1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>高二數學教案>高二上冊數學教案

    高二上冊數學教案

    時間:2025-06-12 09:26:10 小英 高二數學教案 我要投稿

    高二上冊數學教案(精選17篇)

      在教學工作者實際的教學活動中,時常要開展教案準備工作,教案有助于順利而有效地開展教學活動。那么教案應該怎么寫才合適呢?以下是小編收集整理的高二上冊數學教案,僅供參考,希望能夠幫助到大家。

    高二上冊數學教案(精選17篇)

      高二上冊數學教案 1

      教學目標:

      1、會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

      2、能根據幾何結構特征對空間物體進行分類。

      3、提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。

      教學重難點:

      教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

      教學難點:柱、錐、臺、球的結構特征的概括。

      教學過程:

      1、情景導入

      教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。

      2、展示目標、檢查預習

      3、合作探究、交流展示

      (1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

      (2)組織學生分組討論,每小組選出一名同學發表本組討論結果。

      在此基礎上得出棱柱的主要結構特征。

      (1)有兩個面互相平行;

      (2)其余各面都是平行四邊形;

      (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

      (3)提出問題:請列舉身邊的棱柱并對它們進行分類

      (4)以類似的`方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

      (5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。

      (6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

      (7)教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。

      4、質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。

      (1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

      (2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

      (3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

      (4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

      (5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

      高二上冊數學教案 2

      一、教學內容分析

      圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象、恰當地利用xx解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

      二、學生學習情況分析

      我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

      三、設計思想

      由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率、

      四、教學目標

      1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用xx解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

      2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

      3、借助多媒體輔助教學,激發學習數學的興趣、

      五、教學重點與難點:

      教學重點

      1、對圓錐曲線定義的理解

      2、利用圓錐曲線的定義求“最值”

      3、“定義法”求軌跡方程

      教學難點:

      巧用圓錐曲線xx解題

      六、教學過程設計

      【設計思路】

      開門見山,提出問題

      例題:

      (1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。

      (a)橢圓(b)雙曲線(c)線段(d)不存在

      (2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。

      (a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線

      【設計意圖】

      定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

      為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的'運用為主線,精心準備了兩道練習題。

      【學情預設】

      估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

      在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

      高二上冊數學教案 3

      教學目標

      1.掌握分析法證明不等式;

      2.理解分析法實質--執果索因;

      3.提高證明不等式證法靈活性。

      教學重點分析法

      教學難點分析法實質的理解

      教學方法 啟發引導式

      教學活動

      (一)導入 新課

      (教師活動)教師提出問題,待學生回答和思考后點評。

      (學生活動)回答和思考教師提出的問題。

      [問題1]我們已經學習了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?

      [問題 2]能否用比較法或綜合法證明不等式:

      [點評]在證明不等式時,若用比較法或綜合法難以下手時,可采用另一種證明方法:分析法。(板書課題)

      設計意圖:復習已學證明不等式的方法。指出用比較法和綜合法證明不等式的不足之處,激發學生學習新的證明不等式知識的積極性,導入 本節課學習內容:用分析法證明不等式。

      (二)新課講授

      【嘗試探索、建立新知】

      (教師活動)教師講解綜合法證明不等式的邏輯關系,然后提出問題供學生研究,并點評。幫助學生建立分析法證明不等式的知識體系。投影分析法證明不等式的概念。

      (學生活動)與教師一道分析綜合法的邏輯關系,在教師啟發、引導下嘗試探索,構建新知。

      [講解]綜合法證明不等式的邏輯關系:以已知條件中的不等式或基本不等式作為結論,逐步尋找它成立的必要條件,直到必要條件就是要證明的不等式。

      [問題1]我們能不能用同樣的思考問題的方式,把要證明的不等式作為結論,逐步去尋找它成立的充分條件呢?

      [問題2]當我們尋找的充分條件已經是成立的不等式時,說明了什么呢?

      [問題3]說明要證明的不等式成立的理由是什么呢?

      [點評]從要證明的結論入手,逆求使它成立的充分條件,直到充分條件顯然成立為止,從而得出要證明的結論成立。就是分析法的邏輯關系。

      [投影]分析法證明不等式的概念。(見課本)

      設計意圖:對比綜合法的邏輯關系,教師層層設置問題,激發學生積極思考、研究。建立新的知識;分析法證明不等式。培養學習創新意識。

      【例題示范、學會應用】

      (教師活動)教師板書或投影例題,引導學生研究問題,構思證題方法,學會用分析法證明不等式,并點評用分析法證明不等式必須注意的問題。

      (學生活動)學生在教師引導下,研究問題,與教師一道完成問題的論證。

      例1 求證

      [分析]此題用比較法和綜合法都很難入手,應考慮用分析法。

      證明:(見課本)

      [點評]證明某些含有根式的不等式時,用綜合法比較困難。此例中,我們很難想到從“ ”入手,因此,在不等式的證明中,分析法占有重要的位置,我們常用分析法探索證明途徑,然后用綜合法的形式寫出證明過程,這是解決數學問題的一種重要思維方法,事實上,有些綜合法的表述正是建立在分析法思索的基礎上,分析法的優越性正體現在此。

      例2 已知: ,求證: (用分析法)請思考下列證法有沒有錯誤?若有錯誤,錯在何處?

      [投影]證法一:因為 ,所以 、去分母,化為 ,就是 .由已知 成立,所以求證的不等式成立。

      證法二:欲證 ,因為

      只需證 ,即證 ,即證

      因為 成立,所以 成立。

      (證法二正確,證法一錯誤。錯誤的原因是:雖然是從結論出發,但不是逐步逆戰結論成立的充分條件,事實上找到明顯成立的不等式是結論的必要條件,所以不符合分析法的邏輯原理,犯了邏輯上的錯誤。)

      [點評]①用分析法證明不等式的邏輯關系是:

      (結論)(步步尋找不等式成立的充分條件)(結論)

      分析法是“執果索因”,它與綜合法的證明過程(由因導果)恰恰相反。②用分析法證明時要注意書寫格式。分析法論證“若A則B”這個命題的書寫格式是:

      要證命題B為真,只需證明 為真,從而有……

      這只需證明 為真,從而又有……

      ……

      這只需證明A為真。

      而已知A為真,故命題B必為真。

      要理解上述格式中蘊含的邏輯關系。

      [投影] 例3 證明:通過水管放水,當流速相同時,如果水管截面(指橫截面,下同)的`周長相等,那么截面是圓的水管比截面是正方形的水管流量大。

      [分析]設未知數,列方程,因為當水的流速相同時,水管的流量取決于水管截面面積的大小,設截面的周長為 ,則周長為 的圓的半徑為 ,截面積為 ;周長為 的正方形邊長為 ,截面積為 ,所以本題只需證明:

      證明:(見課本)

      設計意圖:理解分析法與綜合法的內在聯系,說明分析法在證明不等式中的重要地位。掌握分析法證明不等式,特別重視分析法證題格式及格式中蘊含的邏輯關系。靈活掌握分析法的應用,培養學生應用數學知識解決實際問題的能力。

