1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

    八年級數(shù)學教案

    時間:2022-08-22 05:48:39 八年級數(shù)學教案 我要投稿

    有關八年級數(shù)學教案6篇

      作為一名人民教師,時常需要編寫教案,借助教案可以有效提升自己的教學能力。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的八年級數(shù)學教案6篇,僅供參考,大家一起來看看吧。

    有關八年級數(shù)學教案6篇

    八年級數(shù)學教案 篇1

      5 14.3.2.2 等邊三角形(二)

      教學目標

      掌握等邊三角形的性質(zhì)和判定方法.

      培養(yǎng)分析問題、解決問題的能力.

      教學重點

      等邊三角形的性質(zhì)和判定方法.

      教學難點

      等邊三角形性質(zhì)的應用

      教學過程

      I創(chuàng)設情境,提出問題

      回顧上節(jié)課講過的等邊三角形的有關知識

      1.等邊三角形是軸對稱圖形,它有三條對稱軸.

      2.等邊三角形每一個角相等,都等于60°

      3.三個角都相等的.三角形是等邊三角形.

      4.有一個角是60°的等腰三角形是等邊三角形.

      其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.

      II例題與練習

      1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

      ①在邊AB、AC上分別截取AD=AE.

      ②作∠ADE=60°,D、E分別在邊AB、AC上.

      ③過邊AB上D點作DE∥BC,交邊AC于E點.

      2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

      分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

      III課堂小結(jié)

      1、等腰三角形和性質(zhì)

      2、等腰三角形的條件

      V布置作業(yè)

      1.教科書第147頁練習1、2

      2.選做題:

      (1)教科書第150頁習題14.3第ll題.

      (2)已知等邊△ABC,求平面內(nèi)一點P,滿足A,B,C,P四點中的任意三點連線都構(gòu)成等腰三角形.這樣的點有多少個?

      (3)《課堂感悟與探究》

      5

    八年級數(shù)學教案 篇2

      教學目標

      1、知識與技能目標

      學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念.

      2、過程與方法

      (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力.

      (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.

      3、情感態(tài)度與價值觀

      (1)通過有趣的問題提高學習數(shù)學的興趣.

      (2)在解決實際問題的過程中,體驗數(shù)學學習的實用性.

      教學重點:

    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

      教學難點:

    利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.

      教學準備:

    多媒體

      教學過程:

      第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)

      情景:

      如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

      第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)

      學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算.

      學生匯總了四種方案:

      (1) (2) (3)(4)

      學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

      學生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.

      如圖:

      (1)中A→B的路線長為:AA’+d;

      (2)中A→B的路線長為:AA’+A’B>AB;

      (3)中A→B的路線長為:AO+OB>AB;

      (4)中A→B的路線長為:AB.

      得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?

      在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

      第三環(huán)節(jié):做一做(7分鐘,學生合作探究)

      教材23頁

      李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

      (1)你能替他想辦法完成任務嗎?

      (2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

      (3)小明隨身只有一個長度為20厘米的.刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

      第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)

      1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?

      2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.

      3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?

      第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)

      內(nèi)容:

      1、如何利用勾股定理及逆定理解決最短路程問題?

      第六 環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)

      內(nèi)容:

      作業(yè):1.課本習題1.5第1,2,3題.

      要求:A組(學優(yōu)生):1、2、3

      B組(中等生):1、2

      C組(后三分之一生):1

      板書設計:

      教學反思:

    八年級數(shù)學教案 篇3

      教材分析

      本章屬于“數(shù)與代數(shù)”領域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學學習中具有重要的意義。本章內(nèi)容建立在已經(jīng)學習了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節(jié)課的知識是學習本章的基礎,為后續(xù)章節(jié)的學習作鋪墊,因此,學得好壞直接關乎到后續(xù)章節(jié)的學習效果。

      學情分析

      本節(jié)課知識是學習整章的基礎,因此,教學的好壞直接影響了后續(xù)章節(jié)的學習。學生在學習本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關概念,并且本節(jié)課的知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數(shù)冪的乘法的運算性質(zhì)的過程是一個由特殊到一般的認識過程,并且注意導出這一性質(zhì)的每一步的.根據(jù)。

