初三上冊數學教學計劃集錦5篇
光陰的迅速,一眨眼就過去了,我們又將迎來新的喜悅、新的收獲,做好計劃可是讓你提高工作效率的方法喔!那么你真正懂得怎么寫好計劃嗎?以下是小編精心整理的初三上冊數學教學計劃5篇,僅供參考,大家一起來看看吧。
初三上冊數學教學計劃 篇1
初三《代數》包括一元二次方程、函數及其圖象和統計初步三章內容,其中一元二次方程一章的主要內容為:一元二次方程的解法和列方程解應用題,一元二次方程的根的判別式,根與系數的關系,以及與一元二次方程有關的分式方程的解法;重點是一元二次方程的解法和列方程解應用題;難點是配方法和列方程解應用題;關鍵是一元二次方程的解法。函數及其圖象一章的主要內容是函數的概念、表示法、以及幾種簡單的函數的初步介紹;重點是一次函數的概念、圖象和性質;難點是對函數的意義和函數的表示法的理解;關鍵是處理好新舊知識聯系,盡可能減少學生接受新知識的困難。統計初步一章的主要內容和重點是平均數、方差、眾數、中位數的概念及其計算,頻率分布的概念和獲取方法,以及樣本與總體的關系。
初三《幾何》包括解直角三角形和圓兩章內容,其中解直角三角形一章的主要內容為銳角三角函數和解直角三角形,也是本章重點;難點和關鍵是銳角三角函數的概念。圓一章的主要內容為圓的概念、性質、圓與直線、圓與角、圓與圓、圓與正多邊形的位置、數量關系;重點是圓的有關性質、直線與圓、圓與圓相切的位置關系,以及和圓有關的計算問題;難點是運用本章及以前所學幾何或代數知識解決一些綜合性較強的題目;關鍵是對圓的有關性質的掌握。
初三《代數》和《幾何》是初中數學的重要組成部分,通過初三數學的教學,要使學生學會適應日常生活,參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識。
本學年我擔任初三年級x、x兩個班的數學教學工作。其兩班學生在數學學科的基本情況是:大多數學生對初二學年的'數學基礎知識掌握太差,很多知識只限于表面了解,機械記憶,忽視內在的、本質的聯系與區別,不注重對知識的理解、掌握及靈活運用,特別是少數學生對某些章節(如四邊形、分式、二次根式等)或者是一問三不知,或者是張冠李戴。就班級整體而言,x班成績大多處于中等偏下,x班成績大多處于中等層次。
針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:
1、 新課開始前,用一個周左右的時間簡要復習初二學年的所有內容,特別是幾何部分。
2、 教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。
3、 教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。
4、 新課教學中涉及到舊知識時,對其作相應的復習回顧。
5、 堅持以課本為主,要求學行完成課本中的練習、習題(A組)、復習題(A組)和自我測驗題,學生做完后教師講解,少做或不做繁、難、偏的數學題目。
6、 復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。
7、 利用各種綜合試卷、模擬試卷和樣卷考試訓練,使學生逐步適應考試,最終適應并考出好成績。
8、 教學中在不放松x班的同時,狠抓x班的基礎部分。
初三上冊數學教學計劃 篇2
教學目標
(1)會用公式法解一元二次方程;
(2)經歷求根公式的發現和探究過程,提高學生觀察能力、分析能力以及邏輯思維能力;
(3)滲透化歸思想,領悟配方法,感受數學的內在美.
教學重點
知識層面:公式的推導和用公式法解一元二次方程;
能力層面:以求根公式的發現和探究為載體,滲透化歸的數學思想方法.
教學難點:求根公式的推導.
總體設計思路:
以舊知識為起點,問題為主線,以教師指導下學生自主探究為基本方式,突出數學知識的內在聯系與探究知識的方法,發展學生的理性思維.
教學過程
(一)以舊引新,提出問題
解下列一元二次方程:(學生選兩題做)
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
(3)4x2-16x+17=0 ; (4)3x2+4x+7=0.
然后讓學生仔細觀察四題的解答過程,由此發現有什么相同之處,有什么不同之處?
接著再改變上面每題的其中的一個系數,得到新的四個方程:(學生不做,思考其解題過程)
(1)3x2+4x+2=0; (2)3x2-2x+1=0;
(3)4x2-16x-3=0 ; (4)3x2+x+7=0.
思考:新的四題與原題的解題過程會發生什么變化?
