關于人教版六年級下冊數學教案集錦5篇
作為一名優秀的教育工作者,就有可能用到教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。那么大家知道正規的教案是怎么寫的嗎?下面是小編收集整理的人教版六年級下冊數學教案5篇,歡迎閱讀與收藏。
人教版六年級下冊數學教案 篇1
教學內容:
人教版小學數學教材六年級下冊第96~97頁例1及相關練習。
教學目標:
1.通過學習,使學生初步認識扇形統計圖的特點和作用,知道扇形統計圖可以清楚地表示出各部分數量和總量之間的關系。
2.能看懂扇形統計圖,并能從圖中獲取所需要的信息,進行簡單的分析,進一步增強學生的統計意識,感受統計的價值。
教學重點:
看懂扇形統計圖,知道扇形統計圖的特征,并能從統計圖中讀出必要的信息。
教學難點:
根據統計圖進行簡單的數據分析。
教學準備:
課前統計本班學生喜歡的體育項目,課前統計學生自己一天的作息時間安排,課件。
教學過程:
一、創設情境,談話激趣
1.出示教材第96頁情境圖,說說同學們正在干什么?
2.在這些體育項目中,你喜歡什么活動?出示統計表,進行統計。(可在課前進行調查統計,利用Excel自動生成扇形統計圖)
喜歡的項目
乒乓球
足球
跳繩
踢毽
其他
人數
【設計意圖】聯系學生生活實際,統計自己喜歡的體育項目,為引出有關統計數據提供了現實背景。同時,采用真實的數據進行教學,可以引發學生學習的興趣,也可以讓他們經歷數據收集、整理的全過程,進一步體會到統計的.意義和價值。
二、整理數據,引入新課
1.通過這張統計表,我們可以得到什么信息?
預設:數量的多少對比:如喜歡乒乓球人數最多,喜歡足球的比喜歡踢毽的多2人等;數量求和:如喜歡乒乓球的和喜歡足球的一共有20人等。
2.如果要比較喜歡每種運動的人數占全班人數的多少,可以怎樣比較?
3.如何計算喜歡各種運動項目的人數占全班人數的百分之多少呢?
4.學生進行口算或筆算,完成統計表,并進行校對。
人教版六年級下冊數學教案 篇2
教學目標:
1.使學生進一步理解比例的意義,懂得比例各部分名稱。
2.經歷探索比例基本性質的過程,理解并掌握比例的基本性質。
3.能運用比例的基本性質判斷兩個比能否組成比例。
教學重點:
比例的基本質性。
教學難點:
發現并概括出比例的基本質性。
教具準備:
多媒體課件
教學過程:
一、舊知鋪墊
1.什么叫做比例?
2.應用比例的意義,判斷下面的比能否組成比例。
0.5:0.25和0.2:0.4
0.5 :0.2和5:2
1/2:1/3 和6 : 4
0.2:0.8和1:4
二、探索新知
1.比例各部分名稱。
(1)教師說明組成比例的四個數的名稱。
板書
組成比例的四個數,叫做比例的項。兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項。
例如:2.4:1.6 = 60:40
內項:1.6 6o
外項:2.4 40
(2)學生認一認,說一說比例中的.外項和內項。讓學生再寫出幾個比例。
如:2.4 :1.6 = 60:40
外 內 內 外
項 項 項 項
2.比例的基本性質。
你能發現比例的外項和內項有什么關系嗎?
(1) 學生獨立探索其中的規律。
(2) 與同學交流你的發現。
(3) 匯報你的發現,全班交流。(師作適當的補充)
在比例里,兩個內項的積等于兩個外項的積。
板書
兩個外項的積是2.440=96
兩個內項的積是1.660=96
外項的積等于內項的積。
(4) 舉例說明,檢驗發現。
0.6 :0.5=1.2: 1
兩個外項的積是 0.61 =0.6
兩個內項的積是0.51.2=0.6
外項的積等于內項的積。
如果把比例改成分數形式呢?
