1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教學論文>綜合教育論文>上課三步曲

    上課三步曲

    時間:2022-08-17 11:06:52 綜合教育論文 我要投稿
    • 相關推薦

    上課三步曲

    上課三步曲 江蘇省錫山高級中學 周榮偉 9月14日 一.引人入勝的開局  開局是一堂課的序幕,設計開局的基本思路可歸結為8個字:承上啟下,導情引思。  毛主席講:"后次復習前次的概念",說的是承上啟下,復習前次的哪些概念呢?應該是那些最基本的對后次的學習起作用的概念,通過這些概念的復習或再學習,自然地過渡到新課。例如:在講無理方程的解法時,可設計如下一組復習舊知識的提問:1·什么叫方程,方程的解和解方程?2·你都學過哪些方程?解這些方程的基本思想是什么?主要步驟是什么?3·在解這些方程的過程中,解哪一種方程時必須驗根?為什么要進行驗根?這組問題,實際上為理解新課作了必要的準備,使得新知識--無理方程和它的解法--成為整個"方程"這段知識整體結構的一個自然發展,使得新知識成為一個容易從舊知識"進入"的"最近發展區"。這樣,解無理方程的關鍵步驟--去根號,可以由解分式方程的關鍵步驟--去分母進行聯想,由去分母可能產生增根,聯想到去根號可能產生增根等。  所謂導情引思,就是要激發學生的認知興趣和積極情感,啟發和引導學生的思維,讓學生用最短的時間進入課堂教學的最佳狀態。如講"勾股定理",利用多媒體制作,畫面1:漆黑的宇宙中閃爍著無數顆星星,老師提問:大家有沒有見過外星人呢?茫茫的宇宙中究竟有沒有外星人呢?該如何與他們聯系呢?此時出現畫面2:科學家從地球上向宇宙不斷的發射信號:如A、B、C等語言,高山流水等音樂,以及各種圖形,最后畫面定格在一張"勾三股四弦五"的圖形上。追問:這張圖形究竟包含著什么信息呢?立即把學生思維興趣引向對這個問題的探索上。  開局的關鍵在于造成認知沖突,以講"軸對稱及軸對稱圖形"為例,提出問題:媽媽買了一只蛋糕為一對雙胞胎兄弟過生日,請問如何把這個蛋糕一分為二呢?學生由生活中的經驗知道只要過中心切一刀,理由是什么呢?學生感到以前學過的知識無濟于事,形成認知沖突,由此引出軸對稱及軸對稱圖形的課題。又如講相似多邊形時,先提出問題,在一塊長方形黑板的四周,鑲上等寬的木條,得到一塊新的長方形,內外兩個長方形是否相似?學生往往由生活中的錯誤經驗出發認為一定相似,老師干脆回答:"不對!"以此來促使學生產生學習新知識的需求。  二、充實飽滿的中堅  現行《教學大綱》中,對一般的課堂教學過程明確地指出"堅持啟發式,提倡討論式,反對注入式",這是由"要結合知識教學、技能訓練充分培養學生能力"的要求,引出現代教育理論中的"要把學生學習知識的過程當作認識事物的過程來進行教學"的觀點而決定的,充實飽滿的中堅,關鍵是落實三個"點"。即突出重點、排除難點、抓住關鍵(知識點)。下面僅談談排除難點的問題。大家知道,難點是由學生原有數學認知結構與學習新內容之間的矛盾而產生的,既有教學內容的原因,也有學生認識和接受能力方面的原因,因此,要分析難點產生的原因,有針對性的實施解決難點的對策。  1·因素:內容過于抽象,學生理解困難  對策:抽象理論具體化  例如:在講"反比例函數的概念"這個抽象的難點時,我是這樣處理的:手拿一張一百元的新版人民幣,提問:把它換成50元的人民幣,可得幾張?換成10元的人民幣可得幾張?依次換成5元,2元,1元的人民幣,各可得幾張?換得的張數y 與面值x之間有怎樣的關系呢?由此讓學生歸納得出反比例函數的定義是親切自然,水到渠成。  2·因素:知識的綜合性強,學生掌握起來易出現"積累誤差"  對策:分散難點  在"有理數的運算"中,有理數的減法是一個難點,這是因為有理數的減法是有一定的綜合性。表現在①減法要轉化為加法來做;②與算術數的運算比較,算術數只是單方面的計算,而有理數則擴充到符號和絕對值兩方面的運算,這里涉及"轉化"、"符號運算"、"絕對值運算",再加上對題目特點的識別,正是這幾方面的"積累誤差",使有理數減法形成了難點,這就需要有一個過渡與適應的過程,在指導學生認識法則合理性的前提下,通過恰當的層次訓練和及時反饋使"轉化"、"符號運算"、"絕對值運算"各個擊破。  