設計意圖: 1.復習鞏固舊知識,為本節課的學習掃除障礙;
2.讓學生充分感受到用配方法解題既存在著共性,也存在著不同的現象,由此激發學生的求知欲望.
3、學生根據自己的情況選兩題,這樣做能保證運算的正確和繼續學習數學的信心。
(二)分析問題,探究本質
由學生的觀察討論得到:用配方法解不同一元二次方程的過程中,相同之處是配方的過程----程序化的操作,不同之處是方程的根的情況及其方程的根.
進而提出下面的問題:
既然過程是相同的,為什么會出現根的不同?方程的根與什么有關?有怎樣的關系?如何進一步探究?
讓學生討論得出:從一元二次方程的一般形式去探究根與系數的關系.
ax2+bx+c=0(a≠0) 注:根據學生學習程度的不同,可
ax2+bx=-c 以采用學生獨立嘗試配方, 合
x2+ x=- 作嘗試配方或教師引導下進行
x2+ x+ =- + 配方等各種教學形式.
(x+ )2=
然后再議開方過程(讓學生結合前面四題方程來加以討論),使學生充分認識到“b2 -4ac”的重要性.
當b2-4ac≥0時,
(x+ )2= 注:這樣變形可以避免對a正、負的討論,
x+ = 便于學生的理解.
x=- 即x=
x1= , x2=
當b2-4ac<0時,
方程無實數根.
設計意圖:讓學生通過經歷知識形成的全過程,從而提高自身的觀察能力、分析問題和解決問題的能力,發展了理性思維.
(三)得出結論,解決問題
由上面的探究過程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c確定. 當b2-4ac≥0時,
x=;
當b2-4ac<0時,方程無實數根.
這個式子對解題有什么幫助?通過討論加深對式子的理解,同時讓學生進一步感受到數學的簡潔美、和諧美.
進而闡述這個式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.
設計意圖: 理解是記憶的基礎。只有理解了公式才能爛熟于心,才能在題目中熟練應用,不會因記不清公式造成運算的錯誤。
運用公式法解一元二次方程.(前兩道教師示范,后兩道學生練習)
(1)2x2-x-1=0; (2)4x2-3x+2=0 ;
(3)x2+15x=-3x; (4)x2- x+ =0.
注:( 教師在示范時多強調注意點、易錯點,會減少學生做題的錯誤,讓學生在做題中獲得成功感。)
設計意圖:進一步闡述求根公式,歸納總結用公式法解一元二次方程的一般步驟,及時總結簡化運算,節約時間又提高做題的.準確性。
用公式法解一元二次方程:(比一比,看誰做得又快又對)
(1)x2+x-6=0; (2)x2- x- =0;
(3)3x2-6x-2=0;(4)4x2-6x=0;
設計意圖:能夠熟練運用公式法解一元二次方程,讓每位學生都有所收獲,通過大量練習,熟悉公式法的步驟,訓練快速準確的計算能力。
(四)拓展運用,升華提高
[想一想]
清清和楚楚剛學了用公式法解一元二次方程,看到一個關于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清說:“此方程有兩個不相等的實數根”,
而楚楚反駁說:“不一定,根的情況跟m的值有關”.那你們認為呢?并說明理由.
設計意圖:基于學生基礎較好,因此對求根公式作進一步深化,并綜合運用了配方法,使不同層次的學生都有不同提高.比較配方法在不同題型中的用法,
避免以后出現運算錯誤。
歸納小結, 結合上面想一想,讓學生嘗試對本節課的知識進行梳理,對方法進行提煉,從而使學生的知識和方法更具系統化和網絡化,同時也是情感的升華過程.
