1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>七年級數學教案>初一數學上冊教案

    初一數學上冊教案

    時間:2022-12-22 17:17:38 七年級數學教案 我要投稿

    初一數學上冊教案集錦15篇

      作為一位兢兢業業的人民教師,時常會需要準備好教案,教案是保證教學取得成功、提高教學質量的基本條件。那么什么樣的教案才是好的呢?以下是小編收集整理的初一數學上冊教案,希望能夠幫助到大家。

    初一數學上冊教案集錦15篇

    初一數學上冊教案1

      【學習目標】

      1.使學生能說出相反數的意義

      2.使學生能求出已知數的相反數

      3.使學生能根據相反數的意思進行化簡

      【學習過程】

      【情景創設】

      回憶上節課的情境,小明從學校出發沿東西大街走了0.5千米,在數軸上表示出他的位置。點A,點B即是小明到達的位置。

      觀察A,B兩點位置及共到原點的距離,你有什么發現嗎?

      《數軸》專題練習

      1.(4)班在一次聯歡活動中,把全班分成5個隊參加活動,游戲結束后,5個隊的得分如下:

      A隊:-50分;B隊:150分;C隊:-300分;D隊:0分;E隊:100分.

      (1)將5個隊按由低分到高分的順序排序;

      (2)把每個隊的得分標在數軸上,并標上代表該隊的字母;

      (3)從數軸上看A隊與B隊相差多少分?C隊與E隊呢?

      《2.4數軸》同步測試

      1下列說法中錯誤的是(  )

      A.一個正數的絕對值一定是正數

      B.任何數的.絕對值都是正數

      C.一個負數的絕對值一定是正數

      D.任何數的絕對值都不是負數

      22017·海安縣期中絕對值大于2且不大于5的整數有________個.

      3某檢修小組乘坐一輛汽車沿公路檢修供電線路,約定前進為正,后退為負,他們從出發到收工返回時,走過的路程記錄如下(單位:km):+5,-3,+7,-1,-4,+8,-12.求他們從出發到收工返回時,總共行駛的路程.

    初一數學上冊教案2

      教學目標

      1。使學生理解正數與負數的概念,并會判斷一個給定的數是正數還是負數;

      2。會初步應用正負數表示具有相反意義的量;

      3。使學生初步了解有理數的意義,并能將給出的有理數進行分類;

      4。培養學生逐步樹立分類討論的思想;

      5。通過本節課的教學,滲透對立統一的辯證思想。

      教學建議

      一、重點、難點分析

      本課的重點是了解正數與負數是由實際需要產生的以及有理數包括哪些數。難點是學習負數的必要性及有理數的分類。關鍵是要能準確地舉出具有相反意義的量的典型例子以及要明確有理數分類的標準。

      正、負數的引入,有各種不同的方法。教材是由學生熟知的兩個實例:溫度與海拔高度引入的。比0℃高5攝氏度記作5℃,比0℃低5攝氏度,記作—5℃;比海平面高8848米,記作8848米,比海平面低155米記作—155米。由這兩個實例很自然地,把大于0的數叫做正數,把加“—”號的數叫做負數;0既不是正數也不是負數,是一個中性數,表示度量的“基準”。這樣引入正、負數,不僅有利于學生正確使用正、負數表示具有相反意義的量,而且還將幫助學生理解有理數的大小性質。把負數理解為小于0的數。教材中,沒有出現“具有相反意義的量”的概念。這是有意回避或淡化這個概念。目的是,從正、負數引入一開始就能較深刻的揭示正、負數和零的性質,幫助學生正確理解正、負數的概念。

      關于有理數的分類要明確的是:分類標準不同,分類結果也不同,分類結果應是不重不漏,即每一個數必須屬于某一類,又不能同時屬于不同的兩類。

      二、教法建議

      這節課是在小學里學過的數的基礎上,從表示具有相反意義的量引進負數的。從內容上講,負數比非負數要抽象、難理解。因此在教學方法和教學語言的選擇上,盡可能注意中小學的銜接,既不違反科學性,又符合可接受性原則。例如,在講解有理數的概念時,讓學生清楚地認識有理數與算術數的根本區別,有理數是由兩部分組成:符號部分和數字部分(即算術數)。這樣,在理解算術數和負數的基礎上,對有理數的概念的'理解就簡便多了。

      為了使學生掌握必要的數學思想和方法,在明確有理數的分類時,可以有意識地滲透分類討論的思想方法,理解分類的標準、分類的結果,以及它們的相互聯系。通過正數、負數都統一于有理數,可以將對立統一的辯證思想的逐步樹立滲透到日常教學中。

      三、正數與負數概念的理解

      1﹒對于正數和負數的概念,不能簡單的理解為:帶“+”號的數是正數,帶“—”號的數是負數。

      2﹒引入負數后,數的范圍擴大為有理數,奇數和偶數的外延也由自然數擴大為整數,整數也可以分為奇數和偶數兩類,能被2整除的數是偶數,如…—6,—4,—2,0,2,4,6…,不能被2整除的數是奇數,如…—5,—4,—2,1,3,5…

      3﹒到現在為止,我們學過的數細分有五類:正整數、正分數、0、負整數、負分數,但研究問題時,通常把有理數分為三類:正數、0、負數,進行討論。

      4﹒通常把正數和0統稱為非負數,負數和0統稱為非正數,正整數和0稱為非負整數;負整數和0統稱為非正整數。

      四、有理數的分類

      整數和分數統稱為有理數。1)正整數、零、負整數統稱為整數;正分數、負分數統稱為分數。

      2)整數也可以看作分母為1的分數,但為了研究方便,本章中分數是指不包括整數的分數。

      3)注意概念中所用“統稱”二字,它與說“整數和分數是有理數”的意思不大一樣。前者回避了分數是否包括整數的問題,即使把整數包括在分數范圍內,說“統稱”還是不錯,而用后一種說法就欠妥了。

      4)分數和小數的區別:

      分數(既約分數)都可表示成小數,但不是所有的小數都能表示成分數的。

      5)到目前為止,所學過的數(除π外)都是有理數。

    初一數學上冊教案3

      教學目的:

      1.了解計算器的性能,并會操作和使用;

      2.會用計算器求數的平方根;

      重點:用計算器進行數的加、減、乘、除、乘方和開方的.計算;

      難點:乘方和開方運算;

      教學過程:

      1.計算器的使用介紹(科學計算器)

      2.用計算器進行加、減、乘、除、乘方、開方運算

      例1用計算器求下列各式的值.