      高二上冊數學教案 4

      一、教學目標:

      1、知識與技能目標

      ①理解循環結構,能識別和理解簡單的框圖的功能。

      ②能運用循環結構設計程序框圖解決簡單的問題。

      2、過程與方法目標

      通過模仿、操作、探索,學習設計程序框圖表達,解決問題的過程,發展有條理的思考與表達的能力,提高邏輯思維能力。

      3、情感、態度與價值觀目標

      通過本節的自主性學習,讓學生感受和體會算法思想在解決具體問題中的意義,增強學生的創新能力和應用數學的意識。三、教法分析

      二、教學重點、難點

      重點:理解循環結構,能識別和畫出簡單的循環結構框圖,

      難點:循環結構中循環條件和循環體的確定。

      三、教法、學法

      本節課我遵循引導發現,循序漸進的思路,采用問題探究式教學。運用多媒體,投影儀輔助。倡導“自主、合作、探究”的學習方式。

      四、 教學過程:

      (一)創設情境,溫故求新

      引例:寫出求 的值的一個算法,并用框圖表示你的算法。

      此例由學生動手完成,投影展示學生的做法,師生共同點評。鼓勵學生一題多解——求創。

      設計引例的目的是復習順序結構,提出遞推求和的方法,導入新課。此環節旨在提升學生的求知欲、探索欲,使學生保持良好、積極的情感體驗。

      (二)講授新課

      1、循序漸進,理解知識

      【1】選擇“累加器”作為載體,借助“累加器”使學生經歷把“遞推求和”轉化為“循環求和”的過程,同時經歷初始化變量,確定循環體,設置循環終止條件3個構造循環結構的關鍵步驟。

      (1)將“遞推求和”轉化為“循環求和”的緣由及轉化的方法和途徑

      引例“求 的值”這個問題的自然求和過程可以表示為:

      用遞推公式表示為:

      直接利用這個遞推公式構造算法在步驟 中使用了 共100個變量,計算機執行這樣的算法時需要占用較大的內存。為了節省變量,充分體現計算機能以極快的.速度進行重復計算的優勢,需要從上述遞推求和的步驟 中提取出共同的結構,即第n步的結果=第(n-1)步的結果+n。若引進一個變量 來表示每一步的計算結果,則第n步可以表示為賦值過程 。

      (2)“ ”的含義

      利用多媒體動畫展示計算機中累加器的工作原理,借助形象直觀對知識點進行強調說明① 的作用是將賦值號右邊表達式 的值賦給賦值號左邊的變量 。

      ②賦值號“=”右邊的變量“ ”表示前一步累加所得的和,賦值號“=”左邊的“ ”表示該步累加所得的和,含義不同。

      ③賦值號“=”與數學中的等號意義不同。 在數學中是不成立的。

      借助“累加器”既突破了難點,同時也使學生理解了 中 的變化和 的含義。

      (3)初始化變量,設置循環終止條件

      由 的初始值為0, 的值由1增加到100,可以初始化循環變量和設置循環終止條件。

      【2】循環結構的概念

      根據指定條件決定是否重復執行一條或多條指令的控制結構稱為循環結構。

      教師學生一起共同完成引例的框圖表示,并由此引出本節課的重點知識循環結構的概念。這樣講解既突出了重點又突破了難點,同時使學生體會了問題的抽象過程和算法的構建過程。還體現了我們研究問題常用的“由特殊到一般”的思維方式。

      2、類比探究,掌握知識

      例1:改造引例的程序框圖表示①求 的值

      ②求 的值

      ③求 的值

      ④求 的值

      此例可由學生獨立思考、回答,師生共同點評完成。

      通過對引例框圖的反復改造逐步幫助學生深入理解循環結構,體會用循環結構表達算法,關鍵要做好三點:①確定循環變量和初始值②確定循環體③確定循環終止條件。

      高二上冊數學教案 5

      教學內容:冀教版義務教育課程標準試驗教科書一年級下冊86~87頁兩位數減一位數(退位)

      教材分析:本課通過"孫悟空請客"的情境引出新課34-8,激發起學生的學習興趣。再組織學生動手擺小棒試算,小組討論交流擺、試算的過程及方法,充分發揮學生的主體作用;"師徒改造花果山",培養學生自學用豎式計算的能力;"唐僧、八戒、沙僧植樹,綠化花果山",鞏固知識。

      學生分析:100以內的兩位數減一位數的退位減法是在學習20以內的兩位數減一位數的退位減法后進行的,學生已經對兩位數減一位數的`退位減法有一定的知識基礎,掌握了退位減法的算理。本班多數學生對兩位數減一位數的退位減法是容易接受的。

      設計理念:激趣引入新課,以"孫悟空請客",為情境引入新課提高了學生的興趣。以學生自主探究新知為主要學習方式,學生擺小棒,自學豎式計算的方法,為學生提供了積極思考、自主探究的空間。

      德育目標:對學生進行環境保護教育,增強保護環境意識。

      知識目標:

      1、在操作、試算的過程中,學習兩位數減一位數(退位)的計算方法。

      2、學會用豎式計算兩位數減一位數(退位),理解"個位不夠減從十位借1再減的道理。

      能力目標:培養學生動手、動口、動腦的能力。

      教學重點:掌握兩位數減一位數(退位)的計算方法。學會用豎式計算。

      教學難點:理解"個位不夠減,從十位借1再減的道理。

      教學方法:操作法、直觀演示法、自學法、討論法

      教具:投影片、學具:小棒、卡片

      板書設計(略)

      教學過程:

      一、情境引入

      1 、情境引入"孫悟空請客""34-8"

      師:今天,我給同學們講一個西游記后轉的故事:

      孫悟空回到花果山,時間久了,想請師傅和師弟聚聚。于是打電話讓師傅和師弟星期天來花果山。星期天唐僧、八戒、沙僧到了。花果山一片荒涼,水簾洞也只有斷斷續續的幾滴水。一打聽,孫悟空為掙錢,開了鐵礦,破壞了環境,毀壞不少山林。

      孫悟空去果園里摘桃子,他只摘了34個桃子,豬八戒吃了8個

      唐僧給沙僧提出一個問題:34個桃子,八戒吃了8個,還剩幾個桃子?

      師:你能幫沙僧算算嗎?怎樣列算式

      生:34-8

      師:同學們真聰明!同時教師板書34-8

      2 、學生通過擺小棒試算出結果(學生操作,教師巡視)

      全班交流自己是怎樣擺小棒的。可能有以下兩種算法㈠從34里拿出14,14減8得6,20加6得26。㈡從34里拿出10,10減8得2,24加2得26。教師板書(略)

      3 、豎式計算

      讓學生自學用豎式計算的方法。學生自學,教師巡回指導。

      4 、學生匯報自學結果及發現的問題,教師隨學生匯報的自學結果。板書略。

      重點理解十位數字上的重點符號表示退位。引出個位不夠減,從十位借一再減的計算方法。

      二、嘗試練習

      投影出示87頁"試一試"61-942-794-6學生獨立計算同桌討論交流。

      三、八戒贈樹知識應用

      孫悟空覺得很沒面子,就再次去果園,唐僧、八戒、沙僧隨后。到了果園一看,桃樹38棵,干枯了9棵,蘋果樹43棵,干枯了6棵,杏樹80棵,干枯了7棵。同學們算算,桃樹還剩幾棵?蘋果樹還剩幾棵?杏樹還活幾棵?

