【推薦】七年級數學下冊教案
作為一名教師,常常需要準備教案,通過教案準備可以更好地根據具體情況對教學進程做適當的必要的調整。那么你有了解過教案嗎?下面是小編精心整理的七年級數學下冊教案,僅供參考,大家一起來看看吧。
七年級數學下冊教案1
教學目標:
1.知識與技能:通過摸球游戲,了解并掌握計算一類事件發生可能性的方法,體會概率的意義。
2.過程與方法:通過本節課的學習,幫助學生更容易地感受到數學與現實生活的聯系,體驗到數學在解決實際問題中的作用,培養學生實事求是的態度及合作交流的能力。
3.情感與態度:通過環環相扣的、層層深入的問題設置,鼓勵學生積極參與,培養學生自主、合作、探究的能力,培養學生學習數學的興趣。
教學重點:
1.概率的定義及簡單的列舉法計算。
2.應用概率知識解決問題。
教學難點:靈活應用概率的計算方法解決各種類型的實際問題。
教學過程:
一、復習舊知
1、下面事件:①在標準大氣壓下,水加熱到100℃時會沸騰。②擲一枚硬幣,出現反面。③三角形內角和是360°;④螞蟻搬家,天會下雨,
不可能事件的有 ,必然事件有 ,不確定事件有 。
2、任何兩個偶數之和是偶數是 事件;任何兩個奇數之和是奇數是 事件;
3、歡歡和瑩瑩進行“剪刀、石頭、布”游戲,約定“三局兩勝”決定誰最終獲勝,那么歡歡獲勝的可能性 。
4、足球比賽前裁判通過拋硬幣讓雙方的隊長猜正反來選場地,只拋了一次,而雙方的隊長卻都沒有異議,為什么?
5、一個均勻的骰子,拋擲一次,它落地時向上的數可能有幾種不同的結果?每一種結果的概率分別為多少?
求一個隨機事件概率的基本方法是通過大量的重復試驗,那么能不能不進行大量的重復試驗,只通過一次試驗中可能出現的結果求出隨機事件的概率,這就是我們今天要探究學習的“等可能事件的概率”。
二、情境導入
1、任意擲一枚均勻的硬幣,可能出現哪些結果?每種結果出現的可能性相同嗎?正面朝上的概率是多少?
2、這個袋子中有5個乒乓球,分別標有1,2,3,4,5這5個號碼,這些球除號碼外都相同,攪勻后任意摸出一個球,拿出來后再將球放回袋子中。
。1)會出現哪些可能的結果?
。2)每種結果出現的可能性相同嗎?它們的概率分別是多少?你是怎么得到概率的值?
學生分組討論,教師引導
三、探究新知
1、請大家觀察前面的拋硬幣、擲骰子和摸球游戲,它們有什么共同的特點?
學生分組討論,教師引導:
(1)一次試驗可能出現的結果是有限的;
。2)每種結果出現的可能性相同。
設一個實驗的所有可能結果有n種,每次試驗有且只有其中的一種結果出現。如果每種結果出現的可能性相同,那么我們就稱這個試驗的結果是等可能的。
2、探究等可能性事件的概率
。1)拋擲一個均勻的骰子一次,它落地時向上的數是偶數的概率是多少呢?
。2)不透明的.一個袋子中裝有大小相同的三個球,一個黃色和已編有1.2.3號碼的3個白球,從中摸出2個球,一共有多少種不同的結果?摸出2個白球有多少種不同結果?摸出2個白球的概率是多少?
學生先獨立思考,然后同桌間討論,教師巡視指導
一般地,如果一個試驗有n種等可能的結果,事件A包含其中的種結果,那么事件A發生的概率為:
P(A)=/n
必然事件發生的概率為1,記做P(必然事件)=1;不可能事件的發生的概率為0,記做P(不可能事件)=0;如果A為不確定事件,那么0<P(A)<1
3、應用新知
例:任意擲一枚均勻骰子。
1.擲出的點數大于4的概率是多少?
2.擲出的點數是偶數的概率是多少?
解:任意擲一枚均勻骰子,所有可能的結果有6種:擲出的點數分別是1,2,3,4,5,6,因為骰子是均勻的,所以每種結果出現的可能性相等。
1.擲出的點數大于4的結果只有2兩種:擲出的點數分別是5,6.
所以P(擲出的點數大于4)=2/6=1/3
2.擲出的點數是偶數的結果有3種:擲出的點數分別是2,4,6.
所以P(擲出的點數是偶數)=3/6=1/2
四、實踐練習
1、袋子里裝有三個紅球和一個白球,它們除顏色外完全相同。小麗從盒中任意摸出一球。請問摸出紅球的概率是多少?
2、先后拋擲2枚均勻的硬幣
(1)一共可能出現多少種不同的結果?
。2)出現“1枚正面、1面反面”的結果有多少種?
。3)出現“1枚正面、1面反面”的概率有多少種?
。4)出現“1枚正面、1面反面”的概率是1/3,對嗎?
3、將一個均勻的骰子先后拋擲2次,計算:
。1)一共有多少種不同的結果?
(2)其中向上的數之和分別是5的結果有多少種?
。3)向上的數之和分別是5的概率是多少?
(4)向上的數之和為6和7的概率是多少?
五、課堂檢測
1、甲、乙、丙三個人隨意的站一排拍照,乙恰好站中間的概率是( )
A 2/9 B 1/3 C 4/9 D以上都不對
2、在一次抽獎中,若抽中的概率是0.34,則抽不中的概率是( )
A 0.34 B 0.17 C 0.66 D 0.76
3、把標有1、2、3、4…10的10個乒乓球放在一個箱中,搖勻后,從中任取一個,號碼小于7的奇數概率是( )
A 3/10 B 7/10 C 2/5 D 3/5
4、某商場舉辦有獎銷售活動辦法如下:凡購滿100元得獎券一張,多購多得,現有10000張獎券,設特等獎1個,一等獎10個,二等獎100個,則一張獎券中一等獎的概率是
5、一個袋中裝有3個紅球,2個白球和4個黃球,每個球除顏色外都相同。從中任意摸出一球,則: P(摸到紅球)=
P(摸到白球)=
P(摸到黃球)=
6、一個袋中有3個紅球和5個白球,每個球除顏色外都相同。從中任意摸出一球,摸到紅球和摸到白球的概率相等嗎?分別是多少?如果不相等,能否通過改變袋中紅球或白球的數量,使摸到的紅球和白球的概率相等?