      (1)(-3.75)+(-22.5) (2)51.7(-7.2)

      解(1)

      (-3.75)+(-22.5)=-26.25

      (2)

      51.7(-7.2)=-372.24

      說明輸入數據時,按鍵順序與寫這個數據的順序完全相同,但輸入負數時,符號轉換鍵要放在數據之后鍵入.

      隨堂練習

      用計算器求值

      1.9.23+10.2 2.(-2.35)×(-0.46)

      答案1.37.8 2.1.081

    初一數學上冊教案4

      教學目標:

      知識與技能

      1.掌握直角三角形的判別條件,并能進行簡單應用;

      2.進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型.

      3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

      情感態度與價值觀

      敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識.

      教學重點

      運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

      教學難點

      會辨析哪些問題應用哪個結論.

      課前準備

      標有單位長度的細繩、三角板、量角器、題篇

      教學過程:

      復習引入:

      請學生復述勾股定理;使用勾股定理的前提條件是什么?

      已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

      創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法.

      這樣做得到的是一個直角三角形嗎?

      提出課題:能得到直角三角形嗎

      講授新課:

      ⒈如何來判斷?(用直角三角板檢驗)

      這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?

      就是說,如果三角形的`三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

      ⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:

      5,12,13;6,8,10;8,15,17.

      (1)這三組數都滿足a2+b2=c2嗎?

      (2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

      ⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

      滿足a2+b2=c2的三個正整數,稱為勾股數.

      ⒋例1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

      隨堂練習:

      ⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由.

      ⑴9,12,15;⑵15,36,39;

      ⑶12,35,36;⑷12,18,22.

      ⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.

      ⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.

      ⒋習題1.3

      課堂小結:

      ⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

      ⒉滿足a2+b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.

    初一數學上冊教案5

      教材分析

      方程是應用廣泛的數學工具,是代數學的核心內容,在義務教育階段的數學課程中占有重要地位。本節課選自人教版數學七年級上冊第三章第一節的內容,是一節引入課,對于激發學生學習方程的興趣,獲得解決實際問題的基本方法具有十分重要的作用。本節課是結合學生已有學習經驗,從算式到方程,繼而對一元一次方程及方程的解進行了探究,讓學生體驗未知數參與運算的好處,用方程分析問題、解決問題(即培養學生建模的思想),體會學習方程的意義和作用。本節課是在承接小學學習的簡易方程和剛剛學習的整式的加減的基礎上進行學習的,同時又是后續學習二元一次方程、一元二次方程的重要基礎。因此,這節課在教材中起到了承上啟下的作用。

      學情分析

      學生前面已經學習了簡單的方程及整式的內容,為本節課的學習做好了鋪墊。

      七年級的學生思維活躍,求知欲強,有比較強烈的自我意識,對觀察、猜想、探索性的問題充滿好奇,因而在教學素材的選取與呈現方式以及學習活動的'安排上力求設置學生感興趣的并且具有挑戰性的內容,讓學生感受到數學來源于生活又回歸生活實際,無形中產生濃厚的學習興趣和探索熱情。

      七年級學生對于方程已經具備了一定的知識基礎,但是對方程的理解還比較膚淺、模糊,還處于感性層面,缺乏理性的認識和把握,而且學生正處于感性認識向理性認識過渡的時期,抽象思維能力有待提高,對于一元一次方程的概念教學要選取具體的問題情境,逐步抽象。

      七年級的學生很想利用所學的知識解決問題,通過對幾個問題的分析、探討、相互交流,逐步培養學生的觀察、探索、歸納等能力,提高對課本知識的運用能力,從而認識歸納一元一次方程的相關概念,在練習中鞏固和熟悉一元一次方程。

      教學目標

      1.知識與技能目標

      (1)掌握方程、一元一次方程的定義,知道什么是方程的解。

      (2)體會字母表示數的好處,會根據實際問題的條件列方程,能檢驗出一個數值是否是方程的解。

      2.過程與方法目標

      (1)通過將實際問題抽象成數學問題,分析實際問題中的數量關系,利用其中的相等關系列出方程,滲透數學建模的思想,認識到從算式到方程是數學的一種進步。

      (2)通過具體情境貼近學生生活,在生活中挖掘數學問題,解決數學問題,使數學生活化,生活數學化,會利用一元一次方程的知識解決一些實際問題。

      3.情感態度與價值觀目標

      (1)通過具體情境的探索、交流等數學活動培養學生的團體合作精神和積極參與、勤于思考的意識。

      (2)激發學生的求知欲和學習數學的熱情,培養獨立思考和合作交流的能力,讓他們享受成功的喜悅。

      (3)經歷從生活中發現數學和應用數學解決實際問題的過程,樹立多種方法解決問題的創新意識,增強用數學的意識,體會數學的應用價值。

      教學重點、難點

      教學重點:1.方程、一元一次方程、方程的解的概念。

      2.根據實際問題的條件列出方程。

      教學難點:分析實際問題中的數量關系,利用其中的相等關系列出方程。

      教學過程

      一、創設情境 導入新課

      二、探究新知 形成概念

      三、應用新知 鞏固提高

      四、感悟反思

      五、名題欣賞

      六、布置作業

      板書設計

    初一數學上冊教案6

      教學目標:

      1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。

      2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。

      重點難點:

      重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

      難點:勾股定理的發現

      教學過程

      一、創設問題的情境,激發學生的學習熱情,導入課題

      出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。

      出示投影2(書中的P2圖1—2)并回答:

      1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。

      正方形B中有_______個小方格,即A的面積為______個單位。

      正方形C中有_______個小方格,即A的面積為______個單位。

      2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發問:

      3、圖1—2中,A,B,C之間的面積之間有什么關系?

      學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關系呢?

      二、做一做

      出示投影3(書中P3圖1—4)提問:

      1、圖1—3中,A,B,C之間有什么關系?

      2、圖1—4中,A,B,C之間有什么關系?

      3、從圖1—1,1—2,1—3,1|—4中你發現什么?

      學生討論、交流形成共識后,教師總結:

      以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

      三、議一議

      1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

      2、你能發現直角三角形三邊長度之間的關系嗎?

