1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-21 08:00:17 八年級數學教案 我要投稿

    八年級數學教案集合10篇

      作為一名無私奉獻的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學活動。那么大家知道正規的教案是怎么寫的嗎?下面是小編為大家整理的八年級數學教案10篇,僅供參考,歡迎大家閱讀。

    八年級數學教案集合10篇

    八年級數學教案 篇1

      教學內容和地位:

      眾數、中位數是描述一組數據的集中趨勢的兩個統計特征量,是幫助學生學會用數據說話的基本概念。本節課的教學內容和現實生活密切相關,是培養學生應用數學意識和創新能力的最好素材。

      教學重點和難點:

      本節課的重點是眾數和中位數兩概念的形成過程及兩概念的運用。本節課的難點是對統計數據從多角度進行全面地分析。因為利用數據進行分析,對剛剛接觸統計的學生來說,他們原有的認知結構中缺乏這方面的知識經驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。

      教學目標分析:

      認知目標:

      (1)使學生認知眾數、中位數的意義;

      (2)會求一組數據的眾數、中位數。

      能力目標:

      (1)讓學生接觸并解決一些社會生活中的問題,為學生創新學數學、用數學的情境,培養學生的數學應用意識和創新意識。

      (2)在問題解決的過程中,培養學生的自主學習能力;

      (3)在問題分析的過程中,培養學生的團結協作精神。

      情感目標:

      (1)通過多媒體網絡課件,提供適當的問題情境,激發學生的學習熱情,培養學生學習數學的興趣;

      (2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。

      教學輔助:網絡教室、多媒體輔助網絡教學課件、BBS電子公告欄、學習資源庫

      教法與學法:

      根據本節課的教學內容,主要采用了討論發現法。即課堂上,教師(或學生)提出適當的問題,通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的`過程中發現概念的產生過程,體現“數學教學是數學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現他們的主體地位,而教師是通過對學生參與學習的啟發、調整、激勵來體現自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結合”、“學思結合”、“學用結合”的學法指導,這對學生的主體意識的培養和創新能力的培養都有積極的意義。

    八年級數學教案 篇2

      教學建議

      知識結構

      重難點分析

      本節的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.

      本節的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

      教法建議

      1. 對于中位線定理的引入和證明可采用發現法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據學生情況參考采用

      2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

      教學設計示例

      一、教學目標

      1.掌握中位線的概念和三角形中位線定理

      2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

      3.能夠應用三角形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力

      4.通過定理證明及一題多解,逐步培養學生的分析問題和解決問題的能力

      5. 通過一題多解,培養學生對數學的興趣

      二、教學設計

      畫圖測量,猜想討論,啟發引導.

      三、重點、難點

      1.教學重點:三角形中位線的概論與三角形中位線性質.

      2.教學難點:三角形中位線定理的證明.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、膠片、常用畫圖工具

      六、教學步驟

      【復習提問】

      1.敘述平行線等分線段定理及推論的內容(結合學生的敘述,教師畫出草圖,結合圖形,加以說明).

      2.說明定理的證明思路.

      3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

      分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

      4.什么叫三角形中線?(以上復習用投影儀打出)

      【引入新課】

      1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.

      (結合三角形中線的定義,讓學生明確兩者區別,可做一練習,在 中,畫出中線、中位線)

      2.三角形中位線性質

      了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.

      如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

      三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

      應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的.數量關系,在應用時可根據需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

      由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).

      (l)延長DE到F,使 ,連結CF,由 可得AD FC.

      (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

      (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

      上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

      (證明過程略)

      例 求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.

      (由學生根據命題,說出已知、求證)

      已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

      求證:四邊形EFGH是平行四邊形.‘

      分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.

      證明:連結AC.

      ∴ (三角形中位線定理).

      同理,

      ∴GH EF

      ∴四邊形EFGH是平行四邊形.

      【小結】

      1.三角形中位線及三角形中位線與三角形中線的區別.

      2.三角形中位線定理及證明思路.