如:2.4/1.6 = 60/40
3.440=1.660
等號兩邊的分子和分母分別交叉相乘,所得的積相等。
(5) 學生歸納。
在比例里,兩外外項的積等于兩個內項的積,這叫做比例的基本性質。
4.填一填。
(1)1/2:1/5 =1/4:1/10
( )( )=( )( )
(2)0.8:1.2=4:6
( )( )=( )( )
(3)45=210
4:( )=( ):( )
5.做一做。
完成課本中的做一做。
6.課堂小結
(1) 說一說比例的基本性質。
(2) 你可以用什么方法來判斷兩個比能否組成比例(引導學生總結說出兩種方法,重點讓學生理解掌握比例的基本性質,到此,學生要學會用兩種方法判斷兩個比能否組成比例;1.比值是否相等;2.內項之積是否等于內項之積。)
三、鞏固練習
完成課文練習六第4~6題。
補充習題
一題多變化,動腦解決它
(1)在比例里,兩個內項的積是18,
其中一個外項是2,另一個外項是()。
(2)如果5a=3b,那么, = ,
(3)a︰8=9︰b,那么,ab=( )
教學反思:
比例的各部分名稱通過學生自學,老師提問,完成的較好。讓學生通過計算內項之積和外項之積發現比例的基本性質。然后大量的練習鞏固新知。
人教版六年級下冊數學教案 篇3
教學目標:
1.使學生在現實情境中初步認識負數,了解負數的作用,感受運用負數的需要和方便。
2.使學生知道正數和負數的讀法和寫法,知道0既不是正數,又不是負數。正數都大于0,負數都小于0。
3.使學生體驗數學和生活的密切聯系,激發學生學習數學的興趣,培養學生應用數學的能力。
教學重點:初步認識正數和負數以及讀法和寫法。
教學難點:理解0既不是正數,也不是負數。
教學具準備:多媒體課件、溫度計、練習紙、卡片等。
教學過程:
一、游戲導入(感受生活中的相反現象)
1、游戲:我們來玩個游戲輕松一下,游戲叫做《我反 我反 我反反反》。游戲規則:老師說一句話,請你說出與它相反意思的話。
①向上看(向下看)②向前走200米(向后走200米)③電梯上升15層(下降15層)。
2、下面我們來難度大些的,看誰反應最快。
①我在銀行存入了500元(取出了500元)。②知識競賽中,五(1)班得了20分(扣了20分)。
③10月份,學校小賣部賺了500元。(虧了500元)。④零上10攝氏度(零下10攝氏度)。
說明什么是相反意義的量(意義正好相反)
3、談話:周老師的一位朋友喜歡旅游, 11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預報。(天氣預報片頭)
二、教學例1
1、認識溫度計,理解用正負數來表示零上和零下的溫度。
課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。
這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
B、現在你能看出南京是多少攝氏度嗎? (是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
(2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結合課件,突出上海的氣溫在零刻度線以上)。
(3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的'0℃要低)你能用一個手勢來表示它和0℃的關系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
(4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。
① 上海的氣溫比0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學們所說的4℃也就是+4℃。(板書)
負號能不能省略不寫?為什么?
② 北京的氣溫比0℃低,是零下4攝氏度。我們可以用-4℃來表示零下4攝氏度(板書-4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。
(5)小結:通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數可以來表示零上溫度,用-4這樣的數可以表示零下溫度。
2、試一試:學生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)
3、聽一段中央臺的天氣預報,將你聽到城市的最低和最高溫度記錄下來。
4、小結:通過剛才的學習,我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。
三、學習珠峰、吐魯番盆地的海拔表達方法(P4第2題)
1、同學們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關的。最近經國家測繪局公布了珠峰的最新海拔高度。老師把有關網頁帶來了。(課件出現網頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。
2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?
3、我們再來看新疆的吐魯番盆地的海拔圖。(動態演示吐魯番盆地的海拔情況)。
你又能從圖上看懂些什么呢?(引導學生交流,回答珠穆朗瑪峰比海平面高8844.43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
(1)交流:珠穆朗瑪峰的海拔可以記作:+8844.43米或8844.43米。
吐魯番盆地的海拔可以記作:-155米。(板書)
(2)小小結:以海平面為界線,+8844.43米或8844.43米這樣的數可以表示海平面以上的高度,-155米這樣的數可以表示海平面以下的高度。
四、小組討論,歸納正數和負數。
人教版六年級下冊數學教案 篇4
教學內容:
人教版小學數學教材六年級下冊第107~108頁例2及相關練習。
教學目標:
1.在學習過程中引導學生探索研究數與形之間的聯系,尋找規律,發現規律,學會利用圖形來解決一些有關數的問題。
2.讓學生經歷猜想與驗證的過程,體會和掌握數形結合、歸納推理、極限等基本數學思想。
重點難點:
探索數與形之間的聯系,尋找規律,并利用圖形來解決有關數的問題。
教學準備:
教學課件。
教學過程:
一、直接導入,揭示課題
同學們,上節課我們探究了圖形中隱藏的數的規律,今天我們繼續研究有關數與圖形之間的聯系。(板書課題:數與形)
【設計意圖】直奔主題,簡潔明了,有利于學生清楚本節課學習的內容和方向。
二、探索發現,學習新知
(一)教師與學生比賽算題
1.教師:你知道等于多少嗎?(學生:)
教師:那等于多少呢?(學生計算需要時間)教師緊接著說:我已經算好了,是,不信你算算。
2.只要按照這個分子是1,分母依次擴大2倍的規律寫下去,不管有多少個分數相加,我都能立馬算出結果。有的同學不相信是嗎?咱們試試就知道。為了方便,我請我們班計算最快的同學跟我一起算,看看結果是否相同。誰來出題?
在學生出題后,老師都能立刻算出結果,并且是正確的,學生感到很驚奇。
3.知道我為什么算得那么快嗎?因為我有一件神秘的法寶,你們也想知道嗎?