      在同學的交流基礎上,老師板書:

      直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

      也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

      那么

      我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

      3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的'長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

      四、想一想

      這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

      五、鞏固練習

      1、錯例辨析:

      △ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應滿足=25

      即:c=5

      辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

      △ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。

      (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

      綜上所述這個題目條件不足,第三邊無法求得。

      2、練習P7§1.11

      六、作業

      課本P7§1.12、3、4

      教學目標:

      1.經歷運用拼圖的方法說明勾股定理是正確的過程,在數學活動中發展學生的探究意識和合作交流的習慣。

      2.掌握勾股定理和他的簡單應用

      重點難點:

      重點:能熟練運用拼圖的方法證明勾股定理

      難點:用面積證勾股定理

      教學過程

      七、創設問題的情境,激發學生的學習熱情,導入課題

      我們已經通過數格子的方法發現了直角三角形三邊的關系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

      (同學們回答有這幾種可能:(1)(2))

      在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

      =請同學們對上面的式子進行化簡,得到:即=

      這就可以從理論上說明勾股定理存在。請同學們去用別的拼圖方法說明勾股定理。

      八、講例

      1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

      分析:根據題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

      解:由勾股定理得

      即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

      答:飛機每個小時飛行540千米。

      九、議一議

      展示投影2(書中的圖1—9)

      觀察上圖,應用數格子的方法判斷圖中的三角形的三邊長是否滿足

      同學在議論交流形成共識之后,老師總結。

      勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

      十、作業

      1、1、課文P11§1.21、2

      2、選用作業。

    初一數學上冊教案7

      一、知識要點

      本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

      基礎知識:

      1、大于0的數叫做正數。

      2、在正數前面加上負號“-”的數叫做負數。

      3、0既不是正數也不是負數。

      4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。

      5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。

      數軸滿足以下要求:

      (1)在直線上任取一個點表示數0,這個點叫做原點(origin);

      (2)通常規定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

      (3)選取適當的長度為單位長度。

      6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。

      7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。

      由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。

      一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.

      正數大于0,0大于負數,正數大于負數;兩個負數,絕對值大的反而小。

      8、有理數加法法則

      (1)同號兩數相加,取相同的符號,并把絕對值相加。

      (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.

      (3)一個數同0相加,仍得這個數。

      加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。

      加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把后兩個數相加,和不變。

      表達式:(a+b)+c=a+(b+c)

      9、有理數減法法則

      減去一個數,等于加這個數的相反數。表達式:a-b=a+(-b)

      10、有理數乘法法則

      兩數相乘,同號得正,異號得負,并把絕對值相乘。

      任何數同0相乘,都得0.

      乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba

      乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。表達式:(ab)c=a(bc)

      乘法分配律:一般地,一個數同兩個的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。

      表達式:a(b+c)=ab+ac

      11、倒數

      1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那么這兩個數的積等于1。

      12、有理數除法法則:兩數相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數,都得0.

      13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。

      根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。

      14、有理數的混合運算順序

      (1)“先乘方,再乘除,最后加減”的順序進行;

      (2)同級運算,從左到右進行;

      (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

      15、科學技術法:把一個大于10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即0

      16、近似數(approximatenumber):

      17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。

      拓展知識:

      1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。

      一、(1)所有有理數組成的數集叫做有理數集;

      二、(2)所有的整數組成的數集叫做整數集。

      2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。

      3、根據絕對值的幾何意義知道:|a|≥0,即對任何有理數a,它的絕對值是非負數。

      4、比較兩個有理數大小的方法有:

      (1)根據有理數在數軸上對應的點的位置直接比較;

      (2)根據規定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的數學思想;

      (3)做差法:a-b>0a>b;

      (4)做商法:a/b>1,b>0a>b.

      二、基礎訓練

      選擇題

      1、下列運算中正確的是().

      A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

      2、下列各判斷句中錯誤的是()

      A.數軸上原點的位置可以任意選定

      B.數軸上與原點的距離等于個單位的點有兩個

      C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示

      D.數軸上無論怎樣靠近的兩個表示有理數的點之間,一定還存在著表示有理數的點。

      3、、是有理數,若>且,下列說法正確的是()

      A.一定是正數B.一定是負數C.一定是正數D.一定是負數

      4、兩數相加,如果比每個加數都小,那么這兩個數是()

      A.同為正數B.同為負數C.一個正數,一個負數D.0和一個負數

      5、兩個非零有理數的和為零,則它們的商是()

      A.0B.-1C.+1D.不能確定

      6、一個數和它的倒數相等,則這個數是()

      A.1B.-1C.±1D.±1和0

      7、如果|a|=-a,下列成立的是()

      A.a>0B.a<0c.a>0或a=0D.a<0或a=0

      8、(-2)11+(-2)10的值是()

      A.-2B.(-2)21C.0D.-210

      9、已知4個礦泉水空瓶可以換礦泉水一瓶,現有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()

      A.3瓶B.4瓶C.5瓶D.6瓶

      10、在下列說法中,正確的個數是()

      ⑴任何一個有理數都可以用數軸上的一個點來表示

      ⑵數軸上的每一個點都表示一個有理數

      ⑶任何有理數的絕對值都不可能是負數

      ⑷每個有理數都有相反數

      A、1B、2C、3D、4

      11、如果一個數的相反數比它本身大,那么這個數為()

      A、正數B、負數

      C、整數D、不等于零的有理數

      12、下列說法正確的是()

      A、幾個有理數相乘,當因數有奇數個時,積為負;

      B、幾個有理數相乘,當正因數有奇數個時,積為負;

      C、幾個有理數相乘,當負因數有奇數個時,積為負;

      D、幾個有理數相乘,當積為負數時,負因數有奇數個;

      填空題

      1、在有理數-7,,-(-1.43),,0,,-1.7321中,是整數的有_____________是負分數的有_______________。

      2、一般地,設a是一個正數,則數軸上表示數a的點在原點的____邊,與原點的距離是____個單位長度;表示數-a的點在原點的____邊,與原點的距離是____個單位長度。

      3、如果一個數是6位整數,用科學記數法表示它時,10的`指數是_____;用科學記數法表示一個n位整數,其中10的指數是___________.

      4、實數a、b、c在數軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.

      5、絕對值大于1而小于4的整數有_____________________________________,其和為___________.

      6、若a、b互為相反數,c、d互為倒數,則(a+b)3-3(cd)4=________.

      7、1-2+3-4+5-6+……+20xx-2002的值是____________.

      8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

      9、平方等于它本身的有理數是___________,立方等于它本身的有理數是_____________.