3·因素:知識所及的過程復雜,學生不好把握  對策:理出線索,類比聯想  例如用尺規作圖作一個角等于已知角,完全可以類比著用量角器去畫一個角等于已知角,具體做法如下:第一步畫一條射線,第二步,量角器的中心與已知角的頂點重合,量角器的零刻度線與已知角的一邊重合,就是用圓規以已知角的頂點為圓心,任意長為半徑為弧,第三步是在量角器上讀出已知角另一邊所對的刻度,就是用圓規在已知角上量取這段弧,第四步是把量角器的中心對準射線的端點,,零刻度線對準射線,就是用圓規以射線端點為圓心,以同樣長為半徑畫弧,第五步在量角器已知刻度的地方畫一點,相同地用圓規量取在等弧的地方畫一個點,最后過端點和這個點畫一條射線,這樣我們通過類比,理出線索,很好的解決了這個難點。  4·因素:新舊知識缺乏聯系  對策:培植知識的"生長點"  新知識都是從舊知識的基礎上孕育產生的,教學必須利用學生頭腦中的已有知識,去培育新知識的"生長點"。比如,在去括號和添括號法則,由于法則和依據缺乏聯系,學生掌握起來較困難,但如果把去括號和添括號看作乘法分配律的一個應用,就容易被學生接受,即去括號時,括號前面是"+"號,就視為"+1"與括號中的式子相乘,括號前面是"-",就視為"-1"與括號中的式了相乘,這是乘法分配律的正用,添括號法則是乘法分配律的逆用,這就是說利用運算律進行數的運算是去括號和添括號的"生長點",在有理數教學中就要注意培養這一"生長點"。  三、留有余味的結局  一個高明的設計,常把最重要、最有趣的東西放在"末場",越是臨近"終場",學生的注意力越是被情節吸引,結局的形式有多種,常見的有以下類:  1.總結式結局:將本課內容簡明、扼要且有條理的歸納總結,指出重點、難點,引起學生注意,這是老師最常用的一種形式。如"同類項"一節小結如下:①今天這節課要求同學們掌握兩項技能:(1)能迅速準確地找出同類項;(2)會合并同類項。②初學合并同類項時,四步缺一不可;③合并同類項的四步中,要特別注意第二步:帶著符號。  2.呼應式結局:以解答開局時所提問題的方式結束全課。比如"用代入法解二元一次方程組",開局時提出一組題目,主體部分講用代入法解二元一次方程組的思想和步驟,結局時由同學們解答上述題目,再如"全等三角形判定(三)",開局時提出在窗架的一角釘上一根小木條,有何用處?主體部分講全等三角形判定三:邊邊邊公理及其初步運用,結局時由同學們用邊邊邊公理來解釋三角形的穩定性。  3.探究式結局:留下問題,讓學生去研究,比如講完勾股定理后,出示我國著名的斜拉式大橋--南浦大橋的圖案,要求學生利用勾股定理,設計求一根根斜拉的鋼索的長度的方法.再如,講完全等三角形第三個判定公理后,給出問題:判斷三角形全等需三個元素,其中至少有一邊,那么假如兩個三角形有兩邊和一條邊的對角相等,這兩個三角形是否全等?這些問題,不必要求學生立即明確對否,而是留有余地,讓學生去探究。  4.銜接式結局:創設一種情境,使學生急于求知下次課的內容,比如在結束"一元二次方程的根的判別式"時,可寫出一個系數十分"麻煩"的二次方程,比如說1998x2+999x-3996=0,讓學生判別根的情況,并要求學生求其根的平方和,學生最初的想法是直接求根,然后計算,但系數之繁使他們為難。進而指出,下節課還有系數更加繁復的一元二次方程,也要我們求根的平方和,這種結局給學生一種暗示:不能硬算,需要尋求新的關系--這就為下節課"一元二次方程的根與系數的關系"作了鋪墊。  5.開放式結局:比如說講完"反比例函數及其圖象"后,我提出3個問題讓學生自主歸納:①今天你學會了什么?②你覺得數學有趣嗎?③你感受到數學美嗎?這樣將學生獲取知識、掌握技能、提高能力和培養數學素養統一起來,真正體現了以學生為主體,教師為引導的啟發式教學。  上述三個環節的核心是讓學生最大限度地參與教學活動,充分發揮學生在教學過程中的主體作用。    附一.教師基本素養  教師基本素養,指的就是通常所說的教師在課堂教學中的"教學基本功",主要有以下幾個方面:  1.口頭表達能力。簡言之,即要求教師的語言要正確,要通俗,要簡煉,要有感染力,說到這方面的能力,提問是一個很重要的環節,大家知道,提問是啟發思維的重要方式,思維由問題開始,由問題而進行思考,由思考而提出問題,是青少年的一個重要心理特征。