六、課堂小結
回想一下這節課的學習內容,同學們自己的收獲是什么?
1、等可能性事件的特征:
(1)一次試驗中有可能出現的結果是有限的。(有限性)
(2)每種結果出現的可能性相等。(等可能性)
2、求等可能性事件概率的步驟:
。1)審清題意,判斷本試驗是否為等可能性事件。
。2)計算所有基本事件的總結果數n。
。3)計算事件A所包含的結果數。
。4)計算P(A)=/n。
布置作業:
1、P148習題6.4知識技能 1.2.3
2、問題解決:請大家為“翠苑小區”親子活動設計一個有獎競猜活動方案。
板書設計
等可能事件的概率(1)
等可能事件的特征:
1、 一次試驗可能出現的結果是有限的;
2、 每一結果出現的可能性相等。
一般地,如果一個試驗有n種等可能的結果,事件A包含其中的種結果,那么事件A發生的概率為:
七年級數學下冊教案2
認識三角形教學目標:
1.知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系。
2.過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力。
3.情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生興趣。
教學重點難點:
1.重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題。
2.難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題。
教學設計:
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、題目應用、課堂小結、探究拓展思考、布置作業。
第一環節回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片。
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中。培養學生善于觀察生活、樂于探索研究的品質,從而更大地激發學生數學的興趣
第三環節三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形。
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的概念、三角形的表示方法及三角形的'邊角的表示方法。并出兩道題,從題目中歸納出三角形的三要素和注意事項。
第四環節探索三角形三邊關系第一部分探索三角形的任意兩邊之和大于第三邊
活動內容:在四根長度分別是8cm、10cm、15cm、20cm的小木棒中選三根木棒擺三角形。學生統計能否擺成三角形的情況。
第二部分探索三角形的任意兩邊之差小于第三邊
活動內容:通過讓學生測量任意三角形三邊長度來比較兩邊之差與第三邊的關系,教師通過幾何畫板驗證,從而得出結論。
第五環節題目提高
活動內容:
1.有兩根長度分別為5厘米和8厘米的木棒,用長度為2厘米的木棒與它們能擺成三角形嗎?為什么?長度為13厘米的木棒呢?
2.如果三角形的兩邊長分別是2和4,且第三邊是奇數,那么第三邊長為.若第三邊為偶數,那么三角形的周長.
3.有兩根長度分別為5cm和8cm的木棒,用長度為2cm的木棒與它們能擺成三角形嗎?為什么?長度為13cm的木棒呢?動手擺一擺。學生回答完上面問題后想一想能取一根木棒與原來的兩根木棒擺成三角形嗎?
第六環節課堂小結
活動內容:學生自我談收獲體會,說說學完本節課的困惑。教師做最終總結并指出注意事項。
學生對本節內容歸納為以下兩點:
1.了解了三角形的概念及表示方法;
2.三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊。
注意事項為:判斷a,b,c三條線段能否組成一個三角形,應注意:a+b>c,a+c>b,b+c>a三個條件缺一不可。當a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊。
第七環節探究拓展思考
1.若三角形的周長為17,且三邊長都有是整數,那么滿足條件的三角形有多少個?你可以先固定一邊的長,用列表法探求。
2.在例1中,你能取一根木棒,與原來的兩根木棒擺成三角形嗎?
3.以三根長度相同的火柴為邊,可以組成一個三角形,現在給你六根火柴,如果以每根火柴為邊來組成三角形,最多可組成多少個三角形?試試看。
第八環節作業布置
七年級數學下冊教案3
【知識與技能】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示,能用科學計算器求平方根及其近似值。
【過程與方法】通過練習,進一步熟悉開平方的運算過程,能熟練的進行開平方的運算過程。
【情感、態度與價值觀】體會平方與開平方這一對互逆運算的辯證關系,感受平方根在現實世界中的客觀存在,增強數學知識的應用意識。
【教學重點】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示。
【教學難點】能熟練的進行開平方運算,并熟悉各種不同形式的開平方運算,為后續學習打下基礎。
【教具準備】小黑板 科學計算器
【教學過程】
一、復習導入
1、小剛家廚房的面積為10平方米的正方形,它的邊長是多少米?邊長的.近似值是多少?(用四舍五入的方法取到小數點后面第二位)(,)
2、用計算器分別求,得近似值。(用四舍五入的方法取到小數點后面第三位)
3、0.36的平方根是( )
4、(-5)2的算術平方根是( )
二、練習內容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若x=6,則=( )
5、若=0,則x=( ) 6、當x( )時,有意義。
(二)選擇
1、下列各數中沒有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4x2-49=0; 3、(25/81)x2=1;
4、求8+(-1/6)2的算術平方根;
5、求b2-2b+1的算術平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小數點后面第三位)
8、肖明家裝修用了大小相同的正方形瓷磚共66塊,鋪成了10.56平方米的房間,肖明想知道每塊瓷磚的規格,請你幫助算一算。
三、小結與鞏固
七年級數學下冊教案4
復習鞏固解下列不等式:
、5x+54<x-1②2(1一3x)3x+20
、2(一3+x)<3(x+2)
、(x+5)3(x-5)-6
先讓學生板演、練習,然后師生共同點評、訂正,指出解題中應注意的地方,復習一元一次不等式的解法.讓學生在解題過程中有目的地思考,既可鞏固已學內容,又為下面的新課做好鋪墊。
提出問題20xx年北京空氣質量良好(二級以上)的天數與全年天數之比達到55%.若到20xx年這樣的比值要超過70%,那么,20xx年北京空氣質量良好(二級以上)的天數至少要增加多少天?選擇學生感興趣的問題,可以激發學習熱情,此題既承上啟下,又能增強學生的應用意識。
解決問題1、20xx年北京空氣質量良好的天數是多少?
