1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>心得體會>教學反思>《最大公因數》教學反思

    《最大公因數》教學反思

    時間:2025-06-05 10:02:50 教學反思 我要投稿

    [精]《最大公因數》教學反思15篇

      身為一名優秀的人民教師,我們的任務之一就是教學,寫教學反思可以很好的把我們的教學記錄下來,優秀的教學反思都具備一些什么特點呢?下面是小編為大家整理的《最大公因數》教學反思,僅供參考,大家一起來看看吧。

    [精]《最大公因數》教學反思15篇

    《最大公因數》教學反思1

      【多問幾個為什么】

      1、出差兩天,今日回來,與孩子們繼續暢游《公倍數和公因數》單元。

      思維一旦被激發,就有點一發不可收拾。

      從第一課時開始,孩子們與我是完全浸潤在了公倍數與公因數的歡樂中。我的態度也從一開始對教材安排的質疑,到現在極力擁護教材的安排。

      只有放手給孩子們一個構建的機會,孩子們才能在構建過程中頻頻發起智慧的邀請。

      在學習公倍數的時候,課上巧遇“思維定勢”,孩子們以為兩個數的公倍數就是它們的乘積;但是在解決書本上的6和9的公倍數是多少時,猛然發現,這個方法不能次次實施。孩子們提出了一系列猜想。其中小彧發現,如果將錯就錯,把6和9相乘,也可以,但是要除以它們的最大公因數。并且,小彧通過舉例,把這個發現從特殊上升到了一般。

      因為當時還未學習公因數,我就躲避了問題的內里。

      小何在備學中說,我最大的問題是,我知道小彧的說法是對的,但是為何6和9兩個數相乘,再除以最大公因數,得到的就是最小公倍數,其中的道理是什么?

      呵呵,好家伙,知道了是什么,自覺追問了為什么?

      明天我們要對本章節的`內容做個整體梳理,我準備結合短除法,讓孩子們意識到小何追問思想的可貴,以及這個方法可行之處究竟是什么。

      2、孩子們很愛思考,從第一課時的下課時間開始,就發現兩個數若有倍數關系,它們的最小公倍數很奇妙,就是較大的數。

      第二課時,我們通過教材上的習題,一起說了這個規律,即訴說了看到的表面現象。

      孩子們還不甘心,提出了問題,為什么兩個數是倍數關系,最小公倍數就是大的那個數呢?

      一時安靜后,好幾個孩子舉高手,并說清了原因:大數本身是小數的倍數,大數又是自己最小的倍數,理所應當是兩數的最小公倍數。

      3、公倍數的種種猜想,在學習公因數的時候,思想方法得到了遷移。

      第一課時,孩子們提出各種猜想,求最大公因數,會不會也像公倍數中兩個數有特殊關系,就能輕松的求出結果?

      【孩子們+數學=好玩。】

      要做找公倍數的上本子作業了,我板書給孩子們看書寫格式,他們拉著臉。

      我說,我小時候,就是寫這么多字的。不過,我可以介紹你們寫一種簡單的,用“【】”包住兩個數,中間用逗號隔開,這樣就能代替寫這么多字。孩子們一看,多方便呀!居然都“啪啪啪”鼓起掌來,哈!

      我滿懷愜意的說,你們的掌聲與微笑中包含著對數學簡潔美的追求啊!

      孩子們爽歪歪了。

      不過事后,一個資深老師告訴我,這個環節,如果讓孩子們創造一下,如何追求簡潔。也許,這樣對于孩子們的思維發展更有效。一想,我也同意這般。

      一節課,只要知識目標達成,那么,過程方法與情意目標是不可分割的。學生在達成過程方法目標的旅程中,豈有不快樂,不感受到豐富體驗的?