(五) 布置作業
㈠必做題
㈡選做題:P46第12題。
設計意圖:結合學生的實際情況,可以分層布置。 適合的練習既鞏固了所學提高了計算的速度又保養了學生學習數學的興趣和信心。
初三上冊數學教學計劃 篇3
一、基本情況:
本學期我擔任九年級159班的數學教學工作。共有學生48人,我深感教育教學的壓力很大,在本學期的數學教學中務必精耕細作。使用的教材是新課程標準實驗教材《湘教版數學九年級上冊》,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中具有創新意識、每一個教學環節都必須巧做安排。為此,特制定本計劃。
二、指導思想:
以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施,其目的是教書育人,使每個學生都能夠在數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產實踐和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。
三、教學內容:
本學期所教初三數學包括第一章一元二次方程,第二章命題定理與證明,第三章 解直角三角形,第四章 相似形,第五章概率的計算。
四、教學目的:
教育學生掌握基礎知識與基本技能,培養學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學生逐步學會正確、合理地進行運算, 逐步學會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。使學生懂得數學來源與實踐又反過來作用于實踐。提高學習數學的興趣,逐步培養學 生具有良好的學習習慣,實事求是的.態度。頑強的學習毅力和獨立思考、探索的新思想。培養學生應用數學知識解決問題的能力。
知識技能目標:掌握一元二次方程的有關概念;會解一元二次方程;能建立一元二次方程的模型解決實際問題;理解命題、定理、證明等概念;能正確寫出證明;掌握銳角三角函數的性質;理解直角三角形的性質;能運用三角函數及勾股定理解直角三角形;掌握相似三角形的概念、性質及判定方法; 掌握概率的計算方法;理解概率在生活中的應用。
過程方法目標:培養學生的觀察、探究、推理、歸納的能力,發展學生合情推理能力、邏輯推理能力和推理認證表達能力,提高知識綜合應用能力。
態度情感目標:進一步感受數學與日常生活密不可分的聯系,同時對學生進行辯證唯物主義世界觀教育。
通過講授證明的有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進
一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在解直角三角形和相似圖形這兩章時,通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在教學概率的計算時讓學生進一步體會概率是描述隨機現象的數學模型。
在教學一元二次方程這一章時,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。
五、教學重點、難點
《一元二次方程》的重點是1、掌握一元二次方程的多種解法;2、列一元二次方程解應用題。難占是1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《命題定理與證明》的重點是1、要求學生掌握證明的基本要求和方法,學會推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點是1、引導學生探索、猜測、證明,體會證明的必要性;
2、在教學中滲透如歸納、類比、轉化等數學思想。《解直角三角形》的重點是通過學習和實踐活動探索銳角三角函數,在直角三角形中根據已知的邊與角求出未知的邊與角。難點是運用直角三角形的有關知識解決實際問題。《相似圖形》的重點是相似三角形的性質與判定。難點是綜合運用三角形、四邊形等知識進行推理論證,正確寫出證明。《概率的計算》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性,掌握概率的計算方法。難點是注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的內存聯系。
六、教學措施:
1、認真研讀新課程標準,鉆研新教材,根據新課程標準及教材適度安排教學內容,認真上課,批改作業,認真輔導,認真制作測試試卷。
2、激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。
3、引導學生積極參與知識的構建,營造自主、探究、合作、交流、分享發現快樂的課堂。
4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。
5、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。
6、教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力,重視實習作業。指導成立課外興趣小組,開展豐富多彩的課外活動,帶動班級學生學習數學,同時發展這一部分學生的特長。
7、開展分層教學,布置作業設置a、b、c三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好各個層次的學生,使他們都得到發展。
8、把輔優補潛工作落到實處,進行個別輔導。
初三上冊數學教學計劃 篇4
【學習目標】
1.了解整式方程和一元二次方程的概念 。
2. 知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節課引入的教學,初步培養學生的數學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發學生學習數學的興趣。
【重點、難點】
重點:一元二次方程的概念和它的一般形式。
難點:對一元二次方程的一般形式的正確理解及其各項系數的確定
【學習過程】
一、
知識回顧
1.什么是整式方程?_什么是-元二次方程呢?現在我們來觀察上面這個方程:它的左右兩邊都是關于未知數的整式,這樣的方程叫做整式方程。就這一點來說它與一元一次方程沒有什么區別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數的最高次數是幾。如果方程未知數的最高次數是2、這樣的整式方程叫做一元二次方程.
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的為: ___________ 以上是 一元一次方程的為________
二、
探究新知[一]
1.一元二次方程的一般形式是( )
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2).方程中ax2、bx、c各項的名稱及a、b的系數名稱各是什么?
3).強調:一元二次方程的一般形式中"="的左邊最多三項、其中一次項、常數項可以不出現、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是"="的右邊必須整理成0.
探究新知(二)
1.說出下列一元二次方程的二次項系數、一次項系數、常數項:
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數、一次項系數、常數項:
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[學以致用:]
強化概念:
1. 說出下列一元二次方程的二次項系數、一次項系數、常數項:
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數、一次項系數、常數項:
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知識總結:]
(1) 什么是一元二次方程?是一元二次方程滿足哪幾個條件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左邊最多幾項、其中( )可以不出現、但( )必須存在。特別注意的是"="的`右邊必須整理成( );
(3) 要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數項:二次項系數、一次項系數.如:(3x十2) 2=4(x-3)____________
診斷檢測題一:
1.一元二次方程的一般形式是_________,其中_____是二次項,____是一次項,_______是常數項.