      從學生做練習和作業(yè)來看,大部分學生都已經(jīng)掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

      教學目標

      1、知識與技能:

      掌握同底數(shù)冪乘法的運算性質(zhì),能熟練運用性質(zhì)進行同底數(shù)冪乘法運算。

      2、過程與方法:

      (1)通過同底數(shù)冪乘法性質(zhì)的推導過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;

      (2)通過性質(zhì)運用幫助學生理解字母表達式所代表的數(shù)量關系,進一步積累選擇適當?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經(jīng)驗。

      3、情感態(tài)度與價值觀:

      (1)通過引例問題情境的創(chuàng)設,誘發(fā)學生的求知欲,進一步認識數(shù)學與生活的密切聯(lián)系;

      (2)通過性質(zhì)的推導體會“特殊。

    八年級數(shù)學教案 篇4

      一、創(chuàng)設情境

      在學習與生活中,經(jīng)常要研究一些數(shù)量關系,先看下面的問題.

      問題1如圖是某地一天內(nèi)的氣溫變化圖.

      看圖回答:

      (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

      (2)這一天中,最高氣溫是多少?最低氣溫是多少?

      (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

      解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

      (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

      (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

      從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關系呢?

      二、探究歸納

      問題2銀行對各種不同的存款方式都規(guī)定了相應的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

      觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.

      解隨著存期x的增長,相應的年利率y也隨著增長.

      問題3收音機刻度盤的.波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數(shù)值:

      觀察上表回答:

      (1)波長l和頻率f數(shù)值之間有什么關系?

      (2)波長l越大,頻率f就________.

      解(1)l與f的乘積是一個定值,即

      lf=300000,

      或者說.

      (2)波長l越大,頻率f就 越小 .

      問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.

      利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結(jié)果填入下表:

      由此可以看出,圓的半徑越大,它的面積就_________.

      解S=πr2.

      圓的半徑越大,它的面積就越大.

      在上面的問題中,我們研究了一些數(shù)量關系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

      上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

    八年級數(shù)學教案 篇5

      知識要點

      1、函數(shù)的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,

      相應地就確定了一個y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。

      2、一次函數(shù)的概念:若兩個變量x,y間的關系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當b=0 時,稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).

      3、正比例函數(shù)y=kx的性質(zhì)

      (1)、正比例函數(shù)y=kx的圖象都經(jīng)過

      原點(0,0),(1,k)兩點的一條直線;

      (2)、當k0時,圖象都經(jīng)過一、三象限;

      當k0時,圖象都經(jīng)過二、四象限

      (3)、當k0時,y隨x的增大而增大;

      當k0時,y隨x的增大而減小。

      4、一次函數(shù)y=kx+b的性質(zhì)

      (1)、經(jīng)過特殊點:與x軸的交點坐標是 ,

      與y軸的交點坐標是 .

      (2)、當k0時,y隨x的增大而增大

      當k0時,y隨x的增大而減小

      (3)、k值相同,圖象是互相平行

      (4)、b值相同,圖象相交于同一點(0,b)

      (5)、影響圖象的兩個因素是k和b

      ①k的正負決定直線的方向

      ②b的正負決定y軸交點在原點上方或下方

      5.五種類型一次函數(shù)解析式的確定

      確定一次函數(shù)的解析式,是一次函數(shù)學習的重要內(nèi)容。

      (1)、根據(jù)直線的解析式和圖像上一個點的坐標,確定函數(shù)的解析式

      例1、若函數(shù)y=3x+b經(jīng)過點(2,-6),求函數(shù)的解析式。

      解:把點(2,-6)代入y=3x+b,得

      -6=32+b 解得:b=-12

      函數(shù)的解析式為:y=3x-12

      (2)、根據(jù)直線經(jīng)過兩個點的坐標,確定函數(shù)的解析式

      例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點B(2,7),

      求函數(shù)的表達式。

      解:把點A(3,4)、點B(2,7)代入y=kx+b,得

      ,解得:

      函數(shù)的解析式為:y=-3x+13

      (3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式

      例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x

      (小時)之間的關系.求油箱里所剩油y(升)與行駛時間x

      (小時)之間的.函數(shù)關系式,并且確定自變量x的取值范圍。

      (4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式

      例4、如圖2,將直線 向上平移1個單位,得到一個一次

      函數(shù)的圖像,那么這個一次函數(shù)的解析式是 .