      10、用四舍五入法把3.1415926精確到千分位是,用科學記數法表示302400,應記為,近似數3.0×精確到位。

      11、正數–a的絕對值為__________;負數–b的絕對值為________

      12、甲乙兩數的和為-23.4,乙數為-8.1,甲比乙大

      13、在數軸上表示兩個數,的數總比的大。(用“左邊”“右邊”填空)

      14、數軸上原點右邊4.8厘米處的點表示的有理數是32,那么,數軸左邊18厘米處的點表示的有理數是____________。

      三、強化訓練

      1、計算:1+2+3+…+20xx+2003=__________.

      2、已知:若(a,b均為整數)則a+b=

      3、觀察下列等式,你會發現什么規律:,,,。。。請將你發現的規律用只含一個字母n(n為正整數)的等式表示出來

      4、已知,則___________

      5、已知是整數,是一個偶數,則a是(奇,偶)

      6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

      7、在數1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數是多少?請列出算式解答。

      8、如果有理數a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。

      9、如果規定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。

      10、已知|x+1|=4,(y+2)2=4,求x+y的值。

      11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。

      例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):

      星期一二三四五

      每股漲跌+4+4.5-1-2.5-6

      第1章(1)星期三收盤時,每股是多少元?

      第2章(2)本周內最高價是每股多少元?最低價是多少元?

      第3章(3)已知買進股票是付了1.5‰的手續費,賣出時需付成交額1.5‰的手續費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?

      第4章(4)以買進的股價為0點,用折線統計圖表示本周該股的股價情況。

      四、競賽訓練:

      1、最小的非負有理數與最大的非正有理數的和是

      2、乘積=

      3、比較大小:A=,B=,則A B

      4、滿足不等式104≤A≤105的整數A的個數是x×104+1,則x的值是( )

      A、9 B、8 C、7 D、6

      5、最小的一位數的質數與最小的兩位數的質數的積是( )

      A、11 B、22 C、26 D、33

      6、比較

      7、計算:

      8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

      9、計算:

      10、計算

      11、計算1+3+5+7+…+1997+1999的值

      12、計算1+5+52+53+…+599+5100的值.

      13、有理數均不為0,且設試求代數式20xx之值。

      14、已知a、b、c為實數,且,求的值。

      15、已知:。

      16、解方程組。

      17、若a、b、c為整數,且,求的值。

      1.2.1有理數

      七年級上(1.1正數和負數,1.2有理數)

      1.2有理數

    初一數學上冊教案8

      教學內容

      角的初步認識

      第38、39頁練習八1、2、3

      第三單元

      第1課時

      教學

      目標

      1.結合生活情境及操作活動,使學生初步認識角,會判斷角,知道角的各部分名稱。

      2.初步學會用直尺畫角。3.培養學生的動手操作能力和團結合作的精神。

      教學

      準備

      教學課件、師生的三角尺、活動角、吸管等

      教

      學

      過

      程

      教 學 活 動

      教 師

      學 生

      一、創設情景,引入新課

      1、 師播放多媒體:把實物抽象成圖形,再把角拉出來。

      2、 揭示課題。角的'初步認識。

      二、聯系實際感知角

      1. 第38頁主題圖校園一角,引導學生觀察三角板、大剪刀、球門的框、球場的角等。

      2. 在生活中還有許多這樣的例子,投影出示例1

      3. 小結:這些物品中都有角。

      4. 引導學生尋找生活中的角。

      5. 師引導學生創造一個角

      三、操作感知,探究新知,認識角的組成部分

      (1)師變魔術引出活動角。

      邊

      頂點

      邊

      學生說出所看到的圖形名稱,并指出各有幾個角。

      生觀察。

      生在教室里找角,同桌互相說一說。

      生用手中的紙折一個角、用兩只鉛筆搭一個角……等。

      2、生從自己折的角中探索出角的頂點和邊。

      教

      學

      過

      程

      教 師

      學 生

      (2)出示不同的角,你們能指出這些角的頂點和邊嗎?

      小結:一個角有一個頂點和兩條邊。

      (2)畫角

      五、鞏固練習

      1.練習第1題判斷。要求學生出2和4為什么不是角的原因。

      2.練習第2題,數角。

      3.練習第3題,比角的大小。

      小結:角的大小與邊的長短無關。

      6. 出示活動角。

      小結:角的大小與兩條邊的張開的大下有關。

      六、拓展、游戲:

      1. 用三根小棒可以擺幾個角?有幾種擺法?

      2. 有一個長方形,用剪刀剪一刀,剪去一個角后,還剩幾個角?

      七、課后小結

      這節課我們認識了什么?你有哪些收獲?

      1.生探索畫角的過程。自學。

      2.生說畫角過程。

      3.觀看多媒體畫角過程。

      4.生再次畫角。

      用自己喜歡的方法比較兩個角的大小。

      生玩活動角:慢慢地張開,慢慢地合攏。

      學生動手做一做,小組合作,說一說。

    初一數學上冊教案9

      【教學目標】

      知識與技能

      了解并掌握數據收集的基本方法。

      過程與方法

      在調查的過程中,要有認真的態度,積極參與。

      情感、態度與價值觀

      體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。

      【教學重難點】

      重點:掌握統計調查的基本方法。

      難點:能根據實際情況合理地選擇調查方法。

      【教學過程】

      一、講授新課

      像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。

      調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查(samplingsurvey),即從被考察的全體對象中抽出一部分對象進行考察的調查方式。

      在一個統計問題中,我們把所要考察對象的全體叫做總體(population),其中的每一個考察對象叫做個體(individual),從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量(samplesize)。

      例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。

      為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。

      上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣(simplerandomsampling)。

      師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。

      學生小組合作、討論,學生代表展示結果。

      教師指導、評論。

      師:除了問卷調查外,我們還有哪些方法收集到數據呢?

      學生小組討論、交流,學生代表回答。

      師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?

      (1)你班中的同學是如何安排周末時間的?

      (2)我國瀕臨滅絕的植物數量;

      (3)某種玉米種子的發芽率;

      (4)學校門口十字路口每天7:00~7:10時的車流量。

      學生討論,并舉手回答。

      師:采用何種方法一定要結合實際問題來定。在解決問題(1)的過程中,不但要同學們動手調查,并且對全班所有學生都要調查,像這樣對全體對象進行的調查叫做全面調查(普查)。同學們還知道哪些數據的收集需要全面調查嗎?

      學生討論,并回答。

      生:如人口普查、本班同學的出生年月、某班學生50米跑成績等。

      師:很好!下列問題也適合采用普查方式來收集數據嗎?