2.方程(3x-7)(2x+4)=4化為一般形式為_____,其中二次項系數為_____,一次項系數為_______.
3.方程mx2+5x+n=0一定是( ).
A.一元二次方程 B.一元一次方程
C.整式方程 D.關于x的一元二次方程
4.關于x的方程(m+1)x2+2mx-3=0是一元二次方程,則m的取值范圍是( )
A.任意實數 B. m≠-1 C. m>1 D. m>0
5.方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6.把下列方程化成一般形式,且指出其二次項,一次項和常數項
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
診斷檢測題二:
1.方程 的二次項系數是 ,一次項系數是 ,常數項是 .
2.把一元二次方程 化成二次項系數大于零的一般式是 ,其中二次項系數是 ,一次項的系數是 ,常數項是 ;
3.一元二次方程 的一個根是3,則 ;
4. 是實數,且 ,則 的值是 .
5.關于 的方程 是一元二次方程,則 .
6.方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③
初三上冊數學教學計劃 篇5
一、基本情況:
本學期是初中學習的關鍵時期本學期我擔任初三年級三(5、6)兩個班的數學教學工作,是新課程標準實驗教材,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中的創新意識、引導學生進行思考問題方式都必須不同與以往的教學。因此,在完成教學任務的同時,必須盡可能性的創設情景,讓學生經歷探索、猜想、發現的過程。并結合教學內容和學生實際,把握好重點、難點。樹立素質教育觀念,以培養全面發展的高素質人才為目標,面向全體學生,使學生在德、智、體、美、勞等諸方面都得到發展。為做好本學期的教育教學工作,特制定本計劃。
二、指導思想:
初三數學是以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施的,其目的是教書育人,使每個學生都能夠在此數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。
三、教學內容:
本學期所教初三數學包括第一章 證明(二),第二章 一元二次方程,第三章 證明(三),第四章 視圖與投影,第五章 反比例函數,第六章 頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關的。一元二次方程,反比例函數 這兩章是與數及數的運用有關的。頻率與概率 則是與統計有關。
四、教學目的:
在新課方面通過講授《證明(二)》和《證明(三)》的.有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在《視圖與投影》這一章通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在《頻率與概率》這一章》讓學生理解頻率與概率的關頻率與概率系進一步體會概率是描述隨機現象的數學模型。
在《一元二次方程》和《反比例函數》這兩章,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。
五、教學重點、難點
本冊教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》, 《反比例函數》。以及與統計有關的《頻率與概率》。《證明(二)》,《證明(三)》的重點是
1、要求學生掌握證明的基本要求和方法,學會推理論證;
2、探索證明的思路和方法,提倡證明的多樣性。
難點是
1、引導學生探索、猜測、證明,體會證明的必要性;
2、在教學中滲透如歸納、類比、轉化等數學思想。《視圖與投影》和重點是通過學習和實踐活動判斷簡單物體的三種視圖,并能根據三種圖形描述基本幾何體或實物原型,實現簡單物體與其視圖之間的相互轉化。難點是理解平行投影與中心投影,明確視點、視線和盲區的內容。
《一元二次方程》, 《反比例函數》的重點是
1、掌握一元二次方程的多種解法;
2、會畫出反比例函數的圖像,并能根據圖像和解析式探索和理解反比例函數的性質。難占是1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《頻率與概率》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性。難點是注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的內存聯系。
六、教學措施:
針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:
1、新課開始前,用一個周左右的時間簡要復習上學期的所有內容,特別是幾何部分。
2、教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。
3、教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。
4、新課教學中涉及到舊知識時,對其作相應的復習回顧。
5、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。
七、教學進度:
除了以上計劃外,我還將預計開展轉化個別后進生工作,教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力,重視實習作業。
【初三上冊數學教學計劃】相關文章:
初三數學上冊教學計劃01-18
初三上冊數學教學計劃06-28
初三數學上冊教學計劃12篇04-04
初三上冊數學教學計劃六篇10-02
精選初三上冊數學教學計劃三篇10-16
初三上冊數學教學計劃13篇02-28
初三上冊數學教學計劃合集五篇10-12
初三上冊數學教學計劃匯總八篇10-19
初三上冊數學教學計劃集錦五篇10-18