    《最大公因數》教學反思2

      一、分析基礎知識,準確制定教學目標。

      本節課是在學生已經理解和掌握因數、倍數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和分數四則計算的基礎。我根據教材的編寫特點準確地制定了教學目標,即理解公因數及最大公因數的意義。知道任意兩個數都有公因數;能夠采用枚舉法找到兩個數的最大公因數。通過動手、觀察、思考等教學活動,從拼擺過程中發現公因數,再通過進一步探究明確公因數及最大公因數的含義。

      二、在現實的情境中教學概念,借助直觀操作活動,經歷概念的形成過程。

      以往教學公因數的概念,通常是直接找出兩個自然數的因數,然后讓學生發現有的因數是兩個數公有的,從而揭示公因數和最大公因數的概念。而本節課注意引導學生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導學生觀察這樣的幾組數據與長方形面積之間的`關系——右面的這些數據都是左面這些數據的因數。三是揭示出公因數和最大公因數的含義——指出用紅筆標出的這些數據是左面這兩個數的公因數,找到這里面最大的一個公因數,完成由形象到抽象的過程,把感性認識提升為理性認識。

      三、把握內涵外延,準確理解概念的含義。

      概念的內涵是指這個概念的所反映的一切對象的共同的本質屬性。公因數是幾個數公有的因數,可見“幾個數公有的”是公因數的本質屬性。因此在因數的基礎上學習公因數,關鍵在于突出“公有”的含義。本節課突出概念的內涵是“既是……也是……”即“公有”。教學中,我首先讓學生在練習本上找出12和16的因數,然后借助直觀的集合圖揭示出“既是12的因數,又是16的因數”這句話的含義,幫助學生進一步理解公因數和最大公因數的意義。這樣安排有兩點好處:一是學生通過操作活動,能體會公因數的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程。

      概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認識很有好處。本節課我注意利用反例,來凸現公因數的含義。在用集合圖法來表示12和16的公因數的時候,找到填寫錯誤的學生的例子,提示學生注意:并集里填寫的是兩個數的公因數,而沒有交在一起的集合圖中,只填寫這兩個數的都有的因數,從而進一步明確公因數的概念。

      四、教學中的不足:

      教師的提問有時指向性不是很強,學生不能很快地明白老師的意圖,影響了學生的思考,須進一步提高。在教學“兩個長和寬都是整厘米數的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時,學生有些困難,我應該讓學生動手在本上畫一畫,幫助學生找到,降低難度,這點考慮不周,沒有切實聯系實際。

      自己要學的東西還有很多,應注意提高自身修養。多閱讀、多聽課,努力提高自己的教學水平,更好地為學生服務。

    《最大公因數》教學反思3

      1、創設情境引入新知。

      我在教學時,改變教材中從單調的計算引出概念的做法,而是創設情景,通過生動有趣的畫面,吸引學生積極思維,其特有的感染力和表現力,能直觀生動地對學生心理起到催化作用,有效地激發了學生探究新知識的興趣,使教與學始終處于活化狀態。

      2、合理利用教材。

      “循環小數”是學生較難準確地掌握和表述的一個概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復出現”等抽象說法,學生難以理解。這節課的內容也較多,我打破教材編排順序,將教學內容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計算400÷75讓學生計算發現商中重復出現一個相同的數字,再以王鵬喜歡游泳引出計算25÷22讓學生計算發現商中有兩個不斷重復出現的數字。從而引導學生發現發現商的特點,引出“循環小數”。這樣可以將難點分散,各個擊破。

      3、引導學生探索,讓學生成為真正的參與者。

      《數學課程標準》指出:“教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”數學學習不應是簡單個體接受知識的過程,而是一個主體對自己感興趣的且是現實的生活性主題的探究與發展的過程。在新課中,我首先從生活中的現象入手,再引導學生主動探究數學中的問題,通過讓學生選擇自己感興趣的'信息試算、觀察、分析、比較、討論等學習方式充分調動學生多種感官的參與,給學生提供自主合作探究的空間,讓學生全面參與新知的發生、發展和形成過程,使學生真正體驗到探究的樂趣和做數學的價值。

      當然,在這節課中也有很多不足之處。如我在教學中過多地注意預設,使教學放不開手腳,環節安排趨于飽和,這樣壓縮了學生思維空間,在今后的教學中,特別是環節預設應在于精、在于厚實。

    《最大公因數》教學反思4

      這部分內容是在學生掌握了因數、倍數概念的基礎上進行教學的,主要是為下續學習約分作準備。教材先創設了一個剪紙的問題情境,從實際生活中抽象出概念。這樣處理的好處便于揭示數學與現實世界的聯系,有利于學生理解公因數、最大公因數的.概念及現實意義,也有利于培養學生的數學抽象能力。但是將解決問題與概念引入結合在一起,教學上自然會有一定的難度,所以我將主題圖的自由探索與嘗試選正方形的大小來剪。適當降低了一些難度并提高了教學的效率,最后的效果還是不錯的,很容易就引入了公因數和最大公因數的概念。