      七、布置作業

      教材P188中1(2)、4、7

    八年級數學教案 篇3

      數據的波動

      教學目標:

      1、經歷數據離散程度的探索過程

      2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

      教學重點:會計算某些數據的極差、標準差和方差。

      教學難點:理解數據離散程度與三個差之間的關系。

      教學準備:計算器,投影片等

      教學過程:

      一、創設情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的`平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

      2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

      2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

      3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

      (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

      三、講解概念:

      方差:各個數據與平均數之差的平方的平均數,記作s2

      設有一組數據:x1, x2, x3,,xn,其平均數為

      則s2= ,

      而s= 稱為該數據的標準差(既方差的算術平方根)

      從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

      四、做一做

      你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

      五、鞏固練習:課本第172頁隨堂練習

      六、課堂小結:

      1、怎樣刻畫一組數據的離散程度?

      2、怎樣求方差和標準差?

      七、布置作業:習題5.5第1、2題。

    八年級數學教案 篇4

      教學目標:

      情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

      能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

      認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

      教學重點、難點

      重點:等腰梯形性質的`探索;

      難點:梯形中輔助線的添加。

      教學課件:PowerPoint演示文稿

      教學方法:啟發法、

      學習方法:討論法、合作法、練習法

      教學過程:

      (一)導入

      1、出示圖片,說出每輛汽車車窗形狀(投影)

      2、板書課題:5梯形

      3、練習:下列圖形中哪些圖形是梯形?(投影)

      結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

      6、特殊梯形的分類:(投影)

      (二)等腰梯形性質的探究

      【探究性質一】

      思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

      【操練】

      (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

      (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

      【探究性質二】

      如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質:等腰梯形的兩條對角線相等。

      【探究性質三】

      問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

      問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

      等腰梯形性質:同以底上的兩個內角相等,對角線相等

      (三)質疑反思、小結

      讓學生回顧本課教學內容,并提出尚存問題;

      學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

    八年級數學教案 篇5

      知識技能

      1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

      2.探究線段垂直平分線的性質。

      過程方法

      1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發展空間觀察。

      2.探索線段垂直平分線的性質,培養學生認真探究、積極思考的能力。

      情感態度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發學生學習的主動性和積極性,并使學生具有一些初步研究問題的能力。

      教學重點

      1.軸對稱的性質。

      2.線段垂直平分線的性質。

      教學難點體驗軸對稱的特征。

      教學方法和手段多媒體教學

      過程教學內容

      引入中垂線概念

      引出圖形對稱的性質第一張幻燈片

      上節課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續來研究軸對稱的性質。

      幻燈片二

      1、圖中的'對稱點有哪些?

      2、點A和A的連線與直線MN有什么樣的關系?

      理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

      我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

      定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

    八年級數學教案 篇6

      教學任務分析

      教學目標

      知識技能

      一、類比同分母分數的加減,熟練掌握同分母分式的加減運算.

      二、類比異分母分數的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

      數學思考

      在分式的加減運算中,體驗知識的化歸聯系和思維靈活性,培養學生整體思考的分析問題能力.

      解決問題

      一、會進行同分母和異分母分式的加減運算.

      二、會解決與分式的加減有關的簡單實際問題.

      三、能進行分式的加、剪、乘、除、乘方的混合運算.

      情感態度

      通過師生活動、學生自我探究,讓學生充分參與到數學學習的過程中來,使學生在整體思考中開闊視野,養成良好品德,滲透化歸對立統一的辯證觀點.

      重點

      分式的加減法.

      難點

      異分母分式的加減法及簡單的分式混合運算.

      教學流程安排

      活動流程圖

      活動內容和目的

      活動1:問題引入

      活動2:學習同分母分式的加減

      活動3:探究異分母分式的加減

      活動4:發現分式加減運算法則

      活動5:鞏固練習、總結、作業

      向學生提出兩個實際問題,使學生體會學習分式加減的必要性及迫切性,創始問題情境,激發學生的學習熱情.

      類比同分母分數的加減,讓學生歸納同分母分式的加減的方法并進行簡單運算.

      回憶異分母分數的加減,使學生歸納異分母分式的加減的方法.

      通過以上探究過程,讓學生發現分式加減運算的法則,通過分式在物理學的應用及簡單混合運算,使學生深化對分式加減運算法則的理解.

      通過練習、作業進一步鞏固分式的運算.