      1、38-943-680-7

      指3名學生板演,其他學生練習本上做,做完后集體訂正。

      八戒直搖頭:"可惜,可惜。我雖然好吃懶做,但我把取經途中的遇到的好的果樹移植到我家,經過這幾年培育,都成了優良品種,如不嫌棄,我送你幾棵,改良一下你這里的品種。也防止沙土流失,還花果山本來面目,順便也嘗嘗我的水果" 。

      2、還需植多少棵樹?

      師:八戒打個電話,汽車拉著優良品種果樹和水果,來到花果山。于是,唐僧、八戒、沙僧、孫悟空帶領猴子們開始植樹。咱們幫幫孫悟空植樹,好不好?打開書看87頁第二題的圖,請你仔細觀察圖意并列式計算,重點說算法。一共55棵,已經植了8棵,還要植幾棵?

      3、品嘗水果

      出示卡片,學生搶答。87頁3題。

      四、小游戲拓展延伸

      植完樹,休息一會兒,我們做個游戲。我這里有5張卡片,在黑板上貼出"2、5、7、-、=",你們桌子上也有這樣的卡片,我們用這些卡片來做一個數學游戲,你能列出幾個式子。

      游戲規則:1、用這些卡片擺成兩位數減一位數的退位減法2、同桌一組,一人擺一人算。

      全班交流,教師板書25-772-552-7

      同學們用豎式計算出結果。

      五、自主小天地

      師:唐僧、八戒、沙僧告別花果山。通過"孫悟空請客",我們學習了哪些知識?

      自己編題,寫在"自主小天地"中。

      高二上冊數學教案 6

      教學目標

      (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

      (2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

      (3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點.

      (4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

      (5)進一步理解數形結合的思想方法.

      教學建議

      教材分析

      (1)知識結構

      曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質.曲線方程的概念和求曲線方程的問題又有內在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質則更在其后,本節不予研究.因此,本節涉及曲線方程概念和求曲線方程兩大基本問題.

      (2)重點、難點分析

      ①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想.

      ②本節的難點是曲線方程的概念和求曲線方程的方法.

      教法建議

      (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系.曲線與方程對應關系的基礎是點與坐標的對應關系.注意強調曲線方程的完備性和純粹性.

      (2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

      (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

      (4)從集合與對應的觀點可以看得更清楚:

      設表示曲線上適合某種條件的點的集合;

      表示二元方程的解對應的點的坐標的集合.

      可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

      (5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。

      這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即文字語言中的幾何條件?數學符號語言中的等式數學符號語言中含動點坐標,的代數方程簡化了的代數方程。

      由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程。”

      (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。

      教學設計示例

      課題:求曲線的方程(第一課時)

      教學目標:

      (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題。

      (2)進一步理解曲線的方程和方程的曲線。

      (3)初步掌握求曲線方程的方法。

      (4)通過本節內容的教學,培養學生分析問題和轉化的能力。

      教學重點、難點:求曲線的方程。

      教學用具:計算機。

      教學方法:啟發引導法,討論法。

      教學過程:

      【引入】

      1.提問:什么是曲線的方程和方程的曲線.

      學生思考并回答.教師強調.

      2.坐標法和解析幾何的意義、基本問題.

      對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的.性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

      (1)根據已知條件,求出表示平面曲線的方程.

      (2)通過方程,研究平面曲線的性質.

      事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節課就初步研究曲線方程的求法.

      【問題】

      如何根據已知條件,求出曲線的方程.

      【實例分析】

      例1:設、兩點的坐標是、(3,7),求線段的垂直平分線的方程.

      首先由學生分析:根據直線方程的知識,運用點斜式即可解決.

      解法一:易求線段的中點坐標為(1,3),

      由斜率關系可求得l的斜率為

      于是有

      即l的方程為

      ①

      分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據是什么,有證明嗎?

      (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條).

      證明:(1)曲線上的點的坐標都是這個方程的解.

      設是線段的垂直平分線上任意一點,則

      即

      將上式兩邊平方,整理得

      這說明點的坐標是方程的解.

      (2)以這個方程的解為坐標的點都是曲線上的點.

      設點的坐標是方程①的任意一解,則

      到、的距離分別為

      所以,即點在直線上.

      綜合(1)、(2),①是所求直線的方程.

      至此,證明完畢.回顧上述內容我們會發現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

      解法二:設是線段的垂直平分線上任意一點,也就是點屬于集合

      由兩點間的距離公式,點所適合的條件可表示為

      將上式兩邊平方,整理得

      果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優越一些);至于第二條上邊已證.

      這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想.因此是個好方法.

      讓我們用這個方法試解如下問題:

      例2:點與兩條互相垂直的直線的距離的積是常數求點的軌跡方程.

      分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

      求解過程略.

      【概括總結】通過學生討論,師生共同總結:

      分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:

      首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

      (1)建立適當的坐標系,用有序實數對例如表示曲線上任意一點的坐標;

      (2)寫出適合條件的點的集合

      ;

      (3)用坐標表示條件,列出方程;

      (4)化方程為最簡形式;

      (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

      一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

      上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

      下面再看一個問題:

      例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程.

      【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.

      解:設點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

      由距離公式,點適合的條件可表示為

      ①

      將①式移項后再兩邊平方,得

      化簡得

      由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為,它是關于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

      【練習鞏固】

      題目:在正三角形內有一動點,已知到三個頂點的距離分別為、 、,且有,求點軌跡方程.

      分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設、的坐標為、,則的坐標為,的坐標為.

      根據條件,代入坐標可得

      化簡得

      ①

      由于題目中要求點在三角形內,所以,在結合①式可進一步求出、的范圍,最后曲線方程可表示為

      【小結】師生共同總結:

      (1)解析幾何研究研究問題的方法是什么?

      (2)如何求曲線的方程?