因此在設計問題時應考慮四個條件:一是問題必須與數學思維有關,揭示教材或學生學習活動中的實質矛盾,圍繞教學中的重點,難點設計問題,二是問題必須適合學生,根據學生的實際水平和個性特點,提出不同類型、不同層次的問題.三是考慮教育上"合理"的提問。原蘇聯數學教育家斯托利亞認為提問方法的問題,是一個復雜的遠沒有解決的教育學生的問題,他要求采用"教育上合理的提問方式",如果提問引起學生的積極思維活動,并且學生又不可能照搬課本上的答案,就可以認為,進行了"教育上合理"提問,例如:"過不在一條直線上的三個點可以畫幾個圓?"對這個問題,學生可以毫無困難的回答:"一個",這個問題不是教育上合理的提問,可是如果提問:"經過三點可以畫幾個圓?"學生在課本上找不到現成的答案,他必須自已對三個點可能有的位置關系加以研究和組合,考慮"三個點在一條直線上"的情況和"三個點不在一條直線上"的情況,并且分別對每一種情況作出結論,因為這個問題的信息量處于最適當的程度,所以,它是"教育上合理"的提問,但如果進一步問:"現在有五個點,可作幾個圓,使每個圓上至少有三個點?"對初學"過三點的圓"的學生而言,這個問題會有其它信息的干擾,也不是教育上合理的提問,最后,還要考慮如何通過提問來教會學生提問--這也是主體性教學法的首要任務之一。  2.書面表達能力。大家知道,板書是符號性質的輔助性語言,是知識的凝煉和濃縮,板書設計應注意"五性",保持教學內容的系統性,教學內容的概括性,揭示知識的規律性,給學生的示范性和形式的新異性。  3.觀察能力。這里主要包含兩個方面,一方面是能迅速地發現學生的課上特別是板演中書寫的問題,答案中的差誤,并能較準確地看出產生差誤的主要原因,以便有的放矢地引導學生自己改正差誤,另一方面是能隨時觀察學生動態,如發現有"瞠目狀態"(可能對教師的講解或引導難以理解)或"不屑聽取狀態"(可能對教師所講感到過于淺顯而繁瑣)時,應采取及時反饋措施,以便對原設計的教學過程進行必要的調節,也稱之為"二次備課"。  4.聆聽能力。這里指的是準確地聽清學生的口頭提出問題的能力,準確地聽清學生口頭回答問題的內容的能力和準確地聽清學生間互相討論的內容的能力,由于年級越低的學生,一般地說,他們的口頭表達能力也是越低的,常常是"詞不達意"的,因此,教師必須能分辨清學生口頭語言實質的正誤,才能準確地答疑、補充或矯正錯誤而不致挫傷學生的學習積極性。  5.教態。這里指的是要求教師在教學中,使學生能充分發揮學習積極性應持有的態度,不妨借用《學記》中指出的,要在"道而弗奪,強而弗抑"的基礎上表現出負責的精神、和藹的態度,以及高度感染的凝聚力(這與語言的通俗性--能說出學生習慣的語言,說出學生心中所想的問題有密切的關系),以使學生感到分外親切,始終保持高度的學習積極性。    附二.寫教學后記  教師在教完一節課后,對教學過程的設計和實施進行回顧和總結,將經驗和教訓記錄在教案上,作為完善教案、改進教學、總結經驗和探索規律的依據是非常必要的。寫教學后記能幫助教師迅速接收反饋信息,找出教學方案在具體實施過程中的成功和不足,為調整教學建立可靠依據,從而促進教學過程的不斷優化,促進教師素質、教學水平、教研能力的不斷提高。一般說來可以記成功之舉、記失敗之處、記教學機智、記學生見解、記再教設計等。總之,記教學后記,貴在及時,貴在堅持,貴在執著地追求。一有所得,及時記下,有話則長,無話則短。以記促思,以思促教,長期積累,必有所得,必見成效。      

    上課三步曲


    【上課三步曲】相關文章:

    成長三步曲作文08-24

    我的作文教學三步曲08-21

    經驗交流;和學生“生氣”三步曲09-01

    閱讀教學“三步走”08-18

    習作教學“三步驟”08-15

    幼兒中班音樂《搖籃曲與進行曲》說課稿08-24

    “搖籃曲與進行曲”音樂欣賞教案08-25

    鼠曲粿作文02-24

    廚房交響曲08-16

    聽夢·塞外曲08-17

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲精品A人在线观看 | 中文字幕亚洲图片 | 听筒婷婷色色激情五月 | 亚洲欧美综合另类久久精品 | 亚洲性色在线视频 | 亚州毛多水多久久 |