      課前準備

      教具

      學具

      補充材料

      課件

      教學過程設計

      問題與情境

      師生行為

      設計意圖

      [活動1]

      1.問題一:比較電腦與手抄的錄入時間.

      2.問題二;幫幫小明算算時間

      所需時間為,

      如何求出的值?

      3.這里用到了分式的加減,提出本節課的主題.

      教師通過課件展示問題.學生積極動腦解決問題,提出困惑:

      分式如何進行加減?

      通過實際問題中要用到分式的加減,從而提出問題,讓學生思考,可以激發學生探究的熱情.

      [活動2]

      1.提出小學數學中一道簡單的分數加法題目.

      2.用課件引導學生用類比法,歸納總結同分母分式加法法則.

      3.教師使用課件展示[例1]

      4.教師通過課件出兩個小練習.

      教師提出問題,學生回答,進一步回憶同分母分數加減的運算法則.

      學生在教師的引導下,探索同分母分式加減的運算方法.

      通過例題,讓學生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.

      由兩個學生板書自主完成練習,教師巡視指導學生練習.

      運用類比的方法,從學生熟知的知識入手,有利于學生接受新知識.

      師生共同完成例題,使學生感受到自己很棒,自己能夠通過思考學會新知識,提高自信心.

      讓學生進一步體會同分母分式的加減運算.

      [活動3]

      1.教師以練習的形式通過“自我發展的平臺”,向學生展示這樣一道題.

      2.教師提出思考題:

      異分母的分式加減法要遵守什么法則呢?

      教師展示一道異分母分式的加減題目,學生自然就想到異分母分數的加減.

      教師通過課件引導學生思考,學生會想到小學數學中,異分母分數的加減法則,從而聯想到異分母分式的加減法則,教師引導學生歸納出異分母分式加減運算的方法思路.

      由學生主動提出解決問題的方法,從而激發了學生探究問題的興趣.

      通過學生的自我探究、歸納總結,讓學生充分參與到數學學習的過程中來,體會學習的樂趣.

      [活動4]

      1.在語言敘述分式加減法則的基礎上,用字母表示分式的加減法法則.

      2.教師使用課件展示[例2]

      3.教師通過課件出4個小練習.

      4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的'電阻R2比R1大50歐姆,根據電學的有關定律可知總電阻R與R1R2滿足關系式 ;

      試用含有R1的式子表示總電阻R

      5.教師使用課件展示[例4]

      教師提出要求,由學生說出分式加減法則的字母表示形式.

      通過例題,讓學生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.

      教師引導學生找出每道題的方法、如何找最簡公分母及時指出學生在通分中出現的問題,由學生自己完成.

      教師引導學生尋找解決問題的突破口,由師生共同完成,對比物理學中的計算,體會各學科知識之間的聯系.

      分式的混合運算,師生共同完成,教師提醒學生注意運算順序,通分要仔細.

      由此練習學生的抽象表達能力,讓學生體會數學符號語言的精練.

      讓學生體會運用的公式解決問題的過程.

      鍛煉學生運用法則解決問題的能力,既準確又有速度.

      提高學生的計算能力.

      通過分式在物理學中的應用,加強了學科之間的聯系,使學生開闊了視野,讓學生體會到學習數學的重要性,體會各學科全面發展的重要性,提高學習的興趣.

      提高學生綜合應用知識的能力.

      [活動5]

      1.教師通過課件出2個分式混合運算的小練習.

      2.總結:

      a)這節課我們學習了哪些知識?你能說一說嗎?

      b)⑴方法思路;

      c)⑵計算中的主意事項;

      d)⑶結果要化簡.

      3.作業:

      a)教科書習題16.2第4、5、6題.

      學生練習、鞏固.

      教師巡視指導.

      學生完成、交流.,師生評價.

      教師引導學生回憶本節課所學內容,學生回憶交流,師生共同補充完善.

      教師布置作業.

      鍛煉學生運用法則進行運算的能力,提高準確性及速度.

      提高學生歸納總結的能力.

    八年級數學教案 篇7

      一、創設情境

      1.一次函數的圖象是什么,如何簡便地畫出一次函數的圖象?