2、用x表示20xx年增加的空氣質量良好的.天數,則20xx年北京空氣質量良好的天數是多少?
3、20xx年共有多少天?與x有關的哪個式子的值應超過70%?這個式子表示什么?
4、怎樣解不等式在學生討論后,教師做解題過程示范.
5、比較解這個不等式與解方程的步驟,兩者有什么不同嗎?
在學生充分討論的基礎上,師生共同歸納得出:
解一元一次不等式與解一元一次方程類似,只是不等式兩邊同乘以(或除以)一個數時,要注意不等號的方向.解一元一次方程,要根據等式的性質,將方程逐步化為x-a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為xa或xa)的形式.一連串的問題引發學生陣陣思考。
展示整個解題過程,有利于學生發現解一元一次不等式與
解一元一次方程的關系,初步感知實際問題對不等式解集的影響.
讓學生自己討論總結,即可滲透類比思想,又能掌握注意點.
鞏固新知1、解下列不等式,并在數軸上表示解集:
。1)(2)2、.當x或y滿足什么條件時,下列關系成立?
。1)2(x+1)大于或等于1;
。2)4x與7的和不小于6;
(3)y與1的差不大于2y與3的差;
。4)3y與7的和的小于-2.學會舉一反三,鞏固已學知識。a)的形式.一連串的問題引發學生陣陣思考。展示整個解題過程,有利于學生發現解一元一次不等式與解一元一次方程的關系,初步感知實際問題對不等式解集的影響.讓學生自己討論總結,即可滲透類比思想,又能掌握注意點.鞏固新知1、解下列不等式,并在數軸上表示解集:(1)(2)2、.當x或y滿足什么條件時,下列關系成立?(1)2(x+1)大于或等于1;(2)4x與7的和不小于6;(3)y與1的差不大于2y與3的差;(4)3y與7的和的小于-2.學會舉一反三,鞏固已學知識
七年級數學下冊教案5
認識三角形教學目標:
1.知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系.
2.過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力.
3.情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生的學習興趣.
教學重點難點:
1.重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題.
2.難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題.
教學設計:
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業.
第一環節 回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節 情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片.
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中.培養學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發學生學習數學的興趣
第三環節 三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形.
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的概念、三角形的表示方法及三角形的邊角的表示方法.并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項.
第四環節 探索三角形三邊關系第一部分 探索三角形的任意兩邊之和大于第三邊
活動內容:在四根長度分別是8cm、10cm、15cm、20cm的小木棒中選三根木棒擺三角形.學生統計能否擺成三角形的情況.
第二部分 探索三角形的任意兩邊之差小于第三邊
活動內容:通過讓學生測量任意三角形三邊長度來比較兩邊之差與第三邊的關系,教師通過幾何畫板驗證,從而得出結論.
第五環節 練習提高
活動內容:
1.有兩根長度分別為5厘米和8厘米的木棒,用長度為2厘米的`木棒與它們能擺成三角形嗎?為什么?長度為13厘米的木棒呢?
2.如果三角形的兩邊長分別是2和4,且第三邊是奇數,那么第三邊長為 .若第三邊為偶數,那么三角形的周長 .
3.有兩根長度分別為5cm和8cm的木棒,用長度為2cm的木棒與它們能擺成三角形嗎?為什么?長度為13cm的木棒呢?動手擺一擺.學生回答完上面問題后想一想能取一根木棒與原來的兩根木棒擺成三角形嗎?
第六環節 課堂小結
活動內容:學生自我談收獲體會,說說學完本節課的困惑.教師做最終總結并指出注意事項.
學生對本節內容歸納為以下兩點:
1.了解了三角形的概念及表示方法;
2.三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊.
注意事項為:判斷a,b,c三條線段能否組成一個三角形,應注意:a+b>c,a+c>b,b+c>a三個條件缺一不可.當a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊.
第七環節 探究拓展思考
1.若三角形的周長為17,且三邊長都有是整數,那么滿足條件的三角形有多少個?你可以先固定一邊的長,用列表法探求.
2.在例1中,你能取一根木棒,與原來的兩根木棒擺成三角形嗎?
3.以三根長度相同的火柴為邊,可以組成一個三角形,現在給你六根火柴,如果以每根火柴為邊來組成三角形,最多可組成多少個三角形?試試看.
第八環節 作業布置
七年級數學下冊教案6
一、教學目標
1、知識目標:掌握數軸三要素,會畫數軸。
2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;
3、情感目標:向學生滲透數形結合的思想。
二、教學重難點
教學重點:數軸的三要素和用數軸上的點表示有理數。
教學難點:有理數與數軸上點的對應關系。
三、教法
主要采用啟發式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
。ㄒ唬﹦撛O情境激活思維
1。學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發學生自豪感。
2。聯系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1。馬路用什么幾何圖形代表?(直線)
2。文中相關地點用什么代表?(直線上的點)
3。學校大門起什么作用?(基準點、參照物)
4。你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1。0代表什么?
2。數的符號的實際意義是什么?
3。—75表示什么?100表示什么?
設計意圖:繼續以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。
。ǘ┳灾鲗W習探究新知
學生活動:帶著以下問題自學課本第8頁:
1。什么樣的直線叫數軸?它具備什么條件。
2。如何畫數軸?
3。根據上述實例的經驗,“原點”起什么作用?
4。你是怎么理解“選取適當的長度為單位長度”的`?
師生活動:
學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。
設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。
至此,學生已會畫數軸,師生共同歸納總結(板書)
①數軸的定義。
②數軸三要素。
練習:(媒體展示)
1。判斷下列圖形是否是數軸。
2。口答:數軸上各點表示的數。
3。在數軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。
。ㄈ┬〗M合作交流展示
問題:觀察數軸上的點,你有什么發現?