      (1)了解某批次炮彈的殺傷半徑;

      (2)某一天全國牛肉的平均價格;

      (3)一批罐頭產品的質量檢查;

      (4)對某條河的河水的污染情況的調查。

      學生討論、分析,并舉手回答。

      師:普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受到客觀條件(如人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。

      二、例題講解

      【例】(1)電視臺準備在某市調查一電視節目的收視率,需要對所有看電視的人進行全面調查嗎?對一所中學學生的調查結果能否作為該節目的`收視率?

      (2)對本年級同學是否喜歡某電視節目調查的結果,能代表學校全體同學的意見嗎?如果不適用,應如何改進調查方法?

      解:(1)電視臺不可能對每個看電視的人進行全面調查。對這?所中學學生的調查結果不能作為該節目的收視率,因為調查對象只有中學生,缺乏代表性;

      (2)對本年級同學是否喜歡某電視節目的調查結果不能代表

      《6。2普查與抽樣調查》課時練習

      2。下列事件中最適合使用普查方式收集數據的是()

      A。為制作校服,了解某班同學的身高情況

      B。了解全市初三學生的視力情況

      C。了解一種節能燈的使用壽命

      D。了解我省農民的年人均收入情況

      答案:A

      解析:解答:A。人數不多,適合使用普查方式,所以A正確;

      B。人數較多,結果的實際意義不大,因而不適用普查方式,所以B錯誤;

      C。是具有破壞性的調查,因而不適用普查方式,所以C錯誤;

      D。人數較多,結果的實際意義不大,因而不適用普查方式,所以D錯誤。

      故選:A。

      分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似。此題考查了抽樣調查和全面調查,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大時,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查選用普查。

      《6。2普查與抽樣調查》基礎鞏固

      1、(知識點1)要調查某校九年級550名學生周日的睡眠時間,下列調查對象選取最合適的是()

      A、選取該校一個班級的學生

      B、選取該校50名男生

      C、選取該校50名女生

      D、隨機選取該校50名九年級學生

      2、(題型二)下列調查適合用抽樣調查的是()

      A、了解義烏電視臺“同年哥講新聞”欄目的收視率

      B、了解禽流感H7N9確診病人同機乘客的健康狀況

      C、了解某班每個學生家庭電腦的數量

      D、“神七”載人飛船發射前對重要零部件的檢查

      3、(題型三)為了了解某市八年級男生的身高,有關部門準備對200名八年級男生的身高做調查,以下調查方案中比較合理的是()

      A、查閱外地200名八年級男生的身高統計資料

      B、測量該市一所中學200名八年級男生的身高

      C、測量該市兩所農村中學各100名八年級男生的身高

      D、在該市市區任選兩所中學,農村任選兩所中學,每所中學用抽簽的方法分別選出50名八年級男生,然后測量他們的身高

    初一數學上冊教案10

      【學習目標】

      1.掌握有理數的混合運算法則,并能熟練地進行有理數的加、減、乘、除、乘方的混合運算;

      2.通過計算過程的反思,獲得解決問題的經驗,體會在解決問題的過程中與他人合作的重要性;

      【學習方法】

      自主探究與合作交流相結合。

      【學習重難點】

      重點:能熟練地按照有理數的運算順序進行混合運算

      難點:在正確運算的基礎上,適當地應用運算律簡化運算

      【學習過程】

      模塊一預習反饋

      一、學習準備

      1.四則(加減乘除)混合運算的順序:先算_______,再算_______,如有括號,就先算__________.同級運算按照從___往___的順序依次計算。

      2.有理數的運算定律:__________________________________________________.

      3.請同學們閱讀教材p65—p66,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業。

      《2.11有理數的混合運算》課后作業

      9.用符號“>”“<”“=”填空.

      42+32________2×4×3;

      (-3)2+12________2×ok3w_ads("s002");

      《2.11有理數的混合運算》同步練習

      5、小亮的爸爸在一家合資企業工作,月工資2500元,按規定:其中800元是免稅的',其余部分要繳納個人所得稅,應納稅部分又要分為兩部分,并按不同稅率納稅,即不超過500元的部分按5%的稅率;超過500元不超過20xx元的部分則按10%的稅率,你能算出小亮的爸爸每月要繳納個人所得稅多少元?

    初一數學上冊教案11

      一、等式的概念和性質

      1.等式的概念,用等號“=”來表示相等關系的式子,叫做等式. 在等式中,等號左、右兩邊的式子,分別叫做這個等式的左邊、右邊.等式可以是數字算式,可以是公式、方程,也可以是用式子表示的運算律、運算法則.

      2.等式的類型楷體五號

      (1)恒等式:無論用什么數值代替等式中的字母,等式總能成立.如:數字算式 .

      (2)條件等式:只能用某些數值代替等式中的字母,等式才能成立.方程 需要 才成立.

      (3)矛盾等式:無論用什么數值代替等式中的字母,等式都不能成立.如 , .

      注意:等式由代數式構成,但不是代數式.代數式沒有等號.體五號

      3.等式的性質五號

      等式的性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式.若 ,則 ;

      等式的性質2:等式兩邊都乘以(或除以)同一個數(除數不能是0)或同一個整式,所得結果仍是等式.若 ,則 , .

      注意:

      (1)在對等式變形過程中,等式兩邊必須同時進行.即:同時加或同時減,同時乘以或同時除以,不能漏掉某一邊.

      (2)等式變形過程中,兩邊同加或同減,同乘或同除以的數或整式必須相同.

      (3)在等式變形中,以下兩個性質也經常用到:

      ①等式具有對稱性,即:如果 ,那么 .

      ②等式具有傳遞性,即:如果 , ,那么 .黑體小四

      二、方程的相關概念黑體小四

      1.方程,含有未知數的等式叫作方程. 注意:定義中含有兩層含義,即:方程必定是等式,即是用等號連接而成的式子;方程中必定有一個待確定的數即未知的字母.二者缺一不可.楷體五號

      2.方程的次和元 方程中未知數的最高次數稱為方程的次,方程中不同未知數的個數稱為元.楷體五號

      3.方程的已知數和未知數楷體五號

      已知數:一般是具體的數值,如 中( 的系數是1,是已知數.但可以不說).5和0是已知數,如果方程中的已知數需要用字母表示的話,習慣上有等表示.