      解:直線 經(jīng)過點(0,0)、點(2,4),直線 向上平移1個單位

      后,這兩點變?yōu)?0,1)、(2,5),設這個一次函數(shù)的解析式為 y=kx+b,

      得 ,解得: ,函數(shù)的解析式為:y=2x+1

      (5)、根據(jù)直線的對稱性,確定函數(shù)的解析式

      例5、已知直線y=kx+b與直線y=-3x+6關于y軸對稱,求k、b的值。

      例6、已知直線y=kx+b與直線y=-3x+6關于x軸對稱,求k、b的值。

      例7、已知直線y=kx+b與直線y=-3x+6關于原點對稱,求k、b的值。

      經(jīng)典訓練:

      訓練1:

      1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。

      (1)梯形的面積y與上底的長x之間的關系是否是函數(shù)關系?為什么?

      (2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關系式 。

      訓練2:

      1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

      一次函數(shù)有___ __;正比例函數(shù)有____________(填序號).

      2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )

      A.k1 B.k-1 C.k1 D.k為任意實數(shù).

      3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.

      訓練3:

      1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.

      2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )

      A.m0 B.m0 C.m0 D.m0

      3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點坐標是____,與y軸的交點坐標是____.

      4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點,則k=_____;

      若y隨x的增大而增大,則k__________.

      5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )

      訓練4:

      1、 正比例函數(shù)的圖象經(jīng)過點A(-3,5),寫出這正比例函數(shù)的解析式.

      2、已知一次函數(shù)的圖象經(jīng)過點(2,1)和(-1,-3).求此一次函數(shù)的解析式 .

      3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。

      4、已知一次函數(shù)y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數(shù)的解析式。

      5、已知y-1與x成正比例,且 x=-2時,y=-4.

      (1)求出y與x之間的函數(shù)關系式;

      (2)當x=3時,求y的值.

      一、填空題(每題2分,共26分)

      1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .

      2、若直線 和直線 的交點坐標為 ,則 .

      3、一次函數(shù) 和 的圖象與 軸分別相交于 點和 點, 、 關于 軸對稱,則 .

      4、已知 , 與 成正比例, 與 成反比例,當 時 , 時, ,則當 時, .

      5、函數(shù) ,如果 ,那么 的取值范圍是 .

      6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設長增加 ,寬增加 ,則 與 的函數(shù)關系是 .自變量的取值范圍是 .且 是 的 函數(shù).

      7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .

      8、已知一次函數(shù) 和 的圖象交點的橫坐標為 ,則 ,一次函數(shù) 的圖象與兩坐標軸所圍成的三角形的面積為 ,則 .

      9、已知一次函數(shù) 的圖象經(jīng)過點 ,且它與 軸的交點和直線 與 軸的交點關于 軸對稱,那么這個一次函數(shù)的解析式為 .

      10、一次函數(shù) 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .

      11、一次函數(shù) 的圖象如圖 ,則 與 的大小關系是 ,當 時, 是正比例函數(shù).

      12、 為 時,直線 與直線 的交點在 軸上.

      13、已知直線 與直線 的交點在第三象限內(nèi),則 的取值范圍是 .

      二、選擇題(每題3分,共36分)

      14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )

      15、若直線 與 的交點在 軸上,那么 等于( )

      A.4 B.-4 C. D.

      16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )

      17、直線 如圖5,則下列條件正確的是( )

      18、直線 經(jīng)過點 , ,則必有( )

      A.