數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和—a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養學生的抽象概括能力。
。ㄋ模w納總結反思提高
師生共同回顧本節課所學主要內容,回答以下問題:
1。什么是數軸?
2。數軸的“三要素”各指什么?
3。數軸的畫法。
設計意圖:梳理本節課內容,掌握本節課的核心――數軸“三要素”。
。ㄎ澹┠繕藱z測設計
1。下列命題正確的是()
A。數軸上的點都表示整數。
B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C。數軸包括原點與正方向兩個要素。
D。數軸上的點只能表示正數和零。
2。畫數軸,在數軸上標出—5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。
3。畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有_______個。4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。
五、板書
1。數軸的定義。
2。數軸的三要素(圖)。
3。數軸的畫法。
4。性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1。什么樣的直線叫數軸?
定義:規定了_________、________、_________的直線叫數軸。
數軸的三要素:_________、_________、__________。
2。畫數軸的步驟是什么?
3。“原點”起什么作用?__________
4。你是怎么理解“選取適當的長度為單位長度”的?
練習:
1。畫一條數軸
2。在你畫好的數軸上表示下列有理數:1。5,—2,—2。5,2,2。5,0,—1。5
活動三:議一議
小組討論:觀察你所畫的數軸上的點,你有什么發現?
歸納:一般地,設a是一個正數,則數軸上表示數a在原點的____邊,與原點的距離是____個單位長度;表示數—a的點在原點的____邊,與原點的距離是____個單位長度。
練習:
1。數軸上表示—3的點在原點的_______側,距原點的距離是______;表示6的點在原點的______側,距原點的距離是______;兩點之間的距離為_______個單位長度。
2。距離原點距離為5個單位的點表示的數是________。
3。在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點B,則點B表示的數是________。
附:目標檢測
1。下列命題正確的是()
A。數軸上的點都表示整數。
B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C。數軸包括原點與正方向兩個要素。
D。數軸上的點只能表示正數和零。
2。畫數軸,在數軸上標出—5和+5之間的所有整數。列舉到原點的距離小于3的所有整數。
3。畫數軸,觀察數軸,在原點左邊的點有_______個。
4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。
七年級數學下冊教案7
教學目的
1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。
2.使學生會列一元一次方程解決一些簡單的應用題。
3.會判斷一個數是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應用題。
2.難點:弄清題意,找出“相等關系”。
教學過程
一、復習提問
小學里已經學過列方程解簡單的應用題,讓我們回顧一下,如何列方程解應用題?
例如:一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設小紅能買到工本筆記本,那么根據題意,得
1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授:
我們再來看下面一個例子:
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的.客車多少輛?
問:你能解決這個問題嗎?有哪些方法?
(讓學生思考后,回答,教師再作講評)
算術法:(328-64)&pide;44=264&pide;44=6(輛)
列方程解應用題:
設需要租用x輛客車,那么這些客車共可乘44x人,加上乘坐校車的64人,就是全體師生328人,可得。
44x+64=328 (1)
解這個方程,就能得到所求的結果。
問:你會解這個方程嗎?試試看?
(學生可能利用逆運算求解,教師加以肯定,同時指出本章里我們將要學習解方程的另一種方法。)
問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
小敏同學很快說出了答案!叭辍。他是這樣算的:
1年后,老師46歲,同學們的年齡是14歲,不是老師的三分之一。
2年后,老師47歲,同學們的年齡是15歲,也不是老師的三分之一。
3年后,老師48歲,同學們的年齡是16歲,恰好是老師的三分之一。
你能否用方程的方法來解呢?
通過分析,列出方程:13+x=(45+x) (2)
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數能使兩邊的值相等,這個數就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
七年級數學下冊教案8
七年級數學教案
1.2 一元一次不等式組的解法
2.2二元一次方程組的解法
2.3二元一次方程組的應用(1)
第10教案
教學目標
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的'辯證思想。
教學重點
1.列二元一次方程組解簡單問題。
2.徹底理解題意
教學難點
找等量關系列二元一次方程組。
教學過程
一、情境引入。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元;丶衣飞希麄冇錾狭撕门笥研≤姡≤妴柼O果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學們,小軍能猜出來嗎?
二、建立模型。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
三、練習。
1.根據問題建立二元一次方程組。
。1)甲、乙兩數和是40差是6,求這兩數。
。2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
。3)已知關于求x、的方程,
是二元一次方程。求a、b的值。
2.P38練習第1題。
四、小結。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
五、作業。
P42。習題2.3A組第1題。
后記:
2.3二元一次方程組的應用(2)
第11教案
教學目標
1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。
2.提高分析問題、解決問題的能力。
3.體會數學的應用價值。
教學重點
根據實際問題列二元一次方程組。
教學難點
1.找實際問題中的相等關系。
2.徹底理解題意。
教學過程
一、引入。
本節課我們繼續學習用二元一次方程組解決簡單實際問題。
二、新課。
例1. 小琴去縣城,要經過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?
探究: 1. 你能畫線段表示本題的數量關系嗎?
2.填空:(用含S、V的代數式表示)
設小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米。
3.列方程組。
4.解方程組。
5.檢驗寫出答案。
討論:本題是否還有其它解法?
三、練習。
1.建立方程模型。
。1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度。
。2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2.P38練習第2題。
3.小組合作編應用題:兩個寫一方程組,另兩人根據方程組編應用題。
四、小結。
本節課你有何收獲?
五、作業。
七年級數學下冊教案9
教學建議
1.知識結構
2.重點和難點分析
。1)本節的重點是會用兩直線垂直的定義判定兩條直線垂直和點到直線的距離的概念.兩直線垂直的定義中雖然強調“有一個角是直角”,但實際上由對頂角和鄰補角的性質,可以得到其他三個角也都是直角,因此不指定哪一個角是直角,實際上無論哪一個角是直角,都可以判定兩直線垂直.反過來,已知兩直線垂直,那么它們的四個交角中無論哪一個角都是直角.對于點到直線的距離,一定要給學生強調距離是垂線段的長度,是一個數量,而不能誤認為是垂線段本身.
