1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2025-02-09 07:35:55 八年級數學教案 我要投稿

    八年級數學教案匯編15篇

      作為一名老師,可能需要進行教案編寫工作,編寫教案助于積累教學經驗,不斷提高教學質量。優秀的教案都具備一些什么特點呢?以下是小編整理的八年級數學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

    八年級數學教案匯編15篇

    八年級數學教案1

      教學目標:

      1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

      2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

      3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

      4、能利和計算器求一組數據的算術平均數。

      教學重點:

      體會平均數、中位數、眾數在具體情境中的.意義和應用。

      教學難點:

      對于平均數、中位數、眾數在不同情境中的應用。

      教學方法:

      歸納教學法。

      教學過程:

      一、知識回顧與思考

      1、平均數、中位數、眾數的概念及舉例。

      一般地對于n個數X1……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

      如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

      中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

      眾數就是一組數據中出現次數最多的那個數據。

      如3,2,3,5,3,4中3是眾數。

      2、平均數、中位數和眾數的特征:

      (1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

      (2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

      (3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

      (4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

      3、算術平均數和加權平均數有什么區別和聯系:

      算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

      4、利用計算器求一組數據的平均數。

      利用科學計算器求平均數的方法計算平均數。

      二、例題講解:

      某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

      三、課堂練習:

      復習題A組

      四、小結:

      1、掌握平均數、中位數與眾數的概念及計算。

      2、理解算術平均數與加權平均數的聯系與區別。

      五、作業:

      復習題B組、C組(選做)

    八年級數學教案2

      分式方程

      教學目標

      1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

      2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。

      3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的應用價值.

      教學重點:

      將實際問題中的等量 關系用分式方程表示

      教學難點:

      找實際問題中的等量關系

      教學過程:

      情境導入:

      有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

      如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

      根據題意,可得方程___________________

      二、講授新課

      從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

      這 一問題中有哪些等量關系?

      如果設客車由高速公路從甲地到乙地 所需的.時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

      根據題意,可得方程_ _____________________。

      學生分組探討、交流,列出方程.

      三.做一做:

      為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

      四.議一議:

      上面所得到的方程有什么共同特點?

      分母中含有未知數的方程叫做分式方程

      分式方程與整式方程有什么區別?

      五、 隨堂練習

      (1)據聯合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

      (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

      (3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

      六、學 習小結

      本節課你學到了哪些知識?有什么感想?

      七.作業布置

    八年級數學教案3

      《正方形》教學設計

      教學內容分析:

      ⑴學習特殊的平行四邊形—正方形,它的特殊的性質和判定。

      ⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。

      ⑶對本節的學習,繼續培養學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發展學生的推理能力。

      學生分析

      ⑴學生在小學初步認識了正方形,并且本節課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。

      ⑵學生在上幾節已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

      教學目標:

      ⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。

      ⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。

      ⑶情感態度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

      重點:掌握正方形的性質與判定,并進行簡單的推理。

      難點:探索正方形的判定,發展學生的推理能

      教學方法:類比與探究

      教具準備:可以活動的四邊形模型。

      一、教學分析

      (一)教學內容分析

      1.教材:義務教育課程標準實驗教科書《數學》九年級上冊(人民教育出版社)

      2.本課教學內容的地位、作用,知識的前后聯系

      《中心對稱圖形》是新人教版九年級數學上冊第二十三章第二單元第二節課的內容。本節教材屬于圖形變換的內容,是在學習了“軸對稱和軸對稱圖形”、“旋轉和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發學生探索精神和創新意識等方面都有重要意義。

      3.本課教學內容的特點,重點分析體現新課程理念的特點

      本節課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質。為使學生感受、理解知識的產生和發展過程,培養學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質,(3)通過多媒體演示使學生對中心對稱圖形的性質有直觀的表象。我認為這環環相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規律,有利于激發學生的學習情趣。

      (二)教學對象分析

      1.學生所在地區、學校及班級的特色

      我授課的班級是西安市閻良區振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經積累一些經驗,已經具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現分化現象。

      2.學生的年齡特點和認知特點

      班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現欲望較為強烈,喜好發表個人見解并且具有一定的合作交流、共同探討的意識與經驗,因此在課程內容的安排中,適當地創設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。

      教學過程

      一:復習鞏固,建立聯系

      【教師活動

      問題設置:①平行四邊形、矩形,菱形各有哪些性質?