      未知數:是指要求的數,未知數通常用 、 、 等字母表示.如:關于 、 的方程 中, 、 、 是已知數, 、 是未知數.楷體五號

      4.方程的解 使方程左、右兩邊相等的未知數的值,叫做方程的解.楷體五號

      5.解方程 求得方程的解的過程.

      注意:解方程與方程的解是兩個不同的概念,后者是求得的結果,前者是求出這個結果的過程.

      6.方程解的檢驗楷體要驗證某個數是不是一個方程的解,只需將這個數分別代入方程的左邊和右邊,如果左、右兩邊數值相等,那么這個數就是方程的解,否則就不是.黑體小四

      三、一元一次方程的定義體小四

      1.一元一次方程的概念 只含有一個未知數,并且未知數的最高次數是1,系數不等于0的方程叫做一元一次方程,這里的“元”是指未知數,“次”是指含未知數的項的最高次數.楷體五號

      2.一元一次方程的形式楷體五號

      標準形式: (其中 , , 是已知數)的形式叫一元一次方程的標準形式.

      最簡形式:方程 ( , , 為已知數)叫一元一次方程的最簡形式.

      注意:(1)任何一元一次方程都可以轉化為最簡形式或標準形式,所以判斷一個方程是不是一元一次方程,可以通過變形為最簡形式或標準形式來驗證.如方程 是一元一次方程.如果不變形,直接判斷就出會現錯誤.

      (2)方程 與方程 是不同的,方程 的解需要分類討論完成.黑體小四

      四、一元一次方程的解法

      1.解一元一次方程的一般步驟五號

      (1)去分母:在方程的兩邊都乘以各分母的最小公倍數. 注意:不要漏乘不含分母的項,分子是個整體,含有多項式時應加上括號.

      (2)去括號:一般地,先去小括號,再去中括號,最后去大括號. 注意:不要漏乘括號里的項,不要弄錯符號.

      (3)移項:把含有未知數的項都移到方程的一邊,不含未知數的項移到方程的另一邊. 注意:①移項要變號;②不要丟項.

      (4)合并同類項:把方程化成 的形式. 注意:字母和其指數不變.

      (5)系數化為1:在方程的兩邊都除以未知數的系數 ,得到方程的解 . 注意:不要把分子、分母搞顛倒.體五號

      2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整體思想、換元法、裂項、拆添項以及運用分式的恒等變形等.

      3.關于x的方程 ax b 解的情況 ⑴當a 0時,x ⑵當a ,b 0時,方程有無數多個解 ⑶當a 0,b 0時,方程無解

      練習1、等式的概念和性質

      1.下列說法不正確的是

      A.等式兩邊都加上一個數或一個等式,所得結果仍是等式.

      B.等式兩邊都乘以一個數,所得結果仍是等式. C.等式兩邊都除以一個數,所得結果仍是等式.

      D.一個等式的左、右兩邊與另一個等式的左、右兩邊分別相加,所得結果仍是等式.

      2.根據等式的性質填空.

      (1) ,則 ; (2) ,則 ;

      (3) ,則 ; (4) ,則 .

      練習2、方程的相關概念

      1.列各式中,哪些是等式?哪些是代數式,哪些是方程?

      ① ;② ;③ ;④ ;⑤ ;⑥ ;

      ⑦ ;⑧ ;⑨ .

      2.判斷題.

      (1)所有的方程一定是等式.

      (2)所有的等式一定是方程.

      (3) 是方程.

      (4) 不是方程.

      (5) 不是等式,因為 與 不是相等關系.

      (6) 是等式,也是方程.

      (7)“某數的3倍與6的差”的含義是 ,它是一個代數式,而不是方程.

      練習3、一元一次方程的定義

      1.在下列方程中哪些是一元一次方程?哪些不是?說明理由:

      (1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.

      2.已知 是關于 的一元一次方程,求 的值.

      3.已知方程 是關于x的一元一次方程,則m=_________

      4.已知方程 是一元一次方程,則 ; .

      練習4、一元一次方程的解與解法

      1)一元一次方程的解 一)、根據方程解的具體數值來確定

      1.若關于x的方程 的解是 ,則代數式 的值是_________。

      2.若 是方程 的一個解,則 .

      3.某同學在解方程 ,把 處的數字看錯了,解得 ,該同學把 看成了 .

      二)、根據方程解的個數情況來確定楷體五號

      1.關于 的方程 ,分別求 , 為何值時,原方程:

      (1)有唯一解;(2)有無數多解;(3)無解.

      2.已知關于 的方程 有無數多個解,那么 , .

      3.已知方程 有兩個不同的解,試求 的值.

      三)、根據方程定解的情況來確定楷體五號

      1.若 , 為定值,關于 的一元一次方程 ,無論 為何值時,它的解總是 ,求 和 的值.

      2.當 取符合 的任意數時,式子 的值都是一個定值,其中 ,求 , 的值.

      五號

      四)、根據方程整數解的情況來確定楷體五號

      1.已知 為整數,關于 的方程 的解為正整數,求 的值.

      2.已知關于 的方程 有整數解,那么滿足條件的所有整數 =

      3.若方程 有一個正整數解,則 取的最小正數是多少?并求出相應方程的解.

      號

      五)、根據方程公共解的情況來確定

      1.若 和 是關于 的同解方程,則 的值是 .

      2.已知關于 的方程 ,和方程 有相同的解,求這個相同的解.

      3.已知關于 的方程 僅有正整數解,并且和關于 的方程 是同解方程.若 , ,求出這個方程可能的解.

      2)一元一次方程的解法 一)、基本類型的一元一次方程的解法

      1.解方程:(1) (2) - =1- (3)

      二)、分式中含有小數的.一元一次方程的解法楷體五號

      1.解方程:(1) (2)

      (3) (4)

      三)、含有多層括號的一元一次方程的解法體五號

      1.解方程:(1) (2) (3)

      四)、一元一次方程的技巧解法

      1.解方程:(1) (2)

      (3) (4)

      一、填空題.(每小題3分,共24分)

      1.已知4x2n-5+5=0是關于x的一元一次方程,則n=_______.

      2.若x=-1是方程2x-3a=7的解,則a=_______.

      3.當x=______時,代數式 x-1和 的值互為相反數.

      4.已知x的 與x的3倍的和比x的2倍少6,列出方程為________.

      5.在方程4x+3y=1中,用x的代數式表示y,則y=________.

      6.某商品的進價為300元,按標價的六折銷售時,利潤率為5%,則商品的標價為____元.

