1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    八年級數(shù)學(xué)教案

    時間:2022-08-26 10:52:53 八年級數(shù)學(xué)教案 我要投稿

    精選八年級數(shù)學(xué)教案范文七篇

      作為一位杰出的老師,有必要進行細致的教案準備工作,借助教案可以有效提升自己的教學(xué)能力。我們該怎么去寫教案呢?下面是小編精心整理的八年級數(shù)學(xué)教案7篇,希望能夠幫助到大家。

    精選八年級數(shù)學(xué)教案范文七篇

    八年級數(shù)學(xué)教案 篇1

      教學(xué)建議

      1、平行線等分線段定理

      定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

      注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

      定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

      2、平行線等分線段定理的推論

      推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

      推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

      記憶方法:“中點”+“平行”得“中點”。

      推論的用途:(1)平分已知線段;(2)證明線段的倍分。

      重難點分析

      本節(jié)的'重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

      本節(jié)的難點也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學(xué)生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

      教法建議

      平行線等分線段定理的引入

      生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

      ①從生活實例引入,如刻度尺、作業(yè)本、柵欄、等等;

      ②可用問題式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進行思考、研究,然后給出平行線等分線段定理和推論。

      教學(xué)設(shè)計示例

      一、教學(xué)目標

      1、使學(xué)生掌握平行線等分線段定理及推論。

      2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養(yǎng)學(xué)生的作圖能力。

      3、通過定理的變式圖形,進一步提高學(xué)生分析問題和解決問題的能力。

      4、通過本節(jié)學(xué)習(xí),體會圖形語言和符號語言的和諧美

      二、教法設(shè)計

      學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

      三、重點、難點

      1、教學(xué)重點:平行線等分線段定理

      2、教學(xué)難點:平行線等分線段定理

      四、課時安排

      l課時

      五、教具學(xué)具

      計算機、投影儀、膠片、常用畫圖工具

      六、師生互動活動設(shè)計

      教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

      七、教學(xué)步驟

      【復(fù)習(xí)提問】

      1、什么叫平行線?平行線有什么性質(zhì)。

      2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

      【引入新課】

      由學(xué)生動手做一實驗:每個同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

      (引導(dǎo)學(xué)生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)

      平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

      注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學(xué)生明確。

      下面我們以三條平行線為例來證明這個定理(由學(xué)生口述已知,求證)。

      已知:如圖,直線 , 。

      求證: 。

      分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。

      (引導(dǎo)學(xué)生找出另一種證法)

      分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

      證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

      ∴

      ∵ ,

      ∴

      又∵ , ,

      ∴

      ∴

      為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認識幾種定理的變式圖形,如圖(用計算機動態(tài)演示)。

      引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

      推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

      再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

      推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。

      注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

      接下來講如何利用平行線等分線段定理來任意等分一條線段。

      例 已知:如圖,線段 。

      求作:線段 的五等分點。

      作法:①作射線 。

      ②在射線 上以任意長順次截取 。

      ③連結(jié) 。

      ④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

      、 、 、 就是所求的五等分點。

      (說明略,由學(xué)生口述即可)

      【總結(jié)、擴展】

      小結(jié):

      (l)平行線等分線段定理及推論。

      (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

      (3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

      (4)應(yīng)用定理任意等分一條線段。

      八、布置作業(yè)

      教材P188中A組2、9

      九、板書設(shè)計

      十、隨堂練習(xí)

      教材P182中1、2

    八年級數(shù)學(xué)教案 篇2

      教學(xué)目標

      一、教學(xué)知識點:

      1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).

      二、能力訓(xùn)練要求:

      1.通過具體實例認識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.

      2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).

      三、情感與價值觀要求

      1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.

      2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進一步發(fā)展學(xué)生的數(shù)學(xué)觀.

      教學(xué)重點:旋轉(zhuǎn)的基本性質(zhì).

      教學(xué)難點:探索旋轉(zhuǎn)的基本性質(zhì).

      教學(xué)方法:

      1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。

      2、采用多媒體課件輔助教學(xué)。

      教學(xué)過程:

      一.巧設(shè)情景問題,引入課題

      日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的'轉(zhuǎn)動呢?