      ②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

      【學生活動

      學生回憶,并舉手回答,對于填空題,讓更多的`學生參與,說出更多的答案。

      【教師活動

      評析學生的結果,給予表揚。

      總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區別。

      演示平行四邊形變為矩形菱形的過程。

      二:動手操作,探索發現

      活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

      【學生活動

      學生拿出自備矩形紙片,動手操作,不難發現它是正方形。

      設置問題:①什么是正方形?

      觀察發現,從活動中體會。

      【教師活動】:演示矩形變為正方形的過程,菱形變為正方形的過程。

      【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。

      設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

      【學生活動】

      小組討論,分組回答。

      【教師活動】

      總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

      設置問題③正方形有那些性質?

      【學生活動】

      小組討論,舉手搶答。

      【教師活動

      表揚學生發言,板書學生發現,㈡正方形每一條對角線平分一組對角

      活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

      學生活動

      折紙發現,說出自己的發現。得到正方形的又一性質。正方形是軸對稱圖形。

      教師活動

      演示從平行四邊形變為正方形的過程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?

      ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

      學生活動

      小組充分交流,表達不同的意見。

      教師活動

      評析活動,總結發現:

      一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

      有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

      有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

      四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

      以上是正方形的判定方法。

      正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?

      學生交流,感受正方形

      三,應用體驗,推理證明。

      出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數。

      方法一解:∵四邊形ABCD是正方形

      ∴∠ABC=90°(正方形的四個角是直角)

      BC=AB=4cm(正方形的四條邊相等)

      ∴=45°(等腰直角三角形的底角是45°)

      ∴利用勾股定理可知,AC===4cm

      ∵AO=AC(正方形的對角線互相平分)

      ∴AO=×4=2cm

      方法二:證明△AOB是等腰直角三角形,即可得證。

      學生活動

      獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

      教師活動

      總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

      出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

      學生活動

      小組交流,分析題意,整理思路,指名口答。

      教師活動

      說明思路,從已知出發或者從已有的判定加以選擇。

      四,歸納新知,梳理知識。

      這一節課你有什么收獲?

      學生舉手談論自己的收獲。

      請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

      發表評論

      教學目標:

      情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

      能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

      認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

      教學重點、難點

      重點:等腰梯形性質的探索;

      難點:梯形中輔助線的添加。

      教學課件:PowerPoint演示文稿

      教學方法:啟發法、

      學習方法:討論法、合作法、練習法

      教學過程:

      (一)導入

      1、出示圖片,說出每輛汽車車窗形狀(投影)

      2、板書課題:5梯形

      3、練習:下列圖形中哪些圖形是梯形?(投影)

      結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

      6、特殊梯形的分類:(投影)

      (二)等腰梯形性質的探究

      【探究性質一】

      思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

      【操練】

      (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

      (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

      【探究性質二】

      如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質:等腰梯形的兩條對角線相等。

      【探究性質三】

      問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

      問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

      等腰梯形性質:同以底上的兩個內角相等,對角線相等

      (三)質疑反思、小結

      讓學生回顧本課教學內容,并提出尚存問題;

      學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

    八年級數學教案4

      教學目標

      1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

      2.會綜合運用平行四邊形的判定方法和性質來解決問題

      教學重點:平行四邊形的判定方法及應用

      教學難點:平行四邊形的判定定理與性質定理的靈活應用

      一.引

      小明的父親手中有一些木條,他想通過適當的測量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

      二.探

      閱讀教材P44至P45

      利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:

      (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

      (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

      (3)你能說出你的`做法及其道理嗎?

      (4)能否將你的探索結論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

      (5)你還能找出其他方法嗎?

      從探究中得到:

      平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

      平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

      證一證

      平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

      證明:(畫出圖形)

      平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

    八年級數學教案5

      一、內容和內容解析

      1.內容

      二次根式的性質。

      2.內容解析

      本節教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

      對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據算術平方根的意義,就具體數字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節課的教學重點為:理解二次根式的性質.

      二、目標和目標解析

      1.教學目標

      (1)經歷探索二次根式的性質的過程,并理解其意義;

      (2)會運用二次根式的性質進行二次根式的化簡;

      (3)了解代數式的概念.