      (一次函數y=kx+b(k≠0)的圖象是一條直線,畫一次函數圖象時,取兩點即可畫出函數的圖象).

      2.正比例函數y=kx(k≠0)的圖象是經過哪一點的直線?

      (正比例函數y=kx(k≠0)的圖象是經過原點(0,0)的一條直線).

      3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?

      4.在平面直角坐標系中,畫出函數的圖象.我們畫一次函數時,所選取的兩個點有什么特征,通過觀察圖象,你發現這兩個點在坐標系的什么地方?

      二、探究歸納

      1.在畫函數的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.

      2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.

      分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.

      解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.

      過點(-1.5,0)和(0,-3)所作的'直線就是直線y=-2x-3.

      所以一次函數y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.

      三、實踐應用

      例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.

      分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.

      解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.

      例2求函數與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.

      分析求直線與x軸、y軸的交點坐標,根據x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應的橫坐標和縱坐標?

    八年級數學教案 篇8

      課題:一元二次方程實數根錯例剖析課

      【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

      【課前練習】

      1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

      2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

      【典型例題】

      例1 下列方程中兩實數根之和為2的方程是()

      (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

      錯答: B

      正解: C

      錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

      例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

      (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

      錯解 :B

      正解:D

      錯因剖析:漏掉了方程有實數根的前提是△≥0

      例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

      錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

      錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

      正解: -1≤k<2且k≠

      例4 (20xx山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

      錯解:由根與系數的關系得

      x1+x2= -(2m+1), x1x2=m2+1,

      ∵x12+x22=(x1+x2)2-2 x1x2

      =[-(2m+1)]2-2(m2+1)

      =2 m2+4 m-1

      又∵ x12+x22=15

      ∴ 2 m2+4 m-1=15

      ∴ m1 = -4 m2 = 2

      錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

      正解:m = 2

      例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

      錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

      ∵ △≥0

      ∴ 16 m+20≥0,

      ∴ m≥ -5/4

      又 ∵ m2-1≠0,

      ∴ m≠±1

      ∴ m的取值范圍是m≠±1且m≥ -

      錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

      正解:m的取值范圍是m≥-

      例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

      錯解:∵方程有整數根,

      ∴△=9-4a>0,則a<2.25

      又∵a是非負數,∴a=1或a=2

      令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

      ∴方程的整數根是x1= -1, x2= -2

      錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

      正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

      【練習】

      練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

      (1)求k的取值范圍;

      (2)是否存在實數k,使方程的.兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

      解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

      ∴當k< 時,方程有兩個不相等的實數根。

      (2)存在。

      如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

      ∴當k= 時,方程的兩實數根x1、x2互為相反數。

      讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

      解:上面解法錯在如下兩個方面:

      (1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

      (2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

      練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

      解:(1)當a=0時,方程為4x-1=0,∴x=

      (2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

      ∴當a≥ -4且a≠0時,方程有實數根。

      又因為方程只有正實數根,設為x1,x2,則:

      x1+x2=- >0 ;

      x1. x2=- >0 解得 :a<0

      綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

      【小結】

      以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

      1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

      2、運用根與系數關系時,△≥0是前提條件。

      3、條件多面時(如例5、例6)考慮要周全。

      【布置作業】

      1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

      2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

      求證:關于x的方程

      (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

      考題匯編

      1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

      2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0

      (1)若方程的一個根為1,求m的值。

      (2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

      3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

      4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

    八年級數學教案 篇9

      教學建議

      1、平行線等分線段定理

      定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

      注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

      定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

      2、平行線等分線段定理的推論

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

      記憶方法:“中點”+“平行”得“中點”。

      推論的用途:(1)平分已知線段;(2)證明線段的倍分。

      重難點分析

      本節的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎,而且是第五章中“平行線分線段成比例定理”的基礎。

      本節的難點也是平行線等分線段定理。由于學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發生,教師在教學中要加以注意。

      教法建議

      平行線等分線段定理的引入

      生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

      ①從生活實例引入,如刻度尺、作業本、柵欄、等等;