      7.已知三個連續的偶數的和為60,則這三個數是________.

      8.一件工作,甲單獨做需6天完成,乙單獨做需12天完成,若甲、乙一起做,則需________天完成.

      二、選擇題.(每小題3分,共30分)

      9.方程2m+x=1和3x-1=2x+1有相同的解,則m的值為.

      A.0 B.1 C.-2 D.-

      10.方程│3x│=18的解的情況是.

      A.有一個解是6 B.有兩個解,是±6

      C.無解 D.有無數個解

      11.若方程2ax-3=5x+b無解,則a,b應滿足.

      A.a≠ ,b≠3 B.a= ,b=-3

      C.a≠ ,b=-3 D.a= ,b≠-3

      12.解方程 時,把分母化為整數,得。

      A、 B、 C、 D、

      13.在800米跑道上有兩人練中長跑,甲每分鐘跑300米,乙每分鐘跑260米,兩人同地、同時、同向起跑,t分鐘后第一次相遇,t等于.

      A.10分 B.15分 C.20分 D.30分

      14.某商場在統計今年第一季度的銷售額時發現,二月份比一月份增加了10%,三月份比二月份減少了10%,則三月份的銷售額比一月份的銷售額.

      A.增加10% B.減少10% C.不增也不減 D.減少1%

      15.在梯形面積公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,則b=( )厘米.

      A.1 B.5 C.3 D.4

      16.已知甲組有28人,乙組有20人,則下列調配方法中,能使一組人數為另一組人數的一半的是.

      A.從甲組調12人去乙組 B.從乙組調4人去甲組

      C.從乙組調12人去甲組 D.從甲組調12人去乙組,或從乙組調4人去甲組

      17.足球比賽的規則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了場.

      A.3 B.4 C.5 D.6

      18.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?

      A.3個 B.4個 C.5個 D.6個

      三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)

      19.解方程:2(x-3)+3(2x-1)=5(x+3)

      20.解方程:

      21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.

      22.一個三位數,百位上的數字比十位上的數大1,個位上的數字比十位上數字的3倍少2.若將三個數字順序顛倒后,所得的三位數與原三位數的和是1171,求這個三位數.

      23.據了解,火車票價按“ ”的方法來確定.已知A站至H站總里程數為1500千米,全程參考價為180元.下表是沿途各站至H站的里程數:

      車站名 A B C D E F G H

      各站至H站

      里程數(米) 1500 1130 910 622 402 219 72 0

      例如:要確定從B站至E站火車票價,其票價為 =87.36≈87(元).

      (1)求A站至F站的火車票價(結果精確到1元).

      (2)旅客王大媽乘火車去女兒家,上車過兩站后拿著車票問乘務員:“我快到站了嗎?”乘務員看到王大媽手中的票價是66元,馬上說下一站就到了.請問王大媽是在哪一站下的車(要求寫出解答過程).

      24.某公園的門票價格規定如下表:

      購票人數 1~50人 51~100人 100人以上

      票 價 5元 4.5元 4元

      某校初一甲、乙兩班共103人(其中甲班人數多于乙班人數)去游該公園,如果兩班都以班為單位分別購票,則一共需付486元.

      (1)如果兩班聯合起來,作為一個團體購票,則可以節約多少錢?

      (2)兩班各有多少名學生?(提示:本題應分情況討論)

    初一數學上冊教案12

      一、教學目標:

      1.知識目標:

      使學生理解同類項的概念和合并同類項的意義,學會合并同類項。

      2.能力目標:

      培養學生觀察、分析、歸納和動手解決問題的能力,初步使學生了解數學的分類思想。

      3.情感目標:

      借助情感因素,營造親切和諧活潑的課堂氣氛,激勵全體學生積極參與教學活動。培養他們團結協作,嚴謹求實的學習作風和鍥而不舍,勇于創新的精神。

      二、教學重點、難點:

      重點:同類項的概念和合并同類項的法則

      難點:合并同類項

      三、教學過程:

      (一)情景導入:

      1、觀察下面的圖片,并將這些圖片分類:

      你是依據什么來進行分類的呢?

      生活中,我們常常為了需要把具有相同特征的事物歸為一類。

      2、對下列水果進行分類:

      (二)新知探究1:

      1、對下列八個單項式進行分類:

      a,6_2,5,cd,-1,2_2,4a,-2cd

      這些被歸為同一類的項有什么相同的特征?

      2、揭示同類項的概念。

      同類項:所含字母相同,并且相同字母的指數也相同的`項,叫做同類項。另外,所有的常數項都是同類項。

      《3.4合并同類項》同步練習

      1.已知代數式2a3bn+1與-3am-2b2是同類項,則2m+3n=________.

      2.若-4_ay+_2yb=-3_2y,則a+b=_______.

      3.下面運算正確的是( )

      A.3a+2b=5ab B.3a2b-3ba2=0

      C.3_2+2_3=5_5 D.3y2-2y2=1

      4.已知一個多項式與3_2+9_的和等于3_2+4_-1,則這個多項式是( )

      A.-5_-1 B.5_+1

      C.-13_-1 D.13_+1

      《3.4合并同類項》測試

      1.下列說法中,正確的是( )

      A.字母相同的項是同類項

      B.指數相同的項是同類項

      C.次數相同的項是同類項

      D.只有系數不同的項是同類項

    初一數學上冊教案13

      〖教學目的〗

      〖知識與技能目標:〗理解有理數減法的意義。

      〖過程與方法:〗會進行有理數減法運算

      〖情感態度與價值觀:〗

      有意識培養學生學習數學的信心和克服困難的勇氣,從中體味成功的快樂.

      〖教學重點、難點:〗重點:異號兩數相減。難點:異號兩數相減。

      〖教學方法:〗引導發現法

      〖教具準備:〗尺、小黑板。

      〖教學過程:〗

      Ⅰ.復習提問:

      1.敘述有理數加法法則。

      2.兩個有理數的和一定大于每一個加數嗎?

      3.10比3大多少?10比-3大多少?-10比3大多少?如何計算?

      4.3-10有意義嗎?它應當等于多少?