      在現行《課標》中有關求最大公因數的要求是:“能找出兩個自然數的公因數和最大公因數”。重在“找”,而現行教材的分子分母都比較小,學生熟練了以后都能準確的進行約分,關鍵還是在練習的力度上多下功夫。

      融入生活實際。我把找公因數的問題融入實際生活情景中,比如:“有兩根繩子,一根長12米,另一根長28米,要把它們截成同樣長的小段,而且沒有剩余,每段最長應是幾米?一共截幾段?”這時學生理解了求最大公因數的方法和作用,就不難解決這一問題。結合生活實際,使學生真正體會到數學學習的價值,并清楚地知道“為什么學”,真正做到了生活知識數學化。

    《最大公因數》教學反思5

      《兩三位數除以一位數》商是兩位數是在學生學習了商是三位數和有余數除法的基礎上進行的,它是學習除數是多位數除法的基礎。因此要在引導學生解決具體問題的過程中,切實理解算理,掌握計算方法。

      1、聯系舊知,激發興趣

      本節課我有意識的在一開始設計了搶答環節,讓學生判斷大屏幕上幾道題目的.商的位數,進而發現不同,激發興趣,引入本節課的學習。從效果上看,學生在判斷的過程中比較感興趣,并能初步感受與舊知的聯系與不同,達到了預期的目的。

      2、放手學生,設置大問題

      本節課我在這方面做的不好。在擺小棒理解算理環節,我領的比較多,學生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學生最后也弄明白了該如何分小棒,但學生的能力沒有得到提高。在于老師的建議下,在重建設計中,我會注意放手,設置大問題。比如:“請同學們看著大屏幕上的小棒,想一想應該怎樣分呢?先自己想一想,然后同桌交流一下。”讓學生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當引領點撥,但這和我之前的設計感覺就不一樣了,后者更能體現學生主體地位。在這方面,我今后還應提高意識,不斷實踐。

      3、設計新穎的練習題,增多練習內容。

      計算教學,單純的讓學生計算勢必會使學生產生厭倦。我聯系學生實際和生活實際,設計出多種多樣的練習題,比如:計算之后讓學生思考問題“想一想:三位數除以一位數,什么時候商是三位數,什么時候商是兩位數?”或讓學生“火眼金睛”辨別對錯,或讓學生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環節,將思路滲透到日常教學中,或在最后讓學生根據所學再來一組比賽等,結合學生不同的計算階段提出不同的要求和練習形式,使單調枯燥的計算練習變得生動有趣,達到了較好的教學效果。

      我將以本次講課為契機,在今后的教學中應用本次活動學到的知識,加以實踐,不斷提高自身的教學水平。

    《最大公因數》教學反思6

      本節課的教學內容是求兩個數的公因數和兩個數的最大公因數的第二課時。教學目標是進一步理解兩個數的公因數和最大公因數的意義,比較熟練地求出兩個數的最大公因數,包括兩種特殊情況。這節課上的非常順利,課堂氣氛活躍,師生互動和諧,取得了較好的課堂教學效果。

      上課的第一環節,是復習兩個數的公因數和最大公因數的意義。在復習的過程中,我不是單純地讓學生復述兩個數的公因數和最大公因數的意義,而是讓學生舉例說明。學生說出了許多組數,找出了它們的公因數和最大公因數。在學生舉例的過程中,對它們的意義有了更深的理解。我擇其四組板書在黑板上:4和5,5和6,5和7,7和9。讓學生觀察,這四組數有什么特點。我的本意是讓學生發現兩個數的最大公因數的一種特殊情況,即兩個數的公因數只有1,那么它們的'最大公因數就是1。 “我發現兩個數中只要有一個質數,它們的最大公因數就是1。”這是一個大膽的猜測,雖說是出乎意料,但更使課堂充滿了生機。我讓學生判斷他的觀點是否正確。在小組討論的過程中,有學生提出了質疑,“這個觀點不對,比如2和4,2是質數,但它倆的最大公因數不是1。”又有學生提出3和6,5和10等。我接著又讓學生觀察,這幾組數又有什么特點。通過通論觀察,完成了本節課的另一個教學任務,發現了兩個數的最大公因數的另一種特殊情況,即兩個數是倍數關系,那么它們的最大公因數就是較小的數,學生發現了兩個數的最大公因數的幾種情況,當兩個數都是質數時,它們的最大公因數是1;當兩個數是連續的自然數時,它們的最大公因數是1;兩個數的最大公因數是1,這兩個數可以是質數,也可以是合數,還可以一個是質數,一個是合數,等等。

