1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>高一數學上冊教案

    高一數學上冊教案

    時間:2023-02-07 09:00:54 數學教案 我要投稿

    人教版高一數學上冊教案2篇

      作為一位杰出的教職工,時常需要編寫教案,編寫教案助于積累教學經驗,不斷提高教學質量。快來參考教案是怎么寫的吧!下面是小編整理的人教版高一數學上冊教案,僅供參考,大家一起來看看吧。

    人教版高一數學上冊教案2篇

    人教版高一數學上冊教案1

      教學目標:

      (1)了解集合的表示方法;

      (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

      教學重點:

      掌握集合的表示方法;

      教學難點:

      選擇恰當的表示方法;

      教學過程:

      一、復習回顧:

      1.集合和元素的定義;元素的三個特性;元素與集合的關系;常用的數集及表示。

      2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關系

      二、新課教學

      (一).集合的表示方法

      我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

      (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。

      如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…

      說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考

      慮元素的順序。

      2.各個元素之間要用逗號隔開;

      3.元素不能重復;

      4.集合中的元素可以數,點,代數式等;

      5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規律顯示清楚后方能用省略號,象自然數集N用列舉法表示為

      例1.(課本例1)用列舉法表示下列集合:

      (1)小于10的所有自然數組成的集合;

      (2)方程x2=x的所有實數根組成的集合;

      (3)由1到20以內的所有質數組成的集合;

      (4)方程組 的解組成的集合。

      思考2:(課本P4的思考題)得出描述法的定義:

      (2)描述法:把集合中的元素的`公共屬性描述出來,寫在花括號{ }內。

      具體方法:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

      一般格式:

      如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…

      說明:

      1.課本P5最后一段話;

      2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3xx2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{xx整數},即代表整數集Z。

      辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

      例2.(課本例2)試分別用列舉法和描述法表示下列集合:

      (1)方程x2—2=0的所有實數根組成的集合;

      (2)由大于10小于20的所有整數組成的集合;

      (3)方程組 的解。

      思考3:(課本P6思考)

      說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

      (二).課堂練習:

      1.課本P6練習2;

      2.用適當的方法表示集合:大于0的所有奇數

      3.集合A={x| ∈Z,x∈N},則它的元素是 。

      4.已知集合A={x|-3

      歸納小結:

      本節課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

      作業布置:

      1. 習題1.1,第3.4題;

      2. 課后預習集合間的基本關系.

    人教版高一數學上冊教案2

      一、等差數列

      1、定義

      注:“從第二項起”及

      “同一常數”用紅色粉筆標注

      二、等差數列的通項公式

      (一)例題與練習

      通過練習2和3 引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

      (二)新課探究

      1、由引入自然的給出等差數列的概念:

      如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

      ① “從第二項起”滿足條件; f

      ②公差d一定是由后項減前項所得;

      ③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );

      在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

      an+1—an=d (n≥1) ;h4z+0"6vG

      同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

      1。 9 ,8,7,6,5,4,……;√ d=—1

      2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

      3。 0,0,0,0,0,0,……。; √ d=0

      4。 1,2,3,2,3,4,……;×

      5。 1,0,1,0,1,……×

      其中第一個數列公差<0,>0,第三個數列公差=0

      由此強調:公差可以是正數、負數,也可以是0

      2、第二個重點部分為等差數列的通項公式

      在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項 ,公差d,由學生研究分組討論a4 的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。

      若一等差數列{an }的首項是a1,公差是d,

      則據其定義可得:

      a2 — a1 =d 即: a2 =a1 +d

      a3 – a2 =d 即: a3 =a2 +d = a1 +2d

      a4 – a3 =d 即: a4 =a3 +d = a1 +3d

      ……

      猜想: a40 = a1 +39d

      進而歸納出等差數列的通項公式:

      an=a1+(n—1)d

      此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法——————迭加法:

      a2 – a1 =d

      a3 – a2 =d

      a4 – a3 =d

      ……

      an+1 – an=d

      將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

      當n=1時,(1)也成立,

      所以對一切n∈N﹡,上面的公式都成立

      因此它就是等差數列{an}的通項公式。

      在迭加法的證明過程中,我采用啟發式教學方法。

      利用等差數列概念啟發學生寫出n—1個等式。

      對照已歸納出的通項公式啟發學生想出將n—1個等式相加。證出通項公式。

      在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求

      接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數列通項公式運用

      同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。

      (三)應用舉例

      這一環節是使學生通過例題和練習,增強對通項公式含義的`理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

      例1 (1)求等差數列8,5,2,…的第20項;第30項;第40項

      (2)—401是不是等差數列—5,—9,—13,…的項?如果是,是第幾項?

      在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an

      例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

      在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

      例3 是一個實際建模問題

      建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

      這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型——————等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點)

      設置此題的目的:

      1。加強同學們對應用題的綜合分析能力,

      2。通過數學實際問題引出等差數列問題,激發了學生的興趣;

      3。再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法

      (四)反饋練習

      1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

      2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

      目的:對學生加強建模思想訓練。

      3、若數例{an} 是等差數列,若 bn = an ,(為常數)試證明:數列{bn}是等差數列

      此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

      (五)歸納小結 (由學生總結這節課的收獲)

      1。等差數列的概念及數學表達式.

      強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

      2。等差數列的通項公式 an= a1+(n—1) d會知三求一

      3.用“數學建模”思想方法解決實際問題

      (六)布置作業

      必做題:課本P114 習題3。2第2,6 題

      選做題:已知等差數列{an}的首項a1= —24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

      五、板書設計

      在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

    【高一數學上冊教案】相關文章:

    數學高一上冊教案12-17

    高一上冊的數學教案02-14

    人教版高一數學上冊教案01-06

    數學高一上冊教案8篇12-18

    數學高一上冊教案(8篇)12-19

    高一上冊的數學教案3篇02-14

    數學高一上冊教案(通用8篇)12-20

    數學上冊教案01-15

    高一數學的教案08-26

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲成AV人在线观看影院 | 亚洲欧美唯美国产伦综合 | 日韩中文字幕在线精品视频 | 在线观看免费人成视频色 | 在线高清精品第一区二区三区 | 色五月婷婷导航在线观看 |