      1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的.

      2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.

      3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

      4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學(xué)們觀察得很仔細,我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).

      二.講授新課

      在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.

      議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.

      (2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的位置,點B旋轉(zhuǎn)到點E的位置.

      (3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.

      (4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.

      (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

      看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應(yīng)點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?

      答:因為O是旋轉(zhuǎn)中心,點A與點D是對應(yīng)點,點B與點E是對應(yīng)點,且OA=OD,OB=OE,所以可以知道:對應(yīng)點與旋轉(zhuǎn)中心所連的線段的長度是相等的.

      因為點A與點D、點B與點E是對應(yīng)點,且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角是互相相等的.

      由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.

      [例1](課本68頁例1)

      [師生共析]經(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針所轉(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.

      解:(見課本68頁)

      書上68頁做一做

      三.課堂練習(xí)

      課本P69隨堂練習(xí).

      1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.

      四.課時小結(jié)

      五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.

      六.活動與探究

      1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.

      結(jié)果:旋轉(zhuǎn)現(xiàn)象為:

      整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

      整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.

      整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

      2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?

      過程:同樣讓學(xué)生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學(xué)生仔細觀察圖形,分析圖形,找出關(guān)系.

      結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.

      整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.

      整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

      板書設(shè)計:

      教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。

    八年級數(shù)學(xué)教案 篇3

      一、教學(xué)目標

      1.理解一個數(shù)平方根和算術(shù)平方根的意義;

      2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;

      3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;

      4.通過學(xué)習(xí)乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。

      二、教學(xué)重點和難點

      教學(xué)重點:平方根和算術(shù)平方根的概念及求法。

      教學(xué)難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。

      三、教學(xué)方法

      講練結(jié)合

      四、教學(xué)手段

      幻燈片

      五、教學(xué)過程

      (一)提問

      1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?

      2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?

      3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?

      這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):填空

      1、()2=9; 2、()2 =0、25;

      3、

      5、()2=0、0081

      學(xué)生在完成此練習(xí)時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學(xué)時應(yīng)注意糾正。

      由練習(xí)引出平方根的概念。

      (二)平方根概念

      如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。

      用數(shù)學(xué)語言表達即為:若x2=a,則x叫做a的平方根。

      由練習(xí)知:±3是9的平方根;

      ±0.5是0。25的平方根;

      0的平方根是0;

      ±0.09是0。0081的平方根。

      由此我們看到+3與—3均為9的.平方根,0的平方根是0,下面看這樣一道題,填空:

      ( )2=—4

      學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結(jié)論,負數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。

      (三)平方根性質(zhì)

      1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。

      2.0有一個平方根,它是0本身。

      3.負數(shù)沒有平方根。

      (四)開平方

      求一個數(shù)a的平方根的運算,叫做開平方的運算。

      由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結(jié)果是兩個。

      (五)平方根的表示方法

      一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。

      練習(xí):1.用正確的符號表示下列各數(shù)的平方根:

      ①26 ②247 ③0。2 ④3 ⑤

      解:①26 的平方根是

      ②247的平方根是

      ③0。2的平方根是

      ④3的平方根是

      ⑤ 的平方根是

      由學(xué)生說出上式的讀法。

      例1。下列各數(shù)的平方根:

      (1)81; (2) ; (3) ; (4)0。49

      解:(1)∵(±9)2=81,

      ∴81的平方根為±9。即:

      (2)

      的平方根是 ,即

      (3)

      的平方根是 ,即

      (4)∵(±0。7)2=0。49,

      ∴0。49的平方根為±0。7。

      小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。

      六、總結(jié)

      本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細閱讀教科書,鞏固所學(xué)知識。

      七、作業(yè)

      教材P。127練習(xí)1、2、3、4。

      八、板書設(shè)計

      平方根

      (一)概念 (四)表示方法 例1

      (二)性質(zhì)

      (三)開平方

      探究活動

      求平方根近似值的一種方法

      求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。

      例1。求 的值。

      解 ∵92102,

      兩邊平方并整理得

      ∵x1為純小數(shù)。

      18x1≈16,解得x1≈0。9,

      便可依次得到精確度

      為0。01,0。001,……的近似值,如:

      兩邊平方,舍去x2得19.8x2≈—1.01

    八年級數(shù)學(xué)教案 篇4

      教學(xué)指導(dǎo)思想與理論依據(jù)

      《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進信息技術(shù)與學(xué)科課程的整合,逐步實現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具。” 教師運用現(xiàn)代多媒體信息技術(shù)對教學(xué)活動進行創(chuàng)造性設(shè)計,發(fā)揮計算機輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。

      教學(xué)內(nèi)容分析:

      本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點,為進一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。

      學(xué)生情況分析:

      本班經(jīng)歷了一年多課改實踐,學(xué)生對運用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識于實踐的過程。

      教學(xué)方式與教學(xué)手段說明:

      本節(jié)課充分利用現(xiàn)有的先進教學(xué)設(shè)備(兩名學(xué)生一臺電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實驗室,以研究電動門的機械原理為切入點,從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成并進行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動地探究新知識的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。

      知識與技能:

      1、初步理解特殊四邊形性質(zhì);

      2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;

      過程與方法:

      1、了解特殊四邊形性質(zhì)的形成過程;

      2、初步了解探究新知識的一些方法;

      情感與價值觀:

      1、了解特殊四邊形在日常生活中的應(yīng)用;

      2、學(xué)生在觀察、歸納、類比及實驗教學(xué)活動中,體會成功后的喜悅;

      3、初步具有感性認識上升到理性認識的辯證唯物主義思想。

      教學(xué)環(huán)境:

      多媒體計算機網(wǎng)絡(luò)教室

      教學(xué)課型:

      試驗探究式

      教學(xué)重點:

      特殊四邊形性質(zhì)

      教學(xué)難點:

      特殊四邊形性質(zhì)的發(fā)現(xiàn)

      一、設(shè)置情景,提出問題

      提出問題:

      知識已生活,又服務(wù)于生活。我們經(jīng)過校門時,是否注意到電動門的機械工作原理(教師用幾何畫板演示)?

      1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?

      2、在開(關(guān))門過程中這些四邊形是如何變化的?

      3、你還發(fā)現(xiàn)了什么?

      解決問題:

      學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

      當我們學(xué)習(xí)完本節(jié)知識后,其他問題就容易解決了。

      (意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)

      二、整體了解,形成系統(tǒng)

      本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。

      提出問題:

      1、本章主要研究哪些特殊四邊形?

      2、從哪幾方面研究這些特殊四邊形?

      3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設(shè)有是什么圖形呢?如果沒有,為什么?

      解決問題:

      學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導(dǎo)。

      1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形

      2、從邊、角、對角線、面積、周長、……等方面研究。本節(jié)課主要從邊、角、對角線三方面考慮;

      3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。

      (意圖: 學(xué)生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)

      三、個體研究、總結(jié)性質(zhì)

      1、平行四邊形性質(zhì)

      提出問題:

      在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。

      解決問題:

      教師引導(dǎo)學(xué)生拖動B點(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的'要素。

      在圖形變化過程中,

      (1)對邊相等;

      (2)對角相等;

      (3)通過AO=CO 、BO=DO,可得對角線互相平分;

      (4)通過鄰角互補,可得對邊平行;

      (5)內(nèi)外角和都等于360度;

      (6)鄰角互補;

      ……

      指導(dǎo)學(xué)生填表:

      平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)

      菱形性質(zhì)

      梯形性質(zhì)等腰梯形性質(zhì)

      直角梯形性質(zhì)

      (既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)

      按照平行四邊形性質(zhì)的探索思路,分別研究:

      2、矩形性質(zhì);

      3、菱形性質(zhì);

      4、正方形性質(zhì);

      5、梯形性質(zhì);

      6、等腰梯形性質(zhì);

      7、直角梯形的性質(zhì)。

      (意圖: 學(xué)生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學(xué)生體驗到科學(xué)探索的樂趣。)

      教師總結(jié):