      (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

      【作業】課本第72頁練習1,2,3;

      【板書設計】

      §7.6求曲線的方程

      坐標法:

      解析幾何:

      基本問題:

      高二上冊數學教案 7

      一、學習者特征分析

      本節課內容是面向高二下學期的學生,主要是進行思維的訓練。學生在高一的時候已經學過這些數學思維方法,但是對這些知識還沒有進行概念化的歸納和專門的訓練。學生不知道分析法和綜合法的時候還是會用一點,以以往的經驗,學生一旦學習概念后,反而覺得難度大,概念混淆,因此,這一教學內容的設計是針對學生的這一情況,設計專題學習網站,通過學生之間經過學習,交流,課后反復思考的,進一步深化概念的過程,培養學生的數學思維能力。

      二、教學目標

      知識與技能

      1. 體會數學思維中的分析法和綜合法;

      2. 會用分析法和綜合法去解決問題。

      過程與方法

      1. 通過對分析法綜合法的學習,培養學生的數學思維能力;

      2. 培養學生的數學閱讀和理解能力;

      3. 培養學生的評價和反思能力。

      情感態度與價值觀

      1. 交流、分享運用數學思維解決問題的喜悅;

      2. 提高學生學習數學的興趣;

      3. 增強學習數學的信心。

      三、教學內容

      本節課是數學思維訓練專題課,專門訓練學生利用分析法和綜合法解題。分析法在數學中特指從結果(結論)出發追溯其產生原因的思維方法,即執果索因法。綜合思維方法:綜合是以已知性質和分析為基礎的,從已知出發逐步推求位未知的思考方法,即執果導因法。這兩種數學思維方法是數學思維方法中最基礎也是最重要的方法,是學生的思維訓練的重要內容。

      四、教學策略的設計

      1. 情境的設計

      情境描述

      情境簡要描述

      呈現方式

      趣味問題

      從前有個國王在處死那些犯了罪的臣子的時候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國王,國王判他死罪,他所面臨的問題是:“這里有三個盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個盒子內,每只盒子各寫一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個盒子里,就免你一死罪。”聰明的亞瑟經過推理而獲知免死金牌所放的盒子,從而救了自己的命,請問亞瑟是如何推理的?

      網頁

      2. 教學資源的設計

      資源類型

      資源內容簡要描述

      資源來源

      相關故事

      通過有趣的推理故事,如“推理救命的故事”,“寶藏的故事,用于激發學生的學習興趣。

      網上下載

      學習網站

      專題學習網站,嵌入了經過修改適用于本課的論壇,在線測試等。

      自行制作

      3. 教學工具:計算機

      4. 教學策略:自主探究學習策略,任務驅動策略、反思策略

      5. 教學環境:網絡教室

      五、教學流程設計

      1、創設情景,吸引學生注意

      教師活動

      學生活動

      資源/工具

      設計思想

      提出“推理救命問題”

      積極思考,尋找方法

      學習網站

      以具有趣味性的故事入手,吸引學生的注意,點明本節課的目的。

      2、自主探究,獲取知識

      教師活動

      學生活動

      資源/工具

      設計思想

      1、初試牛刀:讓學生試做思維訓練題。

      2、挑戰高考題:在高考題中充分體現分析法,綜合法。

      3、舉一反三:讓學生學會總結

      學以致用:

      4、把本節的方法應用到解決數學問題中。

      積極思考,互相交流,發現問題,解決問題。

      學習網站

      1、讓學生在輕松活潑的氛圍下帶著問題,自主、積極地學習,有助于培養學生的自我探索的能力。

      2、超級鏈接控制性好,交互性強,可讓學生在較短的時間內收集積累更多的信息,拓寬學生的知識面。

      3、培養學生收集信息、處理信息的'能力。

      3、總結概念,深化概念

      教師活動

      學生活動

      資源/工具

      設計思想

      歸納本節的方法:分析法和綜合法。并指出:數學思維的訓練不單只是一節簡單的專題課,我們的同學在平常多留心身邊事物,多思考問題,不斷提高數學思維能力。

      體會分析法和綜合法的概念,并在論壇上發表自己對概念的理解。

      學習網站論壇

      通過對具體問題的概念化,加深對概念的理解。

      4、自主交流,知識遷移

      教師活動

      學生活動

      資源/工具

      設計思想

      提出寶藏問題并指導學生利用BBs論壇進行討論

      學生在論壇里充分地發表自己的看法

      學習網站論壇

      通過自主交流,增強分析問題的能力和解決問題的能力

      5、在線測試,評價及反饋

      教師活動

      學生活動

      資源/工具

      設計思想

      利用學習網站制作一些簡單的訓練題目

      獨立完成在線的測試

      學習網站

      及時反饋課堂學習效果。

      6、課后任務

      教師活動

      學生活動

      資源/工具

      設計思想

      布置課后任務:在網絡上收集推理分析的相關例子,在學習網站的論壇上討論。

      記錄要求,并在課后完成。

      網絡資源和學習網站

      通過課后的任務訓練,進一步提高學生的數學思維能力,把思維訓練延續到課堂外。

      高二上冊數學教案 8

      課題:命題

      課時:001

      課型:新授課

      教學目標

      1、知識與技能:理解命題的概念和命題的構成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;

      2、過程與方法:多讓學生舉命題的例子,培養他們的辨析能力;以及培養他們的分析問題和解決問題的能力;

      3、情感、態度與價值觀:通過學生的參與,激發學生學習數學的興趣。

      教學重點與難點

      重點:命題的概念、命題的構成

      難點:分清命題的條件、結論和判斷命題的真假

      教學過程

      一、復習回顧

      引入:初中已學過命題的知識,請同學們回顧:什么叫做命題?

      二、新課教學

      下列語句的表述形式有什么特點?你能判斷他們的真假嗎?

      (1)若直線a∥b,則直線a與直線b沒有公共點.

      (2)2+4=7.

      (3)垂直于同一條直線的兩個平面平行.

      (4)若x2=1,則x=1.

      (5)兩個全等三角形的面積相等.

      (6)3能被2整除.

      討論、判斷:學生通過討論,總結:所有句子的表述都是陳述句的.形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。

      教師的引導分析:所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。

      抽象、歸納:

      1、命題定義:一般地,我們把用語言、符號或式子表達的,可以判斷真假的陳述句叫做命題.

      命題的定義的要點:能判斷真假的陳述句.

      在數學課中,只研究數學命題,請學生舉幾個數學命題的例子.教師再與學生共同從命題的定義,判斷學生所舉例子是否是命題,從“判斷”的角度來加深對命題這一概念的理解.

      例1:判斷下列語句是否為命題?

      (1)空集是任何集合的子集.

      (2)若整數a是素數,則是a奇數.

      (3)指數函數是增函數嗎?

      (4)若平面上兩條直線不相交,則這兩條直線平行.

      (5)=-2.

      (6)x>15.

      讓學生思考、辨析、討論解決,且通過練習,引導學生總結:判斷一個語句是不是命題,關鍵看兩點:第一是“陳述句”,第二是“可以判斷真假”,這兩個條件缺一不可.疑問句、祈使句、感嘆句均不是命題.

      解略。

      引申:以前,同學們學習了很多定理、推論,這些定理、推論是否是命題?同學們可否舉出一些定理、推論的例子來看看?

      通過對此問的思考,學生將清晰地認識到定理、推論都是命題.