      2.目標解析

      (1)學生能根據具體數字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

      (2)學生能靈活運用二次根式的性質進行二次根式的化簡;

      (3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.

      三、教學問題診斷分析

      二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養其靈活運用的能力.

      本節課的教學難點為:二次根式性質的靈活運用.

      四、教學過程設計

      1.探究性質1

      問題1 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個非負數的算術平方根的平方.

      問題2 根據算術平方根的意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

      問題3 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0).

      【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質1,培養學生抽象概括的能力.

      例2 計算

      (1) ;(2) .

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質1,學會靈活運用.

      2.探究性質2

      問題4 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個數的平方的算術平方根.

      問題5 根據算術平方根的意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

      問題6 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0)

      【設計意圖】讓學生經歷從特殊到一般的'過程,概括出二次根式的性質2,培養學生抽象概括的能力.

      例3 計算

      (1) ;(2) .

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質2,學會靈活運用.

      3.歸納代數式的概念

      問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

      師生活動:學生概括式子的共同特征,得出代數式的概念.

      【設計意圖】學生通過觀察式子的共同特征,形成代數式的概念,培養學生的概括能力.

      4.綜合運用

      (1)算一算:

      【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

      (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

      【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

      (3)談一談你對 與 的認識.

      【設計意圖】加深學生對二次根式性質的理解.

      5.總結反思

      (1)你知道了二次根式的哪些性質?

      (2)運用二次根式性質進行化簡需要注意什么?

      (3)請談談發現二次根式性質的思考過程?

      (4)想一想,到現在為止,你學習了哪幾類字母表示數得到的式子?說說你對代數式的認識.

      6.布置作業:教科書習題16.1第2,4題.

      五、目標檢測設計

      1. ; ; .

      【設計意圖】考查對二次根式性質的理解.

      2.下列運算正確的是( )

      A. B. C. D.

      【設計意圖】考查學生運用二次根式的性質進行化簡的能力.

      3.若 ,則 的取值范圍是 .

      【設計意圖】考查學生對一個數非負數的算術平方根的理解.

      4.計算: .

      【設計意圖】考查二次根式性質的靈活運用.

    八年級數學教案6

      一、教材的地位和作用

      現實生活中,等腰三角形的應用比比皆是、所以,利用“軸對稱”的知識,進一步研究等腰三角形的特殊性質,不僅是現實生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質打下堅實的基礎、

      性質“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結論的重要理論依據、

      教學重點:

      1、讓學生主動經歷思考和探索的過程、

      2、掌握等腰三角形性質及其應用、

      教學難點:等腰三角形性質的理解和探究過程、

      二、學情分析

      本年級的學生已經研究過一般三角形的性質,積累了一定的經驗,動手能力強,善于與同伴交流,這就為本節課的學習做好了知識、能力、情感方面的準備、不同層次的學生因為基礎不同,在學習中必然會出現相異構想,這也將是我在教學過程中著重關注的一點、

      三、目標分析

      知識與技能

      1、了解等腰三角形的有關概念和掌握等腰三角形的性質

      2、了解等邊三角形的概念并探索其性質

      3、運用等腰三角形的性質解決問題

      過程與方法

      1、通過觀察等腰三角形的對稱性,發展學生的形象思維、

      2、探索等腰三角形的性質時,經歷了觀察、動手實踐、猜想、驗證等數學過程,積累數學活動經驗,發展了學生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運用數學語言合乎邏輯的進行討論和質疑,提高了數學語言表達能力、

      情感態度價值觀:

      1、通過情境創設,使學生感受到等腰三角形就在自己的身邊,從而使學生認識到學習等腰三角形的必要性、

      2、通過等腰三角形的性質的歸納,使學生認識到科學結論的發現,是一個不斷完善的過程,培養學生堅強的意志品質、

      3、通過小組合作,發展學生互幫互助的精神,體驗合作學習中的樂趣和成就感、

      四、教法分析

      根據學生已有的認知,采取了激疑引趣——猜想探究——應用體驗——建構延伸的教學模式,并利用多媒體輔助教學、

      設計意圖

      同學們,我們在七年級已研究了一般三角形的性質,今天我們一起來探究特殊的三角形:等腰三角形、

      等腰三角形的'定義

      有兩條邊相等的三角形叫做等腰三角形、

      等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、

      提出問題:生活中有哪些現象讓你聯想到等腰三角形?