      (意圖: 掌握畫箭頭的方法,使學(xué)生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達,又節(jié)省時間。)

      四、聯(lián)系生活,解決問題

      解決問題:

      學(xué)生操作電腦,觀察圖形、分組討論,教師個別指導(dǎo)。

      學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。

      四邊形具有不穩(wěn)定性,而三角形沒有這個特點……

      (意圖:使學(xué)生體會到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)

      五、小結(jié)

      1.研究問題從整體到局部的方法;

      2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。

      六、作業(yè)

      1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

      2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。

      學(xué)習(xí)效果評價

      針對教學(xué)內(nèi)容、學(xué)生特點及設(shè)計方案,預(yù)計下列學(xué)習(xí)效果:

      利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學(xué)生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達到初步理解特殊四邊形性質(zhì)的目標。

      在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。

      學(xué)生演示開(關(guān))門過程中,了解特殊四邊形在日常生活中的應(yīng)用,并用所學(xué)的知識解釋實際問題,使自身價值得以實現(xiàn)并體會成功后的喜悅;

      由于個體差異,針對教學(xué)目標難以達到的個別學(xué)生,根據(jù)教學(xué)的進展,通過師生之間、學(xué)生之間的對話交流及時指導(dǎo),使教學(xué)目標得以實現(xiàn)。

    八年級數(shù)學(xué)教案 篇5

      11.1 與三角形有關(guān)的線段

      11.1.1 三角形的邊

      1.理解三角形的概念,認識三角形的頂點、邊、角,會數(shù)三角形的個數(shù).(重點)

      2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點)

      3.三角形在實際生活中的應(yīng)用.(難點)

      一、情境導(dǎo)入

      出示金字塔、戰(zhàn)機、大橋等圖片,讓學(xué)生感受生活中的三角形,體會生活中處處有數(shù)學(xué).

      教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.

      問:你能不能給三角形下一個完整的定義?

      二、合作探究

      探究點一:三角形的概念

      圖中的銳角三角形有( )

      A.2個

      B.3個

      C.4個

      D.5個

      解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數(shù)有2+1=3(個).故選B.

      方法總結(jié):數(shù)三角形的個數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.

      探究點二:三角形的三邊關(guān)系

      【類型一】 判定三條線段能否組成三角形

      以下列各組線段為邊,能組成三角形的是( )

      A.2c,3c,5c

      B.5c,6c,10c

      C.1c,1c,3c

      D.3c,4c,9c

      解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.

      方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

      【類型二】 判斷三角形邊的取值范圍

      一個三角形的三邊長分別為4,7,x,那么x的取值范圍是( )

      A.3<x<11 B.4<x<7

      C.-3<x<11 D.x>3

      解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

      方法總結(jié):判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結(jié)合不等式的知識進行解決.

      【類型三】 等腰三角形的三邊關(guān)系

      已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.

      解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.

      解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.

      方法總結(jié):在求三角形的邊長時,要注意利用三角形的三邊關(guān)系驗證所求出的邊長能否組成三角形.

      【類型四】 三角形三邊關(guān)系與絕對值的綜合

      若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

      解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負,然后去絕對值符號進行計算即可.

      解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

      方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負,然后進行化簡.

      三、板書設(shè)計

      三角形的'邊

      1.三角形的概念:

      由不在同一直線上的三條線段首尾順次相接所組成的圖形.

      2.三角形的三邊關(guān)系:

      兩邊之和大于第三邊,兩邊之差小于第三邊.

      本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認知特點,既提高了學(xué)生學(xué)習(xí)的興趣,又增強了學(xué)生的動手能力.