      過渡:同學們都知道,一個定理或推論都是由條件和結論兩部分構成(結合學生所舉定理和推論的例子,讓學生分辨定理和推論條件和結論,明確所有的定理、推論都是由條件和結論兩部分構成)。緊接著提出問題:命題是否也是由條件和結論兩部分構成呢?

      2、命題的構成――條件和結論

      定義:從構成來看,所有的命題都具由條件和結論兩部分構成.在數學中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結論.

      例2:指出下列命題中的條件p和結論q,并判斷各命題的真假.

      (1)若整數a能被2整除,則a是偶數.

      (2)若四邊行是菱形,則它的對角線互相垂直平分.

      (3)若a>0,b>0,則a+b>0.

      (4)若a>0,b>0,則a+b<0.

      (5)垂直于同一條直線的兩個平面平行.

      此題中的(1)(2)(3)(4),較容易,估計學生較容易找出命題中的條件p和結論q,并能判斷命題的真假。其中設置命題(3)與(4)的目的在于:通過這兩個例子的比較,學更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結果是對的還是錯的。

      此例中的命題(5),不是“若P,則q”的形式,估計學生會有困難,此時,教師引導學生一起分析:已知的事項為“條件”,由已知推出的事項為“結論”.

      解略。

      過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結論是正確的,而有些命題的結論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題.

      3、命題的分類

      真命題:如果由命題的條件P通過推理一定可以得出命題的結論q,那么這樣的命題叫做真命題.

      假命題:如果由命題的條件P通過推理不一定可以得出命題的結論q,那么這樣的命題叫做假命題.

      強調:

      (1)注意命題與假命題的區別.如:“作直線AB”.這本身不是命題.也更不是假命題.

      (2)命題是一個判斷,判斷的結果就有對錯之分.因此就要引入真命題、假命題的的概念,強調真假命題的大前提,首先是命題。

      判斷一個數學命題的真假方法:

      (1)數學中判定一個命題是真命題,要經過證明.

      (2)要判斷一個命題是假命題,只需舉一個反例即可.

      例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:

      (1)面積相等的兩個三角形全等。

      (2)負數的立方是負數。

      (3)對頂角相等。

      分析:要把一個命題寫成“若P,則q”的形式,關鍵是要分清命題的條件和結論,然后寫成“若條件,則結論”即“若P,則q”的形式.解略。

      三、鞏固練習:

      P4第2,3。

      四、作業:

      P8:習題1.1A組~第1題

      五、教學反思

      師生共同回憶本節的學習內容.

      1、什么叫命題?真命題?假命題?

      2、命題是由哪兩部分構成的?

      3、怎樣將命題寫成“若P,則q”的形式.

      4、如何判斷真假命題.

      高二上冊數學教案 9

      一、教材分析

      推理是高考的重要的內容,推理包括合情推理與演繹推理,由于解答高考題的過程就是推理的過程,因此本部分內容的考察將會滲透到每一個高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現,也可能在解答題中出現。

      二、教學目標

      (1)知識與能力:了解演繹推理的含義及特點,會將推理寫成三段論的形式

      (2)過程與方法:了解合情推理和演繹推理的區別與聯系

      (3)情感態度價值觀:了解演繹推理在數學證明中的重要地位和日常生活中的作用,養成言之有理論證有據的習慣。

      三、教學重點難點

      教學重點:演繹推理的含義與三段論推理及合情推理和演繹推理的區別與聯系

      教學難點:演繹推理的應用

      四、教學方法:探究法

      五、課時安排:1課時

      六、教學過程

      1. 填一填:

      ① 所有的金屬都能夠導電,銅是金屬,所以 ;

      ② 太陽系的'大行星都以橢圓形軌道繞太陽運行,冥王星是太陽系的大行星,因此 ;

      ③ 奇數都不能被2整除,2007是奇數,所以 .

      2.討論:上述例子的推理形式與我們學過的合情推理一樣嗎?

      3.小結:

      ① 概念:從一般性的原理出發,推出某個特殊情況下的結論,我們把這種推理稱為____________.

      要點:由_____到_____的推理.

      ② 討論:演繹推理與合情推理有什么區別?

      ③ 思考:所有的金屬都能夠導電,銅是金屬,所以銅能導電,它由幾部分組成,各部分有什么特點?

      小結:三段論是演繹推理的一般模式:

      第一段:_________________________________________;

      第二段:_________________________________________;

      第三段:____________________________________________.

      ④ 舉例:舉出一些用三段論推理的例子.

      例1:證明函數 在 上是增函數.

      例2:在銳角三角形ABC中, ,D,E是垂足. 求證:AB的中點M到D,E的距離相等.

      當堂檢測:

      討論:因為指數函數 是增函數, 是指數函數,則結論是什么?

      討論:演繹推理怎樣才能使得結論正確?

      比較:合情推理與演繹推理的區別與聯系?

      課堂小結

      課后練習與提高

      1.演繹推理是以下列哪個為前提,推出某個特殊情況下的結論的推理方法( )

      A.一般的原理原則; B.特定的命題;

      C.一般的命題; D.定理、公式.

      2.因為對數函數 是增函數(大前提),而 是對數函數(小前提),所以 是增函數(結論).上面的推理的錯誤是( )

      A.大前提錯導致結論錯; B.小前提錯導致結論錯;

      C.推理形式錯導致結論錯; D.大前提和小前提都錯導致結論錯.

      3.下面幾種推理過程是演繹推理的是( )

      A.兩條直線平行,同旁內角互補,如果A和B是兩條平行直線的同旁內角,則B =180B.由平面三角形的性質,推測空間四面體的性質;.

      4.補充下列推理的三段論:

      (1)因為互為相反數的兩個數的和為0,又因為 與 互為相反數且________________________,所以 =8.

      (2)因為_____________________________________,又因為 是無限不循環小數,所以 是無理數.

      高二上冊數學教案 10

      學習目標:

      1、了解本章的學習的內容以及學習思想方法

      2、能敘述隨機變量的定義

      3、能說出隨機變量與函數的關系,

      4、能夠把一個隨機試驗結果用隨機變量表示

      重點:能夠把一個隨機試驗結果用隨機變量表示

      難點:隨機事件概念的透徹理解及對隨機變量引入目的的認識:

      環節一:隨機變量的定義

      1.通過生活中的一些隨機現象,能夠概括出隨機變量的定義

      2能敘述隨機變量的定義

      3能說出隨機變量與函數的區別與聯系

      一、閱讀課本33頁問題提出和分析理解,回答下列問題?

      1、了解一個隨機現象的規律具體指的是什么?

      2、分析理解中的兩個隨機現象的隨機試驗結果有什么不同?建立了什么樣的對應關系?

      總結:

      3、隨機變量

      (1)定義:

      這種對應稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結果所組成的

      到的映射。

      (2)表示:隨機變量常用大寫字母.等表示.

