1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>九年級數(shù)學(xué)教案>二次函數(shù)y=ax2+bx+c 的圖象

    二次函數(shù)y=ax2+bx+c 的圖象

    時間:2022-08-17 02:13:34 九年級數(shù)學(xué)教案 我要投稿
    • 相關(guān)推薦

    二次函數(shù)y=ax2+bx+c 的圖象


    教學(xué)目標(biāo)

      1、使學(xué)生進一步理解二次函數(shù)的基本性質(zhì);

      2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學(xué)思想.培養(yǎng)學(xué)生發(fā)現(xiàn)問題解決問題,及邏輯思維的能力.

      3、使學(xué)生參與教學(xué)過程,通過主體的積極思維,體驗感悟數(shù)學(xué).逐步建立數(shù)學(xué)的觀念,培養(yǎng)學(xué)生獨立地獲取知識的能力.

      教學(xué)重點:初步理解數(shù)形結(jié)合的數(shù)學(xué)思想

      教學(xué)難點:初步理解數(shù)形結(jié)合的數(shù)學(xué)思想

      教學(xué)用具:微機

      教學(xué)方法:探究式、小組合作學(xué)習(xí)

      教學(xué)過程

      例1、已知:拋物線y=x2-(m2-1)x-2m2-2

      ⑴求證:無論m取什么實數(shù),拋物線與x軸一定有兩個交點

      ⑵m取什么實數(shù)時,兩交點間距離最短?是多少?

      解:

       △ = (m2-1)2+4(2m2+2)

       = m4-2m2+1+8m2+8

       = m4+6m2+9

       = (m2+3)2

       m2≥0

       ∴m2+3>0

       ∴△>0 

       ∴拋物線與x軸有兩個交點

      問題:為什么說當(dāng)△>0時,拋物線y = ax2+bx+c與x軸有兩個交點.(能否從數(shù)和形兩方面說明)

      設(shè)計意圖:在課堂上創(chuàng)設(shè)讓學(xué)生說數(shù)學(xué)的機會,學(xué)會合作學(xué)習(xí),以達到①經(jīng)驗共享,在思維的碰撞中共同提高.②學(xué)會合作,消除個人中心.③發(fā)現(xiàn)自我,提高參與度.④弘揚個體的主體性,形成健康,豐富的個性.

      數(shù):點在曲線上,點的坐標(biāo)滿足曲線的方程.反之,曲線方程的每一個實數(shù)解對應(yīng)的點都在曲線上.拋物線與x軸的交點,既在拋物線上,又在x軸上.所以交點的坐標(biāo)既滿足拋物線的解析式,也滿足x軸的解析式.設(shè)交點坐標(biāo)為(x,y)

      ∴

          這樣交點問題就轉(zhuǎn)化成求這個二元二次方程組的解.代入y = 0,消去y,轉(zhuǎn)化成ax2+bx+c=0這個一元二次方程求根問題.根據(jù)以前學(xué)過的知識,當(dāng)△>0時, ax2+bx+c=0有兩個不相等的實根.∴y = ax2+bx+c

      y = 0

      有兩個不等的實數(shù)解

      ∴拋物線與x軸交于兩個不同的點.

      形:頂點在x軸上方,且開口向下.或者頂點在x軸下方,且開口向上.

      設(shè)計意圖:滲透解析幾何的基本思想

      使學(xué)生掌握轉(zhuǎn)化思想使學(xué)生在解題過程中,感知數(shù)學(xué)的直觀性和形式化這二重性.掌握數(shù)形結(jié)合,分類討論的思想方法.逐步學(xué)會數(shù)學(xué)的思維.

      

      轉(zhuǎn)化成代數(shù)語言為:

          

      小結(jié):第一種方法,根據(jù)解析幾何的基本思想.將求曲線的交點問題,轉(zhuǎn)化成求方程組的解的問題.

      第二種方法,借助于圖象思考問題,比較直觀.發(fā)現(xiàn)規(guī)律后,再用數(shù)學(xué)的符號語言將其形式化.這既體現(xiàn)了數(shù)學(xué)中的數(shù)形結(jié)合的思想方法,也是探索解數(shù)學(xué)問題的一般方法.

      思考:試從數(shù)、形兩方面說明拋物線與x軸的交點個數(shù)與判別  式的符號的關(guān)系.

      設(shè)計意圖:數(shù)學(xué)學(xué)習(xí)是一個再創(chuàng)造的過程,不能等同于數(shù)學(xué)知識的匯集,而要讓學(xué)生經(jīng)歷數(shù)學(xué)知識的創(chuàng)造過程.使主體積極地參與到學(xué)習(xí)中去.以數(shù)學(xué)知識為載體,揭示出蘊涵于其中的數(shù)學(xué)思想方法,逐步形成數(shù)學(xué)觀念.

      ⑵m取什么實數(shù)時,兩交點間距離最短?是多少?

