錯誤的是( )。
A. B.
C. D.
7、 是 次 項式,其中最高次項的系數是 。多項式2x2-3x+1是 次 項式。
8、多項式1-x3+x2是 ( )
A.二次三項式 B.三次三項式 C.三次二項式 D.五次三項式
9、多項式x3-2x2y-xy2-1的最高次項是 ( )
A.x3 B.2x2y C.-xy2 D.x3,-2x2y,-xy2
10、52x2-x是 ( )
A.一次二項式 B.二次二項式
C.四次二項式 D.五次二項式
11、多項式3xy2-2x2y+x3y3中,按x的指數從大到小各項依次是 ,按y的指數從小到大各項依次是________
12、當a= ,b= 時, 是關于x、y的三次二項式
13、若x+y=3 ,則4-2x-2y = 。
14、一個關于字母x、y的多項式,除常數項外,其余各項的次數都是3,這個多項式最多有幾項?你能寫出符合要求的一個多項式嗎?
【數學七年級上冊教案】相關文章:
數學七年級上冊教案04-16
湘教版數學七年級上冊教案01-09
[優]數學七年級上冊教案06-13
七年級數學上冊教案01-11
七年級上冊數學教案12-16
七年級數學上冊教案[精選]06-16
七年級數學上冊教案06-13
七年級上冊數學教學教案06-01
數學新七年級上冊教案模板01-24
七年級上冊數學教案01-19