      注:問2是要向學生強調,兩數的和不一定大于每一個加數,一個數加一個非零的'有理數,其和可能增加也可能減少。問3是向學生說明求一個數比另一個數大多少在有理數范圍內同樣要用減法運算。問2和問3都是為了引入新課而設計的。

      Ⅱ.新課講解:

      1.由問2、問3講解有理數減法的意義。

      在正有理數范圍內3-10是沒有意義的,因為3比10小,問3比10大多少,問題的本身就有問題,但引入負數就不同了。如果你有3元錢向售貨員買了10元的物品,如果售貨員讓你先把物品拿走,那么你將欠售貨員7元。這件事實如用算式表達,即3-10=-7。

      由實際運算的例子歸納有理微減法法則。

      考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,

      (-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

      等式左邊的運算結果,用減法意義求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或畫數軸,讓學生觀察得出。考察以上計算后。提問:減法是否都可轉化為加法計算?啟發學生自己得出有理數減法法則:減去一個數等于加上這個數的相反數。

      3.講解例題:

      (l)補充例題:問15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

      解:∵15-5=10,∴15℃比5℃高10℃;

      ∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

      ∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

      比15℃低20℃。

      (2)教科書例1、例2。

      Ⅲ.做一做

      課堂練習:教科書第82頁練習第1~3題。

      Ⅳ.課時小結

      有理數減法的意義。

      Ⅴ.課后作業

      1.習題2.6A組第1~9題,B組選做。

      《2.5有理數的減法》同步練習

      2.(題型一)李明的練習冊上有這樣一道題:計算|(-3)+_|,其中“_”是被墨水污染而看不到的一個數,他翻看了后邊的答案得知該題的計算結果為6,那么“_”表示的數應該是.

      3.(考點一)計算:(1)-2- (+10);

      (2)0-(-3.6);

      (3)(-30)-(-6)-(+6)-(-15);

      《2.5有理數的減法》測試

      16.下表記錄了七年級(1)班一個組學生的體重與標準體重的差(正號表示比標準體重重,負號表示比標準體重輕),標準體重是50 kg.

      姓名小明小丁小麗小文小天小樂

      體重與標準體重的差(kg)-5+3-7+4+60

      (1)誰最重?誰最輕?

      (2)最重的比最輕的重多少千克?

    初一數學上冊教案14

      《1.2有理數》教學設計

      【學習目標】:

      1、掌握有理數的 概念,會對有理數按一定標準進行分類,培養分類能力;

      2、了解分類的標準 與集合的含義;

      3、體驗分類是數學上常用的處理問題方法;

      【學習重點】:正確理解有理數的概念

      【學習難點】:正確理解分類的標準和按照一定標準分類

      《1.2.1有理數》同步練習含答案

      5.對-3.14,下面說法正確的是(B)

      A.是負數,不是分數

      B.是負數,也是分數

      C.是分數,不是有理數

      D.不是分數,是有理數

      《1.2有理數》同步練習含答案解析

      8.如果a與1互為相反數,則|a|=( )

      A.2 B.﹣2 C.1 D.﹣1

      【考點】絕對值;相反數.

      【分析】根據互為相反數的定義,知a=﹣1,從而求解.

      互為相反數的定義:只有符號不同的兩個數叫互為相反數.

      【解答】解:根據a與1互為相反數,得

      a=﹣1.

      所以|a|=1.

      故選C.

      【點評】此題主要是考查了相反數的'概念和絕對值的性質.

      9.若|1﹣a|=a﹣1,則a的取值范圍是( )

      A.a>1 B.a≥1 C.a<1 D.a≤1

      【考點】絕對值.

      【分析】根據|1﹣a|=a﹣1得到1﹣a≤0,從而求得答案.

      【解答】解:∵|1﹣a|=a﹣1,

      ∴1﹣a≤0,

      ∴a≥1,

      故選B.

      【點評】本題考查了絕對值的求法,解題的關鍵是了解非正數的絕對值是它的相反數,難度不大.

    初一數學上冊教案15

      教學目標:

      知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。

      過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。

      情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的信心。

      教學重點:掌握有理數的兩種分類方法

      教學難點:給定的數字將被填入它所屬的集合中

      教學方法:問題導向法

      學習方法:自主探究法

      一、形勢歸納

      小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?

      1.有以下數字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

      (1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?

      (2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?

      稱整數和分數為有理數。(指點題,板書)

      二、自學指導

      學生自學課本,根據課本尋找自學的機會

      提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。

      附:自學提綱:

      1.___________、____、_______統稱為整數,

      2._______和_________統稱為分數

      3.____ ______統稱為有理數,

      4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數: 、分數:;正整數:、負整數: 、正分數: 、負分數:.

      三、展示歸納

      1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;

      2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;

      3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。

      四、變式練習

      逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。

      1.整數可分為:_____、______和_______,分數可分為:_______和_________.有理數按符號不同可分為正有理數,_______和________.

      2.判斷下列說法是否正確,并說明理由。

      (1)有理數包括有整數和分數.

      (2)0.3不是有理數.

      (3)0不是有理數.

      (4)一個有理數不是正數就是負數.

      (5)一個有理數不是整數就是分數

      3.所有的正整數組成正整數集合,所有負整數組成負整數集合,依次類推有正數集合、負數集合、整數集合、分數集合等,把下面的`有理數填入它屬于的集合中(大括號內,將各數用逗號分開):

      楊桂花:1.2.1有理數教學設計

      正數集合:{ …}負數集合:{ …}

      正整數集合:{ …}負分數集合:{ …}

      4.下列說法正確的是( )

      A.0是最小的正整數

      B.0是最小的有理數

      C.0既不是整數也不是分數

      D. 0既不是正數也不是負數

      5、下列說法正確的有( )

      (1)整數就是正整數和負整數(2)零是整數,但不是自然數(3)分數包括正分數和負分數(4)正數和負數統稱為有理數(5)一個有理數,它不是整數就是分數

      五、總結與反思:通過本節課的學習,你有什么收獲?

      六、作業:必做題:課本14頁:1、9題

    【初一數學上冊教案】相關文章:

    初一的數學上冊教案11-09

    初一數學上冊教案12-13

    初一數學上冊的教案12-23

    初一數學上冊教案12-18

    初一上冊的數學教案11-13

    初一上冊數學教案01-04

    初一的數學上冊教案精選15篇11-11

    初一的數學上冊教案(15篇)11-11

    初一的數學上冊教案15篇11-10

    初一數學上冊教案(15篇)12-13

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲人成网77777大伊香蕉 | 亚洲中文字幕国产精品 | 色婷婷AⅤ一区二区三区 | 免费精品国自产拍在线 | 五月天一区二区在线观看 | 亚洲中文字幕91在线 |