      解:設(shè)二次函數(shù)與x軸的兩交點為(x1,0),(x2,0)

      解法㈠ 由⑴可知m為任何實數(shù)時, 都有△>0

      解①

       ∴  x1+x2=m2-1

       x1·x2=-2(m2+1)

       ∴│x2-x1│=

       =

       =

       =

       = m2+3

       ∴當(dāng)m =0時,兩交點最小距離為3

      這里兩交點間距離是m的函數(shù)

      設(shè)計意圖:培養(yǎng)學(xué)生的問題意識.在解題過程中,發(fā)現(xiàn)問題,并能運用已有的數(shù)學(xué)知識,將其一般化,形式化,解決問題,體會數(shù)學(xué)問題解決的一般方法.培養(yǎng)學(xué)生獨立地獲取數(shù)學(xué)知識的能力.滲透函數(shù)思想
     問題: 觀察本題兩交點間距離與判別式的值之間有何異同?具有一般的規(guī)律嗎?如何說明.

      設(shè)x1、x2 為ax2+bx+c = 0的兩根

      可以推出:

      還可以理解為頂點到x軸距離最短.

      設(shè)計意圖:在對比、分析中,明確概念,揭示知識間的聯(lián)系,幫助學(xué)生建立良好的認(rèn)知結(jié)構(gòu).

      小結(jié):觀察這道題的結(jié)論,我們猜測出規(guī)律,將其一般化,推導(dǎo)出這個公式,這是學(xué)習(xí)數(shù)學(xué)知識的一般方法.

      解法㈡:用十字相乘法或求根公式法求根.

      思考:一元二次方程與二次函數(shù)的關(guān)系.

      思考:求m取什么實數(shù)時,y = x2-(m2-1)x  -2 m2-2被直線y = 2所截得的線段最短?是多少?

      練習(xí):

      觀察函數(shù) 的圖象,回答:

      (1)y>0時,x的取值范圍如何?

      (2)y=0時,x取什么值?

      (1)y<0時,x的取值范圍如何?

      小結(jié):數(shù)與形是數(shù)學(xué)中相互依賴的兩個方面.圖形比較直觀,可以啟發(fā)思路;而數(shù)學(xué)的嚴(yán)格證明也是必不可少的.直觀性和形式化是數(shù)學(xué)的兩重性.

    探究活動

      探究問題:

      欣欣日用品零售商店,從某公司批發(fā)部每月按銷售合同以批發(fā)單價每把8元購進雨傘(數(shù)量至少為100把),欣欣商店根據(jù)銷售記錄,這批雨傘以零售單價每把為14元出售時,月銷售量為100把。如果零售單價每降價0.1元 , 月銷售量就要增加5把.

      (1) 欣欣日用品零售商店以零售單價14元出售時,一個月的利潤為多少元?

      (2) 欣欣日用品零售商店為了擴大銷售記錄,現(xiàn)實行降價銷售,問分別降價0.2元、0.8元、1.2元、1.6元、2.4元、3元時的利潤是多少?

      (3) 欣欣日用品零售商店實行降價銷售后,問降價多少元時利潤最大?最大利潤為多少元?

      (4) 現(xiàn)在該公司的批發(fā)部為了再次擴大這種雨傘的銷售量,給零售商制定如下優(yōu)惠措施:如果零售商每月從批發(fā)部購進雨傘的數(shù)量超過100把,其超過100把的部分每把按原價九五折(即百分之95)付費,但零售價每把不能低于10元。欣欣日用品零售商店應(yīng)將這種雨傘的零售單價定為每把多少元出售時,才能使這種雨傘的月銷售利潤最大?最大月銷售利潤是多少元?(銷售利潤=銷售款額—進貨款額)

      解:(1)(14—8) (元)

      (2)638元、728元、748元、792元、792元、750元。

      (3)設(shè)降價 元時利潤最大,最大利潤為 元

        =

        =

        =

       ∴ 當(dāng) 時, 有最大值

        元

      (4)設(shè)降價 元時利潤最大,利潤為 元

        (其中 )。

       化簡,得  。

        ,

       ∴  當(dāng) 時, 有最大值。

       

       ∴  。



    【二次函數(shù)y=ax2+bx+c 的圖象】相關(guān)文章:

    高二數(shù)學(xué)教案函數(shù)y=Asin(ω某+φ)圖象08-22

    初中數(shù)學(xué)函數(shù)的圖象教案01-29

    正切、余切函數(shù)的圖象和性質(zhì)06-04

    反比例函數(shù)的圖象與性質(zhì)教學(xué)反思08-24

    二次函數(shù)的教學(xué)反思04-22

    二次函數(shù)教學(xué)反思03-02

    二次函數(shù)概念教學(xué)反思08-22

    初三二次函數(shù)教學(xué)反思04-08

    《二次函數(shù)復(fù)習(xí)課》教學(xué)反思11-05

    二次函數(shù)數(shù)學(xué)教案02-07

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      久久中文字幕永久第一页 | 亚洲国产精品另类 | 亚洲日韩精品专区 | 亚洲成V人片在线观看 | 亚洲成a×人片在线观看主页 | 天天久久精品美美免费观 |