。2)本節的難點是空間直線與平面、平面與平面的垂直關系.因為初一學生的空間想象能力比較差,想象不出什么情況下直線與平面、平面與平面垂直.教科書是學生在對長方體已有認識的基礎上,通過進一步的觀察分析,得出結論,對于這些結論,只要求學生有感性認識,不要求學生掌握,所以老師不要深挖.
3.教法建議
。1)本節仍用上節用過的相交線模型作演示(也可用我們提供的課件),在讓學生觀察模型時,不要只讓學生看熱鬧,而要讓他們帶著問題去看,可以提出如下兩個問題:
。1)轉動木條b時,它和不動木條a互相垂直的位置有幾個?(認識垂線的唯一性);
。2)當a、b相交有一個角是直角時,其他三個角也都是直角嗎?然后找學生回答,以此來增加學生對兩直線垂直的感性認識.
。3)對于空間里直線與平面、平面與平面垂直的知識是要求學生了解的內容,不是重點但是難點,因為此時學生的空間想象力差,不容易想象它們垂直的情形,為了突破這個難點,
我們做了一個課件,這個課件把直線與平面、平面與平面垂直的情況,更直觀的展現了學生,幫助學生對此知識的理解.
教學設計示例
一、素質教育目標
。ㄒ唬┲R教學點
1.使學生掌握垂線的概念。
2.會用三角尺或量角器過一點畫一條直線的垂線。
3.使學生理解并掌握垂線的第一個性質。
。ǘ┠芰τ柧汓c
1.通過對垂線定義做正、反兩方面的推理,培養學生的邏輯推理能力。
2.通過垂線的畫法,進一步培養學生的實際動手操作能力。
。ㄈ┑掠凉B透點
使學生初步樹立辯證唯物主義觀點。
(四)通過垂線,使學生進一步體會到幾何圖形的對稱美。
二、學法引導
1.教師教法:活動投影片演示直觀教學法,引導發現法.
2.學生學法:在教師的指導下,自主式學習.
三、重點、疑點及解決辦法
。ㄒ唬┲攸c
垂線概念和性質.
。ǘ╇y點
垂線的判斷和性質的理解運用.
(三)疑點
垂線的性質.
。ㄋ模┙鉀Q辦法
通過創設情境,引導學生主動發現性質,并運用練習加以鞏固.
四、課時安排
1課時
五、教具學具準備
投影儀、三角尺、量角器、自制膠片.
六、師生互動活動設計
1.通過創設情境,復習基礎知識,引入課題.
2.通過教師引導提問,學生思考、互相敘述和糾正,教師點撥,練習鞏固新課.
3.通過師生互答完成歸納小結.
七、教學步驟
(一)明明目標
通過畫垂線,使學生既能理解并掌握垂線的概念和第一個性質,又能提高學生的動手操作能力.
(二)整體感知
以情境引入課題,以引導學生討論思考、動手操作和教師點撥相結合完成教學任務,以練習檢測為鞏固檢查手段,強化教學內容.
。ㄈ┙虒W過程
創設情境,復習引入
提出問題:如右圖,(1)∠AOC的對頂角是哪個角?這兩個角的`關系怎樣?
。2)∠AOC的鄰補角有幾個?是哪幾個角?
教師演示:(活動投影片)轉動直線CD的同時,用量角器量直線AB、CD相交所得的角,多變換幾種位置一直轉到使直線CD與AB所成的角有一個角∠AOC=90°(如右圖).
學生活動:當∠AOC=90°,口答∠BOD、∠AOD、∠BOC等于多少度?為什么?這種位置關系有幾種?直線AB、CD的位置關系怎樣?學生回答完后,引入課題.
【板書】2.2垂線
【教法說明】因為對頂角、鄰補角及對頂角的性質,是建立垂直概念的基礎之上,所以在講新課前要復習鞏固這些內容.
探究新知,講授新課
提出問題:什么樣的兩條直線互相垂直?
學生活動:學生思考上面的問題,同桌相互敘述,互相糾正補充,語句通順后舉手回答.
教師根據學生回答情況,適當加以引導點撥,然后板書:
【板書】 1.垂直定義
當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的里線,它們的支點叫做垂足.
提出以下問題幫助學生理解定義(投影顯示,投影片1)
。1)“有一個角是直角”是指四個角中的哪一個角?
(2)“互相垂直”是什么意思?
。3)相交的兩條直線都垂直嗎?
【教法說明】用活動投影片演示“兩條直線互相垂直”這個概念的產生過程,使學生形成對概念的感性認識再回過頭來進行定義,并且從演示過程中看到垂直是兩條直線相交的一種特殊情況,認識了事物間的發展變化的辯證關系,提出問題幫助學生理解概念,比教師單純“強調”效果更好.
學生活動:讓學生舉出日常生活和生產中常見的垂直關系的實例.(十字路口的兩條道路;方格本的橫線和豎線;鉛垂線和水平線.)
【教法說明】通過舉例,啟發學生廣泛聯想,一方面讓學生知道兩直線垂直的概念是從實物中抽象出來的;另一方面使理論與實際相聯系.
2.垂直的記法、讀法和判定
學生活動:讓學生自己嘗試學習,閱讀課本第60頁的內容,然后師生間相互交流.
歸納:①直線垂直的記法讀法:直線AB、CD互相垂直,記作“AB⊥CD”域“CD⊥AB”,讀作“AB垂直于CD”,如果垂足為O,記作“AB⊥CD,垂足為O”(如圖右上).
、诖怪迸卸ǎ骸摺螦OC=90°,
∴AB⊥CD(垂直的定義).
∵AB⊥CD(已知),
∴∠AOC=90°(垂直的定義).
學生活動:用∠AOD、∠BOD或∠BOC讓學生重復練習正、反兩步推理.