    《最大公因數》教學反思7

      學生的學習過程是一種特殊的認知過程,必須在積極主動的情況下在自己的逐步思考和探究中達到解決的目的。

      1、小組討論合作學習研究多了,獨立思考就有所忽視。從數學學習的本質來說,獨立思考是主流,合作交流應在獨立思考的基礎上進行。只有在獨立思考的前提下,才有交流的可能。因此,在本課設計時,求兩數的最大公約數。先讓學生課前獨立探究方法,在學生有充分獨立思考的基礎上再交流評價。才真正實現每個學生潛質的開發和學生之間真正的差異互補。

      2、獨特的見解總是在主體迷戀執著,充分自由的狀態中萌芽出來的,在教學中應放下架子,蹲下身子來傾聽學生,相信每個學生都會有精彩的表現。正如陶行知所說的:“學生能做許多你不能做的事,也能做許多你認為他不能做的事。”不要小看了孩子,要對每位孩子充滿信心,從而使課堂頻頻發出精彩的光芒。如本課時在開放題的解答過程中,學生能在一些簡單的嘗試開始,從中逐步發現其中的規律,以至于應用獲得的規律來實現問題解決的最優化,不得不驚奇孩子能力的巨大。

      3、當數學問題情境作用于思考者時就有可能展開數學思維活動,可以說,問題的設計和問題的'情境的創設是促進數學思考的客觀性因素。讓學生在問題情境中層層推出數學思考“還有沒有其他的方法”“他的方法你認為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學,錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學習的學生都是一個發現、創造的大空間。

      兩個數的最大公約數的教學反思有探究就有發現,有發現就是

      學習的成功。成功所帶來的喜悅總是進一步學習的最大動力,自主探究的課堂,為個性不同的學生的發展留下了必要的空間,讓他們都有機會表達自己的思想,以自己獨特的方式去學習數學,發展知識,各自體驗到學習數學的成功感。

    《最大公因數》教學反思8

      對于本節課,我覺得有以下需要解決和認識。

      1.復習尋找因數的方法。

      2.聯系實際體會學習尋找公因數的必要性。

      3.探索尋找2個數的公因數和最大公因數的方法。

      4.結合集合方法直觀顯示公因數和最大公因數。

      5.理解學習公因數和最大公因數的意義以及應用。

      6.結合短除法尋找最大公因數的方法。(這個在人教版中作為了解,在本課中,我向孩子們了解介紹,但未做要求)

      在課上,我以為長16dm寬12dm的'客廳鋪上正方形方磚,剛好鋪滿,能選用集中方磚,這在無形中蘊含這尋找16和12的因數,這樣能夠孩子們體會尋找公因數的必要性,引起探究欲望。

      孩子們有不同的方法和方式去表示公因數的方式,在最后介紹集合方式,在交集中更直觀現實公因數,這樣更直觀的顯示,初步滲透集合思想。

      學習短除法也為后面教學約分做好先知鋪墊,也為孩子們介紹一種尋找最大公因數的簡便方法,滿足不同水平學生學習的需要。

    《最大公因數》教學反思9

      一、,找一個數的因數

      要成對找,這在教學因數時就是一個難點。

      二、教學例題3時,應先組織學生大膽猜測:“哪種紙片能正好鋪滿這個長方形?”再讓學生實踐驗證。

      猜測、驗證的過程是學生進行探究活動的必要途徑。在實踐驗證的過程中,我緊扣用邊長( )厘米的正方形鋪長方形,能鋪( )層,每層鋪( )個。并與其中有兩種正方形不能正好鋪滿長方形的.情況作比較,組織學生交流:“怎樣的正方形才能正好鋪滿這個長方形?”由于前面鋪墊充分,學生很順利地得出了結論。例題3的教學, “哪種哪種紙片能正好鋪滿這個長方形?”“還有哪些邊長整厘米數的正方形能正好鋪滿這個長方形?”“任何兩個數的公因數個數都是有限的嗎?”將學生的思維一步步引向深入,就能激發學生自主探究的熱情。