      (3)隨機變量與函數的區別與聯系

      函數隨機變量

      自變量

      因變量

      因變量的范圍

      相同點都是映射都是映射

      環節二隨機變量的應用

      1、能正確寫出隨機現象所有可能出現的結果2、能用隨機變量的描述隨機事件

      例1:已知在10件產品中有2件不合格品。現從這10件產品中任取3件,其中含有的次品數為隨機變量的學案.這是一個隨機現象。(1)寫成該隨機現象所有可能出現的結果;(2)試用隨機變量來描述上述結果。

      變式:已知在10件產品中有2件不合格品。從這10件產品中任取3件,這是一個隨機現象。若Y表示取出的3件產品中的合格品數,試用隨機變量描述上述結果

      例2連續投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的.次數,則X是一個隨機變

      量,分別說明下列集合所代表的隨機事件:

      (1){X=0}(2){X=1}

      (3){X<2}(4){x>0}

      變式:連續投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數,則X是一個隨機變量,X的可能取值是?并說明這些值所表示的隨機試驗的結果.

      練習:寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結果。

      (1)從學校回家要經過5個紅綠燈路口,可能遇到紅燈的次數;

      (2)一個袋中裝有5只同樣大小的球,編號為1,2,3,4,5,現從中隨機取出3只球,被取出的球的號碼數;

      小結(對標)

      高二上冊數學教案 11

      【教學目標】

      1.能夠用語言描述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

      2.能夠根據幾何結構特征對空間物體進行分類。

      3.提高學生的觀察能力,培養學生的空間想象能力和抽象思維能力。

      【教學重難點】

      教學重點:通過讓學生觀察真實的空間物體和模型,概括出柱、錐、臺、球的結構特征。

      教學難點:如何概括柱、錐、臺、球的結構特征。

      【教學過程】

      1.情景引入

      教師提出問題,引導學生觀察、舉例和相互交流,介紹本節課所學內容,出示課題。

      2.闡述目標,檢查預習

      3.合作探究、交流展示

      (1)引導學生觀察棱柱的實物和圖片,說出它們各自的特點是什么?它們有什么共同點?

      (2)組織學生分組討論,每組選出一名同學發表本組討論結果。

      在此基礎上得出棱柱的主要結構特征:

      (1)有兩個面互相平行;

      (2)其余各面都是平行四邊形;

      (3)每相鄰兩個平行四邊形的公共邊互相平行。概括出棱柱的定義。

      (3)提出問題:請列舉身邊的棱柱并進行分類。

      (4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的。結構特征,并得出相關的定義、分類和表示。

      (5)讓學生觀察圓柱,并演示圓柱的實物模型,概括出圓柱的定義以及相關的定義和表示。

      (6)引導學生思考圓錐、圓臺、球的結構特征,并得出相關定義、表示以及分類,借助演示模型引導學生思考、討論、概括。

      (7)教師指出圓柱和棱柱?

      4.提問回答,解決問題,擴展思維,教師提出問題,讓學生思考。

      (1)有兩個面互相平行,其余各面都是平行四邊形的'幾何體是否為棱柱?(通過反例說明)

      (2)棱柱的任何兩個平面都可

      2、過程與方法

      通過正弦函數在R上的圖像,讓學生探索出正弦函數的性質;講解例題,總結方法,鞏固練習。

      3、情感態度與價值觀

      通過本節的學習,培養學生創新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養學生的自信心;使學生認識到轉化“矛盾”是解決問題的有效途經;培養學生形成實事求是的科學態度和鍥而不舍的鉆研精神。

      教學重難點

      重點:正弦函數的性質。

      難點:正弦函數的性質應用。

      教學工具

      投影儀

      教學過程

      【創設情境,揭示課題】

      同學們,我們在數學一中已經學過函數,并掌握了討論一個函數性質的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經學習了正弦函數的y=sinx在R上圖像,下面請同學們根據圖像一起討論一下它具有哪些性質?

      【探究新知】

      讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:

      (1)正弦函數的定義域是什么?

      (2)正弦函數的值域是什么?

      (3)它的最值情況如何?

      (4)它的正負值區間如何分?

      (5)?(x)=0的解集是多少?

      師生一起歸納得出:

      1、定義域:y=sinx的定義域為R

      2、值域:引導回憶單位圓中的正弦函數線,結論:|sinx|≤1(有界性)

      再看正弦函數線(圖象)驗證上述結論,所以y=sinx的值域為[-1,1]

      高二上冊數學教案 12

      目的要求:

      1.復習鞏固求曲線的方程的基本步驟;

      2.通過教學,逐步提高學生求貢線的方程的能力,靈活掌握解法步驟;

      3.滲透“等價轉化”、“數形結合”、“整體”思想,培養學生全面分析問題的能力,訓練思維的深刻性、廣闊性及嚴密性。

      教學重點、難點:

      方程的求法教學方法:講練結合、討論法

      教學過程:

      一、學點聚集:

      1.曲線C的方程是f(x,y)=0(或方程f(x,y)=0的曲線是C)實質是

      ①曲線C上任一點的坐標都是方程f(x,y)=0的解

      ②以方程f(x,y)=0的解為坐標的點都是曲線C上的點

      2.求曲線方程的基本步驟

      ①建系設點;

      ②尋等列式;

      ③代換(坐標化);

      ④化簡;

      ⑤證明(若第四步為恒等變形,則這一步驟可省略)

      二、基礎訓練題:

      221.方程x-y=0的曲線是()

      A.一條直線和一條雙曲線B.兩個點C.兩條直線D.以上都不對

      2.如圖,曲線的方程是()

      A.x?y?0 B.x?y?0 C.

      xy?1 D.

      x?1 y3.到原點距離為6的點的軌跡方程是。

      4.到x軸的距離與其到y軸的`距離之比為2的點的軌跡方程是。

      三、例題講解:

      例1:已知一條曲線在y軸右方,它上面的每一點到A?2,0?的距離減去它到y軸的距離的差都是2,求這條曲線的方程。

      例2:已知P(1,3)過P作兩條互相垂直的直線l

      1、l2,它們分別和x軸、y軸交于B、C兩點,求線段BC的中點的軌跡方程。

      2例3:已知曲線y=x+1和定點A(3,1),B為曲線上任一點,點P在線段AB上,且有BP∶PA=1∶2,當點B在曲線上運動時,求點P的軌跡方程。

      鞏固練習:

      1.長為4的線段AB的兩個端點分別在x軸和y軸上滑動,求AB中點M的軌跡方程。

      22.已知△ABC中,B(-2,0),C(2,0)頂點A在拋物線y=x+1移動,求△ABC的重心G的軌跡方程。

      思考題:

      已知B(-3,0),C(3,0)且三角形ABC中BC邊上的高為3,求三角形ABC的垂心H的軌跡方程。

      小結:

      1.用直接法求軌跡方程時,所求點滿足的條件并不一定直接給出,需要仔細分析才能找到。

      2.用坐標轉移法求軌跡方程時要注意所求點和動點之間的聯系。

      作業:

      蘇大練習第57頁例3,教材第72頁第3題、第7題。

      高二上冊數學教案 13

      一、教學目標

      (1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;

      (2)理解邏輯聯結詞“或”“且”“非”的含義;

      (3)能用邏輯聯結詞和簡單命題構成不同形式的復合命題;

      (4)能識別復合命題中所用的邏輯聯結詞及其聯結的簡單命題;

      (5)會用真值表判斷相應的復合命題的真假;

      (6)在知識學習的基礎上,培養學生簡單推理的技能。

      二、教學重點難點:

      重點是判斷復合命題真假的方法;難點是對“或”的含義的理解。

      三、教學過程

      1.新課導入

      在當今社會中,人們從事任何工作、學習,都離不開邏輯。具有一定邏輯知識是構成一個公民的文化素質的重要方面。數學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性。如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤。其實,同學們在初中已經開始接觸一些簡易邏輯的知識。

      初一平面幾何中曾學過命題,請同學們舉一個命題的例子。(板書:命題。)

      (從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識。)

      (同學議論結果,答案是肯定的。)

      教師提問:什么是命題?