【教法說明】讓學生自己嘗試學習,可充分發揮學生的積極性、主動性,對垂直定義做正、反兩方面的推理可加深學生對定義的理解,一方面為了滲透符號推理格式,熟悉符號的使用;另一方面可加深學生對定義的理解,定義既可以作判定用,又可以當性質用.
3.垂線的畫法及性質
學生活動:讓學生用三角板或量角器,過直線上一點或者直線外一點畫直線的垂線,回答過直線上(直線外)一點能不能畫這條直線的垂線?能畫幾條?(請一個學生到黑板上去畫)
通過畫圖,得垂線的第一條性質:過一點有且只有一條直線與已知直線垂直.
提出問題:
。1)“過一點”包括幾種情況?
(2)“有且只有”是什么意思?(“有”表示存在,“只有”表示惟一.)
【教法說明】垂線的性質放手讓學生自己動手畫圖,自己總結,培養了學生動手,動腦,發現問題和解決問題的能力,達到能力培養的目標.
學生活動:讓學生嘗試畫一條線段或射線的垂線(一個學生板演).
【教法說明】學生畫圖時,教師巡回指導,發現問題,及時糾正,使學生加深印象,進一步培養學生動手操作能力.
嘗試反饋,鞏固練習
投影顯示(投影片2)
【教法說明】平面內兩條直線互相垂直,是一種非常重要的位置關系,本組練習態在使學生會用定義判斷兩直線垂直,并且應從不同角度去掌握判斷它的方法.
投影顯示(投影片3)
【教法說明】本組填空題主要是通過變式圖形,讓學生判斷兩條直線垂直,防止思維定式.第1題區別垂直相交和外交。第2題通過計算判斷兩條直線垂直,第3題是鞏固兩條直線垂直的性質.
投影顯示(投影片4)
【教法說明】在前邊練習的基礎上,學生自己解決并不難,教師要完全放手,開闊學生思路,學生可能出現多種解法,口算、算術解法、列方程等,找一個用方程解決的學生板演,因為這種方法更具有一般性,并通俗易懂,學生易于接受.解這類綜合性的題,要求學生能結合圖形,發現幾何對象在數量上的明顯關系及隱含關系并會用代數手段進行計算,另外對幾何對象的位置關系要會緊扣定義判斷.
投影顯示(投影片5)
【教法說明】讓學生在理解概念的基礎上,多動手練習畫垂線,進一步體會垂線的惟一性,同時培養學生的動手操作能力。
。ㄋ模┛偨Y、擴展
投影顯示(投影片6)
【教法說明】通過小結,幫助學生全面地理解掌握所學知識,使知識成為“體系”從而形成新的認知結構。
八、布置作業
(一)必做題
課本第70頁習題2.1A組第5題。
。ǘ┻x做題
課本第72頁B組第5題。
【教法說明】讓學有余力的學生進一步做B組練習,目的是調動學生的學習和積極性,提高學生思維廣度,培養學生良好的學習習慣和思維方式。
作業答案
九、板書設計
數學教案-垂線
七年級數學下冊教案10
教學目標:
知識目標:進一步使學生理解掌握平方差公式,并通過小結使學生理解公式數學表達式與文字表達式在應用上的差異。
能力目標:進一步培養學生分析、歸納和探索能力。
情感目標:培養學生數形結合的思想。
教學重難點:公式的應用及推廣。
教學過程:
一、復習提問:
1.(1)用較簡單的代數式表示下圖紙片的面積.
。2)沿直線裁一刀,將不規則的.右圖重新拼接成一個矩形,并用代數式表示出你新拼圖形的面積。
講評要點:
沿HD、GD裁開均可,但一定要讓學生在裁開之前知道HD=BC=GD=FE=ab,
這樣裁開后才能重新拼成一個矩形。
(3)比較(1)(2)的結果,你能驗證平方差公式嗎?
學生討論,自己得出結果
2.(1)敘述平方差公式的數學表達式及文字表達式;
(2)試比較公式的兩種表達式在應用上的差異.
說明:平方差公式的數學表達式在使用上有三個優點.(1)公式具體,易于理解;(2)公式的特征也表現得突出,易于初學的人“套用”;(3)形式簡潔.但數學表達式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的問題,否則容易對公式產生各種主觀上的誤解.
3.判斷正誤:
。1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)
二、新課:
運用平方差公式計算:
(1)102×98;(2)(y+2)(y2)(y2+4).
填空:
。1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();
思考題:什么樣的二項式才能逆用平方差公式寫成兩數和與這兩數的差的積?
七年級數學下冊教案11
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.
2.掌握直線平行的條件,領悟歸納和轉化的數學思想
學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )
2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.
五、作業課本15頁-16頁練習的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空
間觀念,推理能力和有條理表達能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:直線平行的條件的應用.
學習難點:選取適當判定直線平行的`方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
七年級數學下冊教案12
[教學目標]
1、通過動手、操作、推斷、交流等活動,進一步發展空間觀念,培養識圖能力,推理能力和有條理表達能力
2、在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念。對頂角性質與應用
難點:理解對頂角相等的性質的探索
[教學設計]
一、創設情境激發好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發生了什么變化?剪刀張開的.口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二、認識鄰補角和對頂角,探索對頂角性質
1、學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達;
有公共的頂點O,而且的兩邊分別是兩邊的反向延長線
2、學生用量角器分別量一量各角的度數,發現各類角的度數有什么關系?
。▽W生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)
3學生根據觀察和度量完成下表:
兩條直線相交所形成的角分類位置關系數量關系
教師提問:如果改變的大小,會改變它與其它角的位置關系和數量關系嗎?