      三、教學例4時,應充分放手讓學生探索8和12的公因數以及最大公因數。

      交流中,應充分肯定學生的方法,學生在交流中出現問題時,應讓他們自我修正,自我完善。并對四種方法進行比較“看哪種方法更便捷”。最大公因數的概念也要通過練習,讓學生自己談對最大公因數的感悟。

    《最大公因數》教學反思10

      分析基礎知識:本單元是在學生已經理解和掌握倍數、因數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數四則計算的基礎。教材分兩段安排教學內容:第一段,認識公倍數、最小公倍數,探索找兩個數的最小公倍數的方法;第二段,認識公因數、最大公因數,探索找兩個數的最大公因數的方法。此外,在本單元的最后還安排了實踐與綜合應用《數字與信息》。

      一、借助操作活動,經歷概念的形成過程。

      以往教學公因數的概念,通常是直接找出兩個自然數的因數,然后讓學生發現有的因數是兩個數公有的,從而揭示公因數和最大公因數的概念。本單元教材注意以直觀的操作活動,讓學生經歷公因數和最大公因數概念的形成過程。這樣安排有兩點好處:一是學生通過操作活動,能體會公倍數和公因數的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程。在這節課上,讓學生按要求自主操作,發現用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發現結果的同時,還引導學生聯系除法算式進行思考,對直觀操作活動的初步抽象。再把初步發現的結論進行類推,發現用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎上,引導學生思考1、2、3、6這些數和18、12有什么關系。這時揭示公因數和最大公因數的概念,突出概念的內涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合圖顯示公因數的意義。實實在在讓學生經歷了概念的形成過程,效果較好。

      二、預設探究過程,增強學生主體意識。

      例3中,教師宣布游戲規則后,放手讓學生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學生探究廣闊的平臺,教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調動了已有知識經驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的`公因數和最大公因數”的方法。在這個過程中,由學生自己建構了公因數和最大公因數的概念,是真正主動探索知識的建構者,而不是模仿者,充分的發掘了學生的自主意識,也充分體現了教師駕馭教材,調控學生的能力。

      三、重視方法和策略的滲透,提高學生學習能力。

      課程標準只要求在1~100的自然數中,能找出10以內兩個自然數的公倍數和最小公倍數,二是只要求在1~100的自然數中,能找出兩個自然數的公因數和最大公因數,而不是用分解質因數的方法求出公倍數或公因數。不教學用分解質因數的方法求最小公倍數和最大公因數還有兩個原因:一是通過列舉出兩個數的倍數或因數的方法,找出公倍數或公因數。突出對公倍數和公因數意義的理解;二是學生對用短除的形式求最大公因數和最小公倍數的算理理解有困難,減輕學生的學習負擔。所以在教學找公倍數或公因數時,應提倡思考方法多樣化。例4教學中,學生得出了三種方法來尋找12和18的公因數和最大公因數。(當然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優化的過程,哪一種方法會更簡單?通過對比,大多數學生贊同方法二。通過討論,引導學生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導、小結、鼓勵,師生共同得出結論。

      復習題中回顧了四年級知識基礎、列舉法和標記法,在例3中,學生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎。例4中,學生也知道用列舉法和標記法來解決問題。

      特別是用集合圖來表示因數和公因數的教學值得一提。有趣的游戲,預料中的爭執,恰到好處的體現了圖的妙用,圖的填法比一步步教學生如何填更有效,也更不易遺忘。練習五,第一題在填完集合圖后對公有因數和獨有因數意義的的提升,為下面的學習作了伏筆。體會初步的集合思想。

      練一練,并沒有局限于畫畫△、○,找找公因數和最大公因數,而是進一步指導學生觀察,發現公因數都比小的數小(18和30中,18是小的數),在18的因數中找公因數的確更快、更好些。

      所以請老師們在平時的教學中也去分析、思考,把握例題和練習中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。