      ②可用問題式引入,開始時設計一系列與平行線等分線段定理概念相關的問題由學生進行思考、研究,然后給出平行線等分線段定理和推論。

      教學設計示例

      一、教學目標

      1、使學生掌握平行線等分線段定理及推論。

      2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養學生的作圖能力。

      3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。

      4、通過本節學習,體會圖形語言和符號語言的和諧美

      二、教法設計

      學生觀察發現、討論研究,教師引導分析

      三、重點、難點

      1、教學重點:平行線等分線段定理

      2、教學難點:平行線等分線段定理

      四、課時安排

      l課時

      五、教具學具

      計算機、投影儀、膠片、常用畫圖工具

      六、師生互動活動設計

      教師復習引入,學生畫圖探索;師生共同歸納結論;教師示范作圖,學生板演練習

      七、教學步驟

      【復習提問】

      1、什么叫平行線?平行線有什么性質。

      2、什么叫平行四邊形?平行四邊形有什么性質?

      【引入新課】

      由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什么關系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

      (引導學生把做實驗的條件和得到的結論寫成一個命題,教師總結,由此得到平行線等分線段定理)

      平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

      注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。

      下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。

      已知:如圖,直線 , 。

      求證: 。

      分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應用平行線間的平行線段相等得 ),通過全等三角形性質,即可得到要證的結論。

      (引導學生找出另一種證法)

      分析2:要證的兩條線段分別是梯形的.腰,我們借助于前面常用的輔助線,把梯形轉化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

      證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

      ∴

      ∵ ,

      ∴

      又∵ , ,

      ∴

      ∴

      為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態演示)。

      引導學生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      再引導學生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

      推論2:經過三角形一邊的中點與另一邊平行的直線必平分第三邊。

      注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經常用到,因此,要求學生必須掌握好。

      接下來講如何利用平行線等分線段定理來任意等分一條線段。

      例 已知:如圖,線段 。

      求作:線段 的五等分點。

      作法:①作射線 。

      ②在射線 上以任意長順次截取 。

      ③連結 。

      ④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

      、 、 、 就是所求的五等分點。

      (說明略,由學生口述即可)

      【總結、擴展】

      小結:

      (l)平行線等分線段定理及推論。

      (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

      (3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

      (4)應用定理任意等分一條線段。

      八、布置作業

      教材P188中A組2、9

      九、板書設計

      十、隨堂練習

      教材P182中1、2

    八年級數學教案 篇10

      教學目標:

      1、經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發展初步審美能力,增強對圖形欣賞的意識。

      2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據圖形的軸對稱關系設計軸對稱圖形。

      教學重點:本節課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節課的難點。

      教學方法:動手實踐、討論。

      教學工具:課件

      教學過程:

      一、 先復習軸對稱圖形的定義,以及軸對稱的相關的性質:

      1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

      2.軸對稱的三個重要性質______________________________________________

      _____________________________________________________________________

      二、提出問題:

      二、探索練習:

      1. 提出問題:

      如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

      你能畫出這個圖案的另一半嗎?

      吸引學生讓學生有一種解決難點的想法。

      2.分析問題:

      分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據軸對稱的性質只要畫出這個圖案中六個點的對應點即可

      問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`

      在學生掌握已知一個點畫對應點的基礎上,解決上述給出的.問題,使學生有一條較明確的思路。

      三、對所學內容進行鞏固練習:

      1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

      2. 試畫出與線段AB關于直線L的線段

      3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

      小 結: 本節課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質知道如何設計軸對稱圖形。

      教學后記:學生對這節課的內容掌握比較好,但對于利用軸對稱的性質來設計圖形覺得難度比較大。因本節課內容較有趣,許多學生上課積極性較高

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級下冊數學教案01-01

    八年級數學教案人教版01-03

    人教版八年級數學教案11-04

    八年級上冊數學教案11-09

    八年級數學教案【熱】11-29

    八年級數學教案【熱門】12-03

    【薦】八年級數學教案12-03

    【熱】八年級數學教案12-07

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      午夜亚洲精品专区高潮日 | 伊人精品久久久大香线蕉 | 亚洲欧洲精品一区二区 | 亚洲欧美不卡视频在线播放 | 一本久久a久久免费观看 | 色五月五月丁香亚洲综合网人 |