4、概括形成鄰補角、對頂角概念和對頂角的性質
三、初步應用
練習:
下列說法對不對
(1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2)鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3)對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象
四、鞏固運用例題:如圖,直線a,b相交,求的度數。
[鞏固練習]教科書5頁練習)已知,如圖,求:的度數
[小結]
鄰補角、對頂角。
[作業]課本P9-1,2P10-7,8
七年級數學下冊教案13
【知識講解】
一、本講主要學習內容
1、代數式的意義
2、列代數式的注意點
3、代數式值的意義
其中列代數式是重點,也是難點。
下面講述一下這三點知識的主要內容。
1、代數式的意義
用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數及 表示數的字母連接而成的式子叫代數式。單個的數字或字母也叫代數式。如:5,a, 4x, ab, x+2y, , a2等
2.列代數式的注意點
、旁诖鷶凳街谐霈F的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。
⑵數字與數字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。
⑶數字寫在字母的前面。
、仍诖鷶凳街谐霈F除法運算時,一般按照分數的寫法來寫, 如s÷t寫作 。
⑸代數式中帶分數與字母相乘時,應寫成假分數與字母相乘的形式,如 應寫作 。
(6)兩個代數式相乘,應該用分數形式表示。
3.代數式值的意義
用數值代替代數式里的字母,按照代數式指明的運算,計算出的結果,就叫做代數式的值。
二、典型例題
例1 填空
、倮忾L是acm 的正方體的體積是___cm3。
②溫度由t°c下降2°c后是___°c。
、郛a量由m千克增長10%,就達到___千克。
、躠和b 的倒數和是___。
⑤a和b的和的倒數是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
說明: ⑴列代數式的關鍵在于仔細審題,弄清題意,正確找出題中的數量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數量關系,可先分段考慮,要正確地使用括號。
、葡馻3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。
例2、用代數式表示
、疟4整除得 m的數
、票2除商為 a余1的數
、莾蓴档钠骄鶖
、萢和b兩數的平方差與這兩數平方和的商
⑸一項工程,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數式表示此人行完全路程的平均速度。
、藗位數字是8,十位數字是 b 的兩位數。
解: ⑴4m ⑵2a+1 ⑶設這兩個數分別為a、b、則平均數為 。
、 ⑸ ⑹ ⑺10b+8
分析說明:
、艛礱除以數b,除得的商正好是整數,而沒有余數,我們稱a能被b整除。
⑵能被2整除的數叫偶數,不能被2整除的數叫奇數。兩個連續奇數,若較小的是n,則較大的是n +2 。
⑶對于題⑶中兩數沒有給出,為說明其一般性?上仍O這兩個數為a, b;用字母表示數時,在同一個問題中,不同的數要用不同的字母表示。
、阮}⑷中的a,b兩數的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。
、深}⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。
⑹平均速度=
所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。
題⑺中主要應清楚自然數的十進制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數總可以用它各個數位上的數字來表示。
例3說出下列代數式的意義。
、 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:說出代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點。
、俨缓ㄌ柕拇鷶凳搅晳T從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;
②含括號的代數應該把括號里的代數式看作一個整體,按運算結果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;
③由于分數線具有除法和括號的雙重作用,應該把分子與分母看成一個整體來讀。
解:(1)a的3倍與2的和;
(2)a與2的和的3倍;
(3)a與b的差除以c的'商;
(4)a與b除以c的差;
(5)a與b的差的平方;
(6)a、b的平方差。
例4、當x=7,y=4, z=0時,求代數式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
說明:⑴由比例題可以看出,求代數式值的一般步驟是:①代入 ②計算⑵在代數式中,數字與字母之間,字母與字母之間的乘號是省略不寫的。而當代入數據求值時,都變成了數字相乘,原來省略的乘號“×”應補上。
【一周一練】
1、選擇題
(1)下列各式中,屬于代數式的有( )個。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代數式,書寫正確的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代數式表示“a的 乘以b減去c的積”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用語言敘述代數式 ,表述不正確的是( )
a、比a的倒數小2的數; b、a與2的差的倒數
c、1除以a減去2的商 d、比a小2的數的倒數
2、判斷題
、舗除m用代數式可表示成 ( )
⑵三個連續的奇數,中間一個是n,其余兩個分別是n-2和n+2( )
、侨绻鹡是偶數,則緊跟在n后面的兩個連續奇數分別是n+1,n+3( )
3、填空題
、琶勘揪毩暠臼0.3元,買a本練習本需__元。
⑵小明有5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。
⑶被3整除得n 的數是__。
⑷個位上的數是a,十位上的數是個位上的數的2倍少3的兩位數是_。
、杉庸ひ慌慵瞞個,乙先加工n個零件后,甲單獨再做3天才完成任務,則甲平均每天加工零件__個。
⑹一種小麥磨成面粉后,重量減少數15%, b千克小麥磨成面粉后,面粉的重量是__千克。
、艘粋長方形的長是a,寬是長的 還多1,這個長方形的周長是__
⑻a、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。
4.求下列代數式的值。
、 其中a=2
、飘 時,求代數式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班級里男生人數比女生人數的 多16人,男生人數是a,問a的代數式表示:⑴女生人數。 ⑵該班學生總數;當a=25時,求該班學生總數。
七年級數學下冊教案14
教學目標
知識技能
1.了解算術平方根的概念,會求正數的算術平方根并會用符號表示
2.會用計算器求算術平方根
3.了解無限不循環小數的特點
數學思考
1.通過學習算術平方根,建立初步的數感和符號感,發展抽象思維
2.通過探究的大小,培養學生估算意識,了解兩個方向無限逼近的數學思想
解決問題
1.通過拼大正方形的活動,體現解決問題方法的多樣性,發展形象思維
2.在探究活動中,學會與人合作,并能與他人交流思維的過程和探究的`結果
情感態度
1.通過學習算術平方根,認識數學與人類生活的密切聯系
2.通過探究活動,鍛煉克服困難的意志,建立自信心,提高學習熱情
教學重點、難點
重點:算術平方根的概念,感受無理數
難點:探究的大小的過程
教學過程與流程設計
活動1創設情景,引入算術平方根
20xx年10月16日,我國進行首次載人航天飛行取得圓滿成功。中華民族探索太空的千年夢想實現了。宇宙在脫離地球軌道進入正常運行軌道的速度要滿足一個條件,即介于第一宇宙速度與第二宇宙速度之間,第一宇宙速度和第二宇宙速度分別滿足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒):
小歐同學準備參加學校舉行的美術作品比賽。他想裁出一塊面積為25dm2的正方形畫布,畫上自己的得意之作參加比賽,請你幫他計算一下這塊正方形畫布的邊長應取多少?