    八年級數(shù)學(xué)教案 篇6

      一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

      ①確定個圖形平移后的位置的條件:

      ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應(yīng)點的位置。

      ②作平移后的圖形的方法:

      ⑴找出關(guān)鍵點;⑵作出這些點平移后的對應(yīng)點;⑶將所作的對應(yīng)點按原來方式順次連接,所得的;

      二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。

      1.旋轉(zhuǎn)

      2.旋轉(zhuǎn)的`性質(zhì)

      ⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

      ⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。

      ⑶任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

      ⑷旋轉(zhuǎn)前后的兩個圖形全等。

      3.簡單的旋轉(zhuǎn)作圖

      ⑴已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。

      ⑵已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

      ⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

      三、分析組合圖案的形成

      ①確定組合圖案中的“基本圖案”

      ②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

      ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;

      ⑸旋轉(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數(shù)學(xué)教案 篇7

      教學(xué)目標:

      1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣;

      2。索并掌握平行四邊形的性質(zhì),并能簡單應(yīng)用;

      3。在探索活動過程中發(fā)展學(xué)生的探究意識。

      教學(xué)重點:平行四邊形性質(zhì)的探索。

      教學(xué)難點:平行四邊形性質(zhì)的理解。

      教學(xué)準備:多媒體課件

      教學(xué)過程

      第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學(xué)生進一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

      1。小組活動一

      內(nèi)容:

      問題1:同學(xué)們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

      (1)你拼出了怎樣的四邊形?與同桌交流一下;

      (2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關(guān)系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

      2。小組活動二

      內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

      第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動手、動嘴,全班交流)

      小組活動3:

      用 一張半透明的紙復(fù)制你剛才畫的平行四邊形,并將復(fù)制 后的四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關(guān)系?能用別的方法驗證你的結(jié)論嗎?

      (1)讓學(xué)生動手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;

      (2)學(xué)生交流、議論;

      (3)教師利用多媒體展示實踐的'過程。

      第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)

      實踐 探索內(nèi)容

      (1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

      (2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。

      ∵ 四邊形ABCD是平行四邊形

      AD // BC, AB // CD

      2,4

      △AB C和△CDA中

      1

      AC=C A

      4

      △ABC≌△CDA(ASA)

      AB=DC, AD=CB,B

      又∵2

      4

      3=4

      即BAD=DCB

      第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過議一議,練一練,學(xué)生進一步理解平行四邊形的性質(zhì),并進行簡單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時從不同角度平移、旋轉(zhuǎn)等再一次認識平行四邊形的本質(zhì)特征。)

      1。活動內(nèi)容:

      (1)議一議:如果已知平行四邊形的一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?

      A(學(xué)生思考、議論)

      B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。

      由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。

      (2)練一練(P99隨堂練習(xí))

      練1 如圖:四邊形ABCD是平行四邊形。

      (1)求ADC、BCD度數(shù)

      (2)邊AB、BC的度數(shù)、長度。

      練2 四邊形ABCD是平行四邊形

      (1)它的四條邊中哪些 線段可以通過平移相到得到?

      (2)設(shè)對角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。

      歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。

      第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)

      活動內(nèi)容

      師生相互交流、反思、總結(jié)。

      (1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

      (2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

      (3)本節(jié)學(xué)習(xí)到了什么?(知識上、方法上)

      考一考:

      1。 ABCD中,B=60,則A= ,C= ,D= 。

      2。 ABCD中,A比B大20,則C= 。

      3。 ABCD中,AB=3,BC=5,則AD= CD= 。

      4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

      布置作業(yè)

      課本習(xí)題4。1

      A組(學(xué)優(yōu)生)1 、2

      B組(中等生)1、2

      C組(后三分之一生)1、2

      教學(xué)反思

    【八年級數(shù)學(xué)教案】相關(guān)文章:

    八年級的數(shù)學(xué)教案12-14

    八年級數(shù)學(xué)教案06-18

    八年級上冊數(shù)學(xué)教案11-09

    【薦】八年級數(shù)學(xué)教案12-03

    八年級的數(shù)學(xué)教案15篇12-14

    八年級數(shù)學(xué)教案【熱】11-29

    八年級數(shù)學(xué)教案【推薦】12-04

    【推薦】八年級數(shù)學(xué)教案12-05

    初中八年級數(shù)學(xué)教案11-03

    人教版八年級數(shù)學(xué)教案11-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      少妇把腿扒开让我添免费视频 | 日本人妖资源站在线观看 | 日韩一区二区三免费高清 | 久久精品99久久香蕉国产 | 强奷乱码中文字幕熟无 | 久久久国产99久久国产久首页 |