      19、如果 , ,則直線 不通過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      20、已知關于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是

      A. B. C. D.都不對

      21、如圖6,兩直線 和 在同一坐標系內(nèi)圖象的位置可能是( )

      圖6

      22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點B, ,則 的面積為( )

      A.4 B.5 C.6 D.7

      23、已知直線 與 軸的交點在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個數(shù)是( )

      A.1個 B.2個 C.3個 D.4個

      24、已知 ,那么 的圖象一定不經(jīng)過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設甲從P處出發(fā) 小時,距A站 千米,則 與 之間的關系可用圖象表示為( )

      三、解答題(1~6題每題8分,7題10分,共58分)

      26、如圖8,在直角坐標系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是 ,求這個一次函數(shù)解析式.

      27、一次函數(shù) ,當 時,函數(shù)圖象有何特征?請通過不同的取值得出結(jié)論?

      28、某油庫有一大型儲油罐,在開始的8分鐘內(nèi),只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關閉進油管,只開出油管,直到將油罐內(nèi)的油放完,假設在單位時間內(nèi)進油管與出油管的流量分別保持不變.

      (1)試分別寫出這一段時間內(nèi)油的儲油量Q(噸)與進出油的時間t(分)的函數(shù)關系式.

      (2)在同一坐標系中,畫出這三個函數(shù)的圖象.

      29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標準收費;超過部分按每度0.50元計費.

      (1)設用電 度時,應交電費 元,當 100和 100時,分別寫出 關于 的函數(shù)關系式.

      (2)小王家第一季度交納電費情況如下:

      月份 一月份 二月份 三月份 合計

      交費金額 76元 63元 45元6角 184元6角

      問小王家第一季度共用電多少度?

      30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當 =0.65時, =0.8.

      (1)求 與 之間的函數(shù)關系式;

      (2)若每度電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]

      31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關系;(2)如果汽車再行駛30分,離A站多少千米?

      32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)

      路程/千米 運費(元/噸、千米)

      甲庫 乙?guī)?甲庫 乙?guī)?/p>

      A地 20 15 12 12

      B地 25 20 10 8

      (1)設甲庫運往A地水泥 噸,求總運費 (元)關于 (噸)的函數(shù)關系式,畫出它的圖象(草圖).

      (2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?

    八年級數(shù)學教案 篇6

      課時目標

      1.掌握分式、有理式的概念。

      2.掌握分式是否有意義、分式的值是否等于零的識別方法。

      教學重點

      正確理解分式的意義,分式是否有意義的`條件及分式的值為零的條件。

      教學難點:

      正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

      教學時間:一課時。

      教學用具:投影儀等。

      教學過程:

      一.復習提問

      1.什么是整式?什么是單項式?什么是多項式?

      2.判斷下列各式中,哪些是整式?哪些不是整式?

      ①+m2 ②1+x+y2- ③ ④

      ⑤ ⑥ ⑦

      二.新課講解:

      設問:不是整工式子中,和整式有什么區(qū)別?

      小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

      練習:下列各式中,哪些是分式哪些不是?

      (1)、、(2)、(3)、(4)、(5)x2、(6)+4

      強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。

      2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

      練習:課后練習P6練習1、2題

      設問:(讓學生看課本上P5“思考”部分,然后回答問題。)

      例題講解:課本P5例題1

      分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

      (板書解題過程。)

      3.小結(jié):分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。

      增加例題:當x取什么值時,分式有意義?

      解:由分母x2-4=0,得x=±2。

      ∴ 當x≠±2時,分式有意義。

      設問:什么時候分式的值為零呢?

      例:

      解:當 ① 分式的值為零

    【八年級數(shù)學教案】相關文章:

    八年級的數(shù)學教案12-14

    八年級數(shù)學教案06-18

    八年級數(shù)學教案【熱門】12-03

    【精】八年級數(shù)學教案12-04

    八年級數(shù)學教案【精】12-04

    八年級數(shù)學教案【薦】12-06

    【推薦】八年級數(shù)學教案12-05

    八年級數(shù)學教案【推薦】12-04

    【熱】八年級數(shù)學教案12-07

    八年級下冊數(shù)學教案01-01

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      一级做a过程免费在线观看 综合色天天鬼久久鬼色 | 亚洲国产综合精品中文第一 | 依依成人影院久久久午夜 | 日本免费亚洲午夜 | 亚洲中文字永久在线 | 精品国产高清免费第一区二区三区 |