      (學生進行回憶、思考。)

      概念總結:對一件事情作出了判斷的語句叫做命題。

      (教師肯定了同學的回答,并作板書。)

      由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題。

      (教師利用投影片,和學生討論以下問題。)

      例1判斷以下各語句是不是命題,若是,判斷其真假:

      命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題。

      初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識。

      2.講授新課

      大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內容主要講了哪些問題?

      (片刻后請同學舉手回答,一共講了四個問題。師生一道歸納如下。)

      (1)什么叫做命題?

      可以判斷真假的語句叫做命題。

      判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題。有些語句中含有變量,如x2-5x+6=0

      中含有變量,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

      (2)介紹邏輯聯結詞“或”、“且”、“非”。

      “或”、“且”、“非”這些詞叫做邏輯聯結詞。邏輯聯結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式。

      命題可分為簡單命題和復合命題。

      不含邏輯聯結詞的命題叫做簡單命題。簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題。

      由簡單命題和邏輯聯結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡單命題“6是自然數”和“6是偶數”由邏輯聯結詞“且”構成的復合命題。

      (4)命題的表示:用p,q,r,s,……來表示。

      (教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開。)

      我們接觸的復合命題一般有“p或q”“p且q”、“非p”、“若p則q”等形式。

      給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯結詞;應能根據所給出的兩個簡單命題,寫出含有邏輯聯結詞“或”、“且”、“非”的復合命題。

      對于給出“若p則q”形式的復合命題,應能找到條件p和結論q.

      在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”。例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數的'末位數字不是0就是5”的字面上無“或”,但它們都是復合命題。

      3.鞏固新課

      例2判斷下列命題,哪些是簡單命題,哪些是復合命題。如果是復合命題,指出它的構成形式以及構成它的簡單命題。

      (1)12>5;

      (2)0.5非整數;

      (3)內錯角相等,兩直線平行;

      (4)菱形的對角線互相垂直且平分;

      (5)平行線不相交;

      (6)若ab=0,則a=0.

      (讓學生有充分的時間進行辨析。教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充。)

      例3寫出下表中各給定語的否定語(用課件打出來).

      分析:“等于”的否定語是“不等于”;

      “大于”的否定語是“小于或者等于”;

      “是”的否定語是“不是”;

      “都是”的否定語是“不都是”;

      “至多有一個”的否定語是“至少有兩個”;

      “至少有一個”的否定語是“一個都沒有”;

      “至多有n個”的否定語是“至少有n+1個”。

      (如果時間寬裕,可讓學生討論后得出結論。)

      置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當的辨析與展開。)

      4.課堂練習:第26頁練習1,2.

      5.課外作業:第29頁習題1.61,2.

      高二上冊數學教案 14

      教學目標

      1、掌握平面向量的數量積及其幾何意義;

      2、掌握平面向量數量積的重要性質及運算律;

      3、了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

      4、掌握向量垂直的條件。

      教學重難點

      教學重點:平面向量的數量積定義

      教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

      教學工具

      投影儀

      教學過程

      復習引入:

      向量共線定理向量與非零向量共線的'充要條件是:有且只有一個非零實數λ,使=λ

      課堂小結

      (1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

      (2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

      (3)你在這節課中的表現怎樣?你的體會是什么?

      課后作業

      P107習題2.4A組2、7題

      課后小結

      (1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

      (2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

      (3)你在這節課中的表現怎樣?你的體會是什么?

      高二上冊數學教案 15

      一、教學目的

      1、使學生進一步理解自變量的取值范圍和函數值的意義。

      2、使學生會用描點法畫出簡單函數的圖象。

      二、教學重點、難點

      重點:

      1、理解與認識函數圖象的意義。

      2、培養學生的看圖、識圖能力。

      難點:在畫圖的三個步驟的列表中,如何恰當地選取自變量與函數的'對應值問題。

      三、教學過程

      復習提問

      1、函數有哪三種表示法?(答:解析法、列表法、圖象法。)

      2、結合函數y=x的圖象,說明什么是函數的圖象?

      3、說出下列各點所在象限或坐標軸:

      新課

      1、畫函數圖象的方法是描點法。其步驟:

      (1)列表。要注意適當選取自變量與函數的對應值。什么叫“適當”?這就要求能選取表現函數圖象特征的幾個關鍵點。比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了。

      一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來。

      (2)描點。我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點。

      (3)用光滑曲線連線。根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線。

      一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數的曲線(或直線)。

      2、講解畫函數圖象的三個步驟和例。畫出函數y=x+0.5的圖象。

      小結

      本節課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖。

      練習

      ①選用課本練習

      (前一節已作:列表、描點,本節要求連線)

      ②補充題:畫出函數y=5x-2的圖象。

      作業:選用課本習題。

      四、教學注意問題

      1、注意滲透數形結合思想。通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識。把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征。

      2、注意充分調動學生自己動手畫圖的積極性。

      3、認識到由于計算器和計算機的普及化,代替了手工繪圖功能。故在教學中要傾向培養學生看圖、識圖的能力。

      高二上冊數學教案 16

      教學目的:

      1、使理解線段的垂直平分線的性質定理及逆定理,掌握這兩個定理的關系并會用這兩個定理解決有關幾何問題。

      2、了解線段垂直平分線的軌跡問題。

      3、結合教學內容培養學生的動作、形象和抽象。

      教學重點:

      線段的垂直平分線性質定理及逆定理的引入證明及運用。

      教學難點:

      線段的垂直平分線性質定理及逆定理的關系。

      教學關鍵:

      1、垂直平分線上所有的點和線段兩端點的距離相等。

      2、到線段兩端點的距離相等的所有點都在這條線段的垂直平分線上。

      教 具:投影儀及投影膠片。

      教學過程:

      一、提問

      1、角平分線的性質定理及逆定理是什么?

      2、怎樣做一條線段的垂直平分線?

      二、新課

      1、請同學們在練習本上做線段AB的垂直平分線EF(請一名同學在黑板上做)。

      2、在EF上任取一點P,連結PA、PB量出PA=?,PB=?引導學生觀察這兩個值有什么關系?