小歐還要準備一些面積如下的正方形畫布,請你幫他把這些正方形的邊長都算出來:
面積191636
邊長1346
上面的問題,實際上是已知一個正數的平方,求這個正數的問題
一般地,如果一個正數x的平方等于a,即,那么這個正數x叫做a的算術平方根,a的算術平方根記為,讀作“根號a”,a叫做“被開方數”。
規定:0的算術平方根是0。
活動2通過一些簡單例題,進一步了解算術平方根
1、你能求出下列各數的算術平方根嗎?
2、請同學們同桌之間合作,一位同學說一個正數,另一位同學說出這個正數的算術平方根。
3、16的算術平方根等于________
4、的值等于_________
5、的算術平方根等于_________
活動3動動腦,動動手,探究的大小
你能用兩個面積為單位1的小正方形拼成一個大正方形嗎?
回答下列問題
。1)你所得的新正方形的面積是多少?
(2)新正方形的邊長是多少?
討論:
你知道有多大嗎?
的估算:
如此進行下去,可以得到的近似值,還可以發現是一個無限不循環小數。
活動4財富大統計
1、你認為小歐要解決他參加美術作品比賽中遇到的問題 。
七年級數學下冊教案15
教學目標
1、經歷觀察教具模式的演示和通過畫圖等操作,交流歸納與活動,進一步發展空間觀念
2、了解平行線的概念、平面內兩條直線的相交和平行的兩種位置關系,知道平行公理以及平行公理的推論、
3、會用符號語方表示平行公理推論,會用三角尺和直尺過已知直線外一點畫這條直線的平行線、
重點:
探索和掌握平行公理及其推論、
難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質、
教學過程
一、創設問題情境
1、復習提問:兩條直線相交有幾個交點?相交的兩條直線有什么特殊的位置關系?
學生回答后,教師把教具中木條b與c重合在一起,轉動木條a確認學生的回答、教師接著問:在平面內,兩條直線除了相交外,還有別的位置關系嗎?
2、教師演示教具、
順時針轉動木條b兩圈,讓學生思考:把a、b想像成兩端可以無限延伸的兩條直線,順時針轉動b時,直線b與直線a的交點位置將發生什么變化?在這個過程中,有沒有直線b與c木相交的位置?
3、教師組織學生交流并形成共識、
轉動b時,直線b與c的交點從在直線a上A點向左邊距離A點很遠的點逐步接近A點,并垂合于A點,然后交點變為在A點的右邊,逐步遠離A點、繼續轉動下去,b與a的交點就會從A點的左邊又轉動A點的左邊……可以想象一定存在一個直線b的位置,它與直線a左右兩旁都沒有交點、
二、平行線定義表示法
1、結合演示的結論,師生用數學語言描述平行定義:同一平面內,存在一條直線a與直線b不相交的.位置,這時直線a與b互相平行、換言之,同一平面內,不相交的兩條直線叫做平行線、
直線a與b是平行線,記作“∥”,這里“∥”是平行符號、
教師應強調平行線定義的本質屬性,第一是同一平面內兩條直線,第二是設有交點的兩條直線、
2、同一平面內,兩條直線的位置關系
教師引導學生從同一平面內,兩條直線的交點情況去確定兩條直線的位置關系、
在同一平面內,兩條直線只有兩種位置關系:相交或平行,兩者必居其一、即兩條直線不相交就是平行,或者不平行就是相交、
三、畫圖、觀察、歸納概括平行公理及平行公理推論
1、在轉動教具木條b的過程中,有幾個位置能使b與a平行?
本問題是學生直覺直線b繞直線a外一點B轉動時,有并且只有一個位置使a與b平行、
2、用直線和三角尺畫平行線、
已知:直線a,點B,點C、
。1)過點B畫直線a的平行線,能畫幾條?
。2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
3、通過觀察畫圖、歸納平行公理及推論、
。1)由學生對照垂線的第一性質說出畫圖所得的結論、
。2)在學生充分交流后,教師板書、
平行公理:經過直線外一點,有且只有一條直線與這條直線平行、
(3)比較平行公理和垂線的第一條性質、
共同點:都是“有且只有一條直線”,這表明與已知直線平行或垂直的直線存在并且是唯一的
不同點:平行公理中所過的“一點”要在已知直線外,兩垂線性質中對“一點”沒有限制,可在直線上,也可在直線外、
4、歸納平行公理推論、
。1)學生直觀判定過B點、C點的a的平行線b、c是互相平行、
(2)從直線b、c產生的過程說明直線b∥直線c、
。3)學生用三角尺與直尺用平推方驗證b∥c、
。4)師生用數學語言表達這個結論,教師板書、
結果兩條直線都與第三條直線平行,那么這條直線也互相平行、
結合圖形,教師引導學生用符號語言表達平行公理推論:
如果b∥a,c∥a,那么b∥c、
(5)簡單應用、
練習:如果多于兩條直線,比如三條直線a、b、c與直線L都平行,那么這三條直線互相平行嗎?請說明理由、
本練習是讓學生在反復運用平行公理推論中掌握平行公理推論以及說理規范、
四、作業:課本P16、7,P17、11、
【七年級數學下冊教案】相關文章:
七年級數學下冊教案08-24
七年級數學下冊教案01-01
數學下冊教案03-16
七年級下冊數學教案08-26
【薦】七年級數學下冊教案02-15
七年級數學下冊教案【推薦】02-15
七年級數學下冊優秀教案02-15
七年級數學下冊教案【熱】02-15
【精】七年級數學下冊教案02-15