【設計意圖】一方面,教師通過與學生比賽計算速度,且每次老師勝利,使學生產生好奇心,再通過教師幽默的.語言,吸引學生的注意力,激發學生的學習興趣和求知欲。另一方面,為接下來學習例題做好鋪墊。
(二)借助正方形探究計算方法
1.這件法寶就是(師邊說邊課件出示一個正方形),讓我們來把它變一變,聰明的同學們一定能看明白是怎么回事了。
2.進行演示講解。
(1)演示:用一個正方形表示1,先取它的一半就是正方形的(涂紅),再剩下部分的一半就是正方形的(涂黃)。
人教版六年級下冊數學教案 篇5
設計說明
“反比例”是在學生學習了“比和比例”和“正比例”的基礎上進行教學的。本著“學生是學習的主體”的理念,在本節課的教學中,最大限度地為學生提供了自主探究的機會。
1.借助定義、實例,滲透函數思想。
教學伊始,借助正比例的意義和生活實例,使學生進一步體會函數思想,充分理解成正比例關系的兩種量的比值不變的特點,為學生探究成反比例關系的兩種量之間的關系以及理解反比例的意義和特點奠定良好的基礎。
2.借助具體情境,在觀察、討論中發現規律。
教學中,通過具體情境,引導學生在觀察、討論中發現“把相同體積的水倒入底面積不同的杯子中,水面的高度不同”及“杯子的底面積×水的高度=水的體積”這一規律,使學生通過自己的努力,歸納、概括出反比例的意義及特點。
3.借助已有的學習經驗總結反比例關系式。
因為正、反比例體現的都是兩種相關聯的量之間的關系,且正比例關系表達式學生已經掌握,所以在總結反比例關系表達式時,教師要引導學生根據已有的經驗自己總結出反比例關系表達式,體驗成功的喜悅。
課前準備
教師準備 PPT課件
學生準備 玻璃杯 直尺 水 實驗記錄單
教學過程
⊙復習引入
1.復習。
課件出示:一個圓柱形水箱,底面積是0.78平方米,高是1.2米,這個水箱能裝水多少立方米?
(1)引導學生獨立解決問題。
(2)提問:你是根據什么公式進行計算的?
預設
生:圓柱的體積=底面積×高。
(3)師追問:圓柱的體積、底面積和高之間還有怎樣的數量關系呢?在什么情況下其中的兩種量成正比例關系?
預設
生1:底面積=圓柱的體積÷高,高=圓柱的體積÷底面積。
生2:如果底面積一定,圓柱的體積與高就成正比例;如果高一定,圓柱的體積與底面積就成正比例。
2.引入課題。
如果圓柱的體積一定,那么底面積與高又成怎樣的關系呢?這就是本節課我們要學習的內容。(板書課題:反比例)
設計意圖:通過復習有關圓柱的體積問題以及列舉圓柱的體積、底面積和高之間的關系,在培養學生思維完整性的同時,為新知的學習作鋪墊。
⊙探究新知
1.在具體情境中初步感知成反比例關系的量。
(1)課件出示教材47頁例2,引導學生結合問題進行觀察。
師:觀察情境圖,理解圖意后,觀察下表,先一行一行地觀察,再一列一列地觀察,并思考下面的問題。
杯子的底面積與水的高度的變化情況如下表。
杯子的底面積/cm2 | 10 | 15 | 20 | 30 | 60 | … |
水的高度/cm | 30 | 20 | 15 | 10 | 5 | … |
①表中有哪兩種量?
②水的高度是怎樣隨著杯子底面積的大小變化而變化的'?
③相對應的杯子的底面積與水的高度的乘積分別是多少?
(2)學生思考后在小組內交流。
(3)全班交流。
預設
生1:有杯子的底面積和水的高度這兩種量。
生2:杯子的底面積增大,水的高度降低;杯子的底面積減小,水的高度升高。
生3:相對應的杯子的底面積與水的高度的乘積都是300,是一定的,也就是杯子的底面積×水的高度=水的體積(一定)。
(4)明確什么是成反比例的量。
因為水的體積一定,所以水的高度隨著杯子的底面積的變化而變化。杯子的底面積增大,水的高度反而降低;杯子的底面積減小,水的高度反而升高。但是無論怎樣變化,杯子的底面積和水的高度的乘積總是一定的,所以我們就把杯子的底面積和水的高度這兩種量叫做成反比例的量,它們的關系叫做反比例關系。
【人教版六年級下冊數學教案】相關文章:
人教版六年級下冊數學教案03-14
人教版六年級下冊數學教案06-30
人教版六年級下冊數學教案06-17
人教版六年級下冊數學教案(通用)08-26
人教版六年級下冊數學教案(精選10篇)06-07
人教版六年級下冊數學教案(精選9篇)03-01
人教版六年級下冊數學教案6篇11-18
人教版六年級下冊數學教案7篇11-19
關于人教版六年級下冊數學教案范文09-02
人教版六年級下冊數學教案(6篇)02-18