      通過學生的觀察、分析得出結果 PA=PB,再取一點P試一試仍然有PA=PB,引導學生猜想EF上的所有點和點A、點B的距離都相等,再請同學把這一結論敘述成命題(用幻燈展示)。

      定理:線段的.垂直平分線上的點和這條線段的兩個端點的距離相等。

      這個命題,是我們通過作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。

      已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點P在EF上

      求證:PA=PB

      如何證明PA=PB學生分析得出只要證RTΔPCA≌RTΔPCB

      證明:∵PC⊥AB(已知)

      ∴∠PCA=∠PCB(垂直的定義)

      在ΔPCA和ΔPCB中

      ∴ΔPCA≌ΔPCB(SAS)

      即:PA=PB(全等三角形的對應邊相等)。

      反過來,如果PA=PB,P1A=P1B,點P,P1在什么線上?

      過P,P1做直線EF交AB于C,可證明ΔPA P1≌PB P1(SSS)

      ∴EF是等腰三角型ΔPAB的頂角平分線

      ∴EF是AB的垂直平分線(等腰三角形三線合一性質)

      ∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發學生敘述)(用幻燈展示)。

      逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

      根據上述定理和逆定理可以知道:直線MN可以看作和兩點A、B的距離相等的所有點的集合。

      線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。

      三、舉例(用幻燈展示)

      例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點P,求證:PA=PB=PC。

      證明:∵點P在線段AB的垂直平分線上

      ∴PA=PB

      同理PB=PC

      ∴PA=PB=PC

      由例題PA=PC知點P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點P,這點到三個頂點的距離相等。

      四、小結

      正確的運用這兩個定理的關鍵是區別它們的條件與結論,加強證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點在線段的垂直平分線上。

      高二上冊數學教案 17

      (一)教學目標

      1.知識與技能目標:

      (1) 掌握邏輯聯結詞且的含義

      (2) 正確應用邏輯聯結詞且解決問題

      (3) 掌握真值表并會應用真值表解決問題

      2.過程與方法目標:

      在觀察和思考中,在解題和證明題中,本節課要特別注重學生思維的嚴密性品質的培養.

      3.情感態度價值觀目標:

      激發學生的學習熱情,激發學生的求知欲,培養嚴謹的學習態度,培養積極進取的精神.

      (二)教學重點與難點

      重點:通過數學實例,了解邏輯聯結詞且的含義,使學生能正確地表述相關數學內容。

      難點:

      1、正確理解命題Pq真假的規定和判定.

      2、簡潔、準確地表述命題Pq.

      教具準備:與教材內容相關的資料。

      教學設想:在觀察和思考中,在解題和證明題中,本節課要特別注重學生思維的嚴密性品質的培養.

      (三)教學過程

      學生探究過程:

      1、引入

      在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數學的特點是邏輯性強,特別是進入高中以后,所學的數學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤.其實,同學們在初中已經開始接觸一些簡易邏輯的知識.

      在數學中,有時會使用一些聯結詞,如且或非。在生活用語中,我們也使用這些聯結詞,但表達的`含義和用法與數學中的含義和用法不盡相同。下面介紹數學中使用聯結詞且或非聯結命題時的含義和用法。

      為敘述簡便,今后常用小寫字母p,q,r,s,表示命題。(注意與上節學習命題的條件p與結論q的區別)

      2、思考、分析

      問題1:下列各組命題中,三個命題間有什么關系?

      ①12能被3整除;

      ②12能被4整除;

      ③12能被3整除且能被4整除。

      學生很容易看到,在第(1)組命題中,命題③是由命題①②使用聯結詞且聯結得到的新命題。

      問題2:以前我們有沒有學習過象這樣用聯結詞且聯結的命題呢?你能否舉一些例子?

      例如:命題p:菱形的對角線相等且菱形的對角線互相平分。

      3、歸納定義

      一般地,用聯結詞且把命題p和命題q聯結起來,就得到一個新命題,記作pq,讀作p且q。

      命題pq即命題p且q中的且字與下面命題中的且 字的含義相同嗎?

      若 xA且xB,則xB。

      定義中的且字與命題中的且 字的含義是類似。但這里的邏輯聯結詞且與日常語言中的和,并且,以及,既又等相當,表明前后兩者同時兼有,同時滿足。說明:符號與開口都是向下。

      注意:p且q命題中的p、q是兩個命題,而原命題,逆命題,否命題,逆否命題中的p,q是一個命題的條件和結論兩個部分.

      4、命題pq的真假的規定

      你能確定命題pq的真假嗎?命題pq和命題p,q的真假之間有什么聯系?

      引導學生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個命題的真假之間的關系的一般規律。

      例如:在上面的例子中,第(1)組命題中,①②都是真命題,所以命題③是真命題。

      一般地,我們規定:

      當p,q都是真命題時,pq是真命題;當p,q兩個命題中有一個命題是假命題時,pq是假命題。

      5、例題

      例1:將下列命題用且聯結成新命題pq的形式,并判斷它們的真假。

      (1)p:平行四邊形的對角線互相平分,q:平行四邊形的對角線相等。

      (2)p:菱形的對角線互相垂直,q:菱形的對角線互相平分;

      (3)p:35是15的倍數,q:35是7的倍數.

      解:(1)pq:平行四邊形的對角線互相平分且平行四邊形的對角線相等.也可簡寫成平行四邊形的對角線互相平分且相等.

      由于p是真命題,且q也是真命題,所以pq是真命題。

      (2)pq:菱形的對角線互相垂直且菱形的對角線互相平分. 也可簡寫成菱形的對角線互相垂直且平分.

      由于p是真命題,且q也是真命題,所以pq是真命題。

      (3)pq:35是15的倍數且35是7的倍數. 也可簡寫成35是15的倍數且是7的倍數.

      由于p是假命題, q是真命題,所以pq是假命題。

      說明,在用且聯結新命題時,如果簡寫,應注意保持命題的意思不變.

      例2:用邏輯聯結詞且改寫下列命題,并判斷它們的真假。

      (1)1既是奇數,又是素數;

      (2)2是素數且3是素數;

      6.鞏固練習 :P20 練習第1 , 2題

      7.教學反思:

      (1)掌握邏輯聯結詞且的含義

      (2)正確應用邏輯聯結詞且解決問題

    【高二上冊數學教案】相關文章:

    高二上冊數學教案模板08-29

    高二數學教案02-06

    高二數學教案【精選】10-18

    高二數學教案01-26

    高二數學教案精品01-24

    高二數學教案(合集)03-26

    高二數學教案(推薦)12-16

    高二數學教案模板12-16

    高二數學教案優秀10-22

    高二數學教案【實用】02-07

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      在线观看AV不卡网站永久 | 夜夜久久国產精品亚洲 | 日韩视频中文字幕久久 | 在线观看国产日韩 | 亚拍精品一区二区三区 | 中国aV免费精品在线观看 |