    《最大公因數》教學反思11

      本課是在學生已經理解和掌握倍數、因數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數四則計算的基礎。

      第一節課,根據教材是以鋪地磚的生活實際作為切入點,要鋪整分米數的地磚而且要求要整數塊,引入了求兩個數的公因數的必要性。教材主要的教學方法是先分別求出兩個數的因數,并按照從大到小的順序排列出來,從而找出兩個數的.公有因數,稱為這兩個數的公因數,其中最大的數就是這兩個數的最大公因數。通過例1的教學后,我引導學生總結出求兩數的公因數以及最大公因數的方法。練習時發現部分學生還是容易在找一個數的因數的有疏漏,導致求出來的公因數和最大公因數出錯。

      第二節課,我引入了求最大公因數的另一種方法,分解質因數法,介紹用短除法求兩個數的最大公因數。這種方法學生掌握起來比較容易,但也發現部分學生沒有除盡,最后的商不是互質數,導致找錯最大公因數。

      不過相對于第一鐘方法,第二種方法在書寫上更簡便,學生解題時還是比較容易理解,寫起來也比較簡潔,大部分學生在求幾個數的最大公因數時還會選擇第二種方法。當然,我還是鼓勵學生選擇自己喜歡的方法,關鍵是能理解,懂應用。

    《最大公因數》教學反思12

      教學內容:第26~28頁的例3、例4、“練一練”、“練習五”的第1~5題。

      目標預設:

      1、理解公因數的含義,掌握求兩個公因數和最大公因數的方法。

      2、經歷“猜測——驗證”的數學學習過程,感受科學探究的一般方法,培養抽象思維能力,積累數學活動經驗。

      3、感受數學的奇妙,培養對數學的積極情感。

      教學重點和難點:理解公因數的含義,掌握求兩個數最大公因數的方法。

      課程實施:

      一、自主構建公因數意義

      1、出示邊長6厘米、邊長4厘米的小正方形個若干以及一個長18厘米、寬12厘米的長方形。

      猜一猜:你覺得哪一種正方形可以將這個正方形鋪滿。

      2、組織學生同桌合作,擺放小正方形,

      教師要幫助學有困難的小組完成活動任務。

      3、交流:邊長6厘米的正方形紙可以正好鋪滿這個長方形。

      為什么邊長6厘米的正方形正好鋪滿這個長方形?

      結合剛才的操作活動體驗,學生明白:因為12÷6=2(豎排放2行),18÷6=3(橫排放3列),也就是6既是12的因數,也是18的因數,所以可以正好擺滿。

      4、討論:還有哪些邊長是整厘米的正方形紙片也能正好鋪滿這個長方形?簡單地解釋自己推測的理由。

      5、只要邊長的厘米數既是12的因數,又是18的因數,就能正好鋪滿這個長方形嗎?

      6、提問:4是12和18的公因數嗎?

      7、通過剛才的學習,你有什么話想說嗎?

      二、獨立探索找公因數的方法。

      1、8和12的公因數有哪些?最大公因數是幾?

      放手讓學生自己探索解決問題的方法。

      2、交流:學生出現的方法:

      (1)、分別寫出8和12的因數,再找一找他們的公因數;

      (2)、先找8的因數,再從8的因數中找12的因數;

      ……

      交流時結合自己的方法說說這樣找的理由,

      3、“集合圈”

      我們同樣也可以用集合圈表示8和12的公因數。

      出示集合圈,先讓學生自己填寫,再說說每一部分表示的含義。

      4、觀察比較,感受公因數的有限性,

      公因數的集合圈與公倍數有什么不同的地方?為什么公因數集合圈中不需要省略號?引導學生從“因數的有限性”推想出“兩個數的公因數的個數是有限的”。

      5、練一練

      先讓學生根據要求完成。通過交流,進一步理解找兩個數公因數和最大公因數的方法,感受兩者的聯系與區別,

      三.促進知識向技能的轉化

      1、“練習五”第1題

      讓學生獨立完成,進一步理解集合圈的表示方法,深化對求兩個數最大公因數的方法的認識。

      2、“練習五”第4題

      ⑴先讓學生自主判斷第一組數,然后交流各自的方法,比較得出“利用2.3.5倍數的特征”進行判斷,可以提高正確率。

      ⑵出示其他幾組讓學生選擇合理的方法進行判斷,同時提醒兩個數的公因數可以有2.3.5中的多個,為后面學習月份積累策略。

      3、“練習五”第5題

      要啟發學生用不同的方法找出每組數的最大公因數,提倡靈活運用各種策略快速解題,

      四、通過本節課的學習,你有哪些收獲?

      五.作業布置

      “練習五”第2.3題

      課后反思:

      這部分內容的結構與“公倍數和最小公倍數”基本相同,結合具體的情境,引導學生通過觀察、操作、分析、比較、抽象和概括等活動,探索并理解公因數、最大公因數的含義,掌握求兩個數的最大公因數的方法。

      1、我讓學生依托動手操作,加強對比觀察,溝通新舊知識的聯系,優化概念引進的過程。在教學例3時,我分四步組織學生

      的活動。第一步,讓學生“分別用邊長6厘米和4厘米的正方形紙片鋪長18厘米、寬12厘米的長方形”,鋪前先思考:邊長是多少的正方形可以鋪滿這個長方形?通過操作,學生都知道邊長6厘米的正方形可以鋪滿長18厘米、寬12厘米的長方形。引導學生具體感知公因數的含義。第二步,組織討論“還有哪些邊長是整厘米數的正方形紙片也能正好鋪滿這個長方形”,通過思考,學生明白:“只要邊長的厘米數既是12的因數,又是18的因數,就能正好鋪滿”這個長方形。第三步,可以先讓學生說一說1、2、3和6的共同特征,再告訴學生1、2、3和6的共同特征,再告訴學生“1、2、3和6既是12的因數,又是18的因數,它們是12和18的公因數。第四步,讓學生說一說4為什么不是12和18的公因數,使學生加深對公因數含義的理解,知道4是12的因數,但不是18的因數,所以4就不是12和18的公因數。通過正、反兩方面的比較,優化概念的形成。

      2、著眼于問題的解決,鼓勵學生自主探索,逐步形成概念結構。教學例4是,我讓學生先獨立思考,用自己的方法找出8和12的公因數和最大的'公因數。再通過交流,使學生在相互啟發的過程中進一步打開思路,明確方法。由于學生已經積累了較為豐富的求兩個數的最小公倍數的方法,因而這里的重點是讓學生在自主探索的基礎上合乎邏輯地表達自己的思考過程,并體會不同方法的內在一致性。這時,我適時引導學生建立概念結構:因數——公因數——最大公因數,并且辨析這些概念的聯系與區別。此外,考慮到學生也已經初步認識了用集合圖表示兩個相交的集合圈,所以我讓學生根據對有關概念的理解,獨立把8和12的因數分別填在集合圖中的合適部分,然后再看圖說說各自的想法,說說每一個區域內的數分別表示什么,把靜態的集合圖轉化成動態的探索對象,讓學生加深對集合圖的理解,也使集合思想的滲透落到實處。

      3、練習的重點是讓學生通過操作和填空,進一步理解求公因數和最大公因數的方法。讓學生在解決問題的過程中提煉解題策略,優化概念應用的過程。

    《最大公因數》教學反思13

      一、我認為,這節課的閃光點有以下幾個方面:

      1、在復習的過程中,引導學生復習用多種方法找每個數的因數,豐富學生解決問題的多樣性。

      2、通過復習、發現、總結,什么是公因數及最大公因數,在研究的過程中交流、總結自己的發現。

      3、通過填寫集合圖,使學生了解集合的思想,并進一步體會公因數和最大公因數的關系。

      4、通過練一練活動,引導學生獨立發現并總結出:(1)倍數關系的'兩個數,最大的數就是這兩個數的最大公因數;(2)公因數只有“1”的兩個數(互質數),它們的最大公因數就是這兩個數的乘積。

      5、在進一步的練習中,在學生獨立解決問題的基礎上,讓學生說出自己的思考方法,進行集體交流,相互學習,豐富學生解決問題的策略。

      二、這節課的不足,有以下幾方面:

      1、教學過程中,缺少對學生學習情況的評價 特別是鼓勵性的評價。

      2、教學思想“由一般到抽象”的過程體現的不夠明了。

      3、 對于教材的拓展不夠深入。

      三、改進措施:

      1、加強和提高對學生評價的意識,重視評價的功能。

      2、在備課時,要清楚把握教學內容的梯度,使教學思想融入教學過程之中。

      3、加強對教材的拓展,切實做到以教材為載體,以教學內容為導向,發展學生的數學能力。

    《最大公因數》教學反思14

      “因數和倍數”的知識,向來是小學數學教學的難點。“最大公因數”這節課是在學生掌握了因數、倍數、找因數的基礎上進行的,通過這節課的學習,學生會說出兩個數的公因數和最大公因數,會求兩個數的`最大公因數,并為后面學習分數的約分打好基礎。反思這節課我認為有以下幾點:

      一、精心設計數學活動,讓學生大膽探究。

      1、通過找8和12的因數,引出公因數的概念。

      教師引導學生先寫出8和12的因數,再觀察發現8和12有公有的因數,自然引出了公因數的概念。然后通過集合圈的形式,直觀呈現什么是公因數,什么又是最大公因數。促進學生建立”公因數和最大公因數”的概念。

      2、通過找18和27的最大公因數,掌握找最大公因數的方法。

      掌握了公因數的概念之后,教師放手給予學生足夠的時間,讓學生自主探究找最大公因數的方法。交流反饋時,考慮到中下水平的學生,教師只匯報了書本中的三種基本方法,并沒有提到短除法。

      二、思路清晰,環環相扣。

      本節課,教師從認識公因數——理解最大公因數——探究找最大公因數的方法——相應的練習鞏固這幾個環節入手,每個環節都是層層遞進,環環相扣,促進了學生對概念的理解。

      《數學課程標準》指出:“學生是學習的主人,教師是數學學習的組織者、引導者與合作者。”在本節課中,我努力將找最大公因數的概念教學課,設計成為學生探索問題,解決問題的過程,各個環節的學習流程,體現了教師是組織者——提供數學學習的材料;引導者——引導學生利用各種途徑找到公因數,最大公因數;合作者——與學生共同探討規律。在整個教學的過程中,學生真正成了課堂學習的主人,尋找最大公因數的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節課學生個性得到發揮。

    《最大公因數》教學反思15

      “公因數和最大公因數”是第三單元第三課時的內容,在此之前,已經學過了公倍數和最小公倍數,掌握了公倍數和最小公倍數的概念和求法,這節課的教學過程與公倍數的教學非常相似,吸取了公倍數教學時的教訓,本節課教學公因數概念的時候,我先讓學生讀題,說清題意,再進行操作,這樣以來學生是帶著問題去操作的,不像公倍數時部分學生題目都理解不了就開始動手操作,不能完全達到本題操作的目的。在教學求公因數方法的時候,我也讓學生與公倍數求法進行了比較,通過比較學生發現了公倍數是無限的,沒有給定范圍時要寫省略號,而公因數是有限個的,要寫好句號,表示書寫完成;還發現找公倍數時是找最小公倍數,而找公因數是最大公因數;還發現求公因數的方法中是先找小數的因數再從其中找大數的因數,而求公倍數卻是利用大數翻倍法,找出來的是大數的倍數,再從其中找出小數的倍數。不僅兩個例題的教學過程相似,連練習的設計也是相似的',所以學生在完成練習的時候,已經對練習的形式較為熟悉,練習完成的較好。正因為兩節課太相似,所以小部分學生已經有些混淆了,分不清怎么求公倍數,怎么求公因數,這個是在以后教學中要避免的。

      這節課的作業也能反映一些本節課上的問題,在教學公倍數的時候,我沒有強調集合中元素的互異性,作業中不少學生在公倍數一欄填寫的數字,同時出現在左右部分的集合中,在這節課練習時,我特意強調了這一點,希望學生們能記住,在完成練習五的時候還發現,部分學生對于2、3、的倍數的特征記得不清楚了,所以在判斷是不是它們的倍數的時候還有一些人用大數去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學生回憶2、3、5的倍數的特征,想必他們會節省更多的時間。

    【《最大公因數》教學反思】相關文章:

    《最大公因數》教學反思07-24

    公因數和最大公因數教學反思10-10

    “最大公因數”教學設計(通用11篇)07-28

    《最大麥穗》教學反思04-17

    《最大的“書”》教學反思15篇06-12

    《最大的“書”》教學反思(15篇)06-29

    找最大公因數五年級數學教案04-08

    五年級數學教案:找最大公因數05-17

    最大的獎賞03-02

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      一级中文字幕免费看 | 亚洲午夜高清国产自 | 三级少妇老少妇黄 | 性色AⅤ在线播放 | 亚洲精品有码在线观看 | 天天久久精品视频 |