      首先讓學生明確:本學段的幾何圖形都是按一般的到特殊的順序研究的

      通過學生描述等腰三角形在生活中的應用,讓學生感受到數學就在我們身邊,以及研究等腰三角形的必要性、

      剪紙游戲

      你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!

      學情分析:

      大部分學生會有自己的想法,根據軸對稱圖形的性質,利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;

      可能還有的同學會利用正方形的折法,獲得特殊的等腰直角三角形;

      可能還有同學先畫圖,再依線條剪得、

      在這個過程中,注重落實三維目標、讓學生在獲取新知的過程中更好的認識自我,建立自信、我不失時機的對學生給予鼓勵和表揚,使活動更加深入,課堂充滿愉悅和溫馨、

      知其然,更重要的是知其所以然、因此,我力求讓學生關注剪法的理性思考、

      我設計了問題:你是如何想到的?為的是剖析學生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實際操作中得到證明的方法,也為發現“三線合一”做了鋪墊、

      提出問題:

      等腰三角形還有什么性質?請提出你的猜想,驗證你的猜想?并填寫在學案上、

      合作小組活動規則:

      1、有主記錄員記錄小組的結論;

      2、定出小組的主發言人(其它同學可作補充);

      3、小組探究出的結論是什么?

      4、說明你們小組所獲得結論的理由、

      等腰三角形的性質:

      性質一:等腰三角形的兩個底角相等(簡稱“等邊對等角”)、

      性質二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、

      學情分析:這個環節是本節課的重點,也是教學難點、盡管在教學過程中,因為學生的相異構想,數學猜想的初始敘述不準確,甚至不正確,但我不會立即去糾正他們,而是讓同學們不斷地質疑﹑辨析、研討和歸納,逐漸完善結論、讓他們真正經歷數學知識的形成過程,真正的體現以人為本的教學理念,努力創設和諧的教育教學的生態環境、

      通過設置恰當的動手實踐活動,引導學生經歷觀察、動手實踐、猜想、驗證等數學探究活動,這種探究的學習過程,恰恰是研究幾何圖形性質的一般規律和方法、

      (1)在此環節中,我的教學要充分把握好“四讓”:能讓學生觀察的,盡量讓學生觀察;能讓學生思考的,盡量讓學生思考;能讓學生表達的,盡量讓學生表達;能讓學生作結論的,盡量讓學生作結論、

      這種教學方式,把學習的過程真正還給學生,不怕學生說不好,不怕學生出問題,其實學生說不好的地方、學生出問題的地方都正是我們應該教的地方,是教學的切入點、著眼點、增長點、

      (2)教師在這個過程中,充分聽取和參與學生的小組討論,對有困難的學生,及時指導、

      鞏固知識

      1、等腰三角形頂角為70°,它的另外兩個內角的度數分別為________;

      2、等腰三角形一個角為70°,它的另外兩個內角的度數分別為_____;

      3、等腰三角形一個角為100°,它的另外兩個內角的度數分別為_____、

      內化知識

      1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數嗎?

      知識遷移

      等邊三角形有什么特殊的性質?簡單地敘述理由、

      等邊三角形的性質定理:

      等邊三角形的各角都相等,并且每一個角都等于60°、

      拓展延伸

      如圖2,在△ABC中,AB=AC,點D,E在BC上,AD=AE,你能說明BD=EC?

      由于學生之間存在知識基礎、經驗和能力的差異,我為學生提供了層次分明的反饋練習、將練習從易到難,從簡到繁,以適應不同階段、不同層次的學生的需要、讓學生拾階而上,逐步掌握知識,使學困生達到簡單運用水平,中等生達到綜合運用水平,優等生達到創建水平、

      暢談收獲

      總結活動情況,重在肯定與鼓勵、引導學生從本課學習中所得到的新知識,運用的數學思想方法,新舊知識的聯系等方面進行反思,提高學生自主建構知識網絡、分析解決問題的能力、

      幫助學生梳理知識,回顧探究過程中所用到的從特殊到一般的數學方法,啟發學生更深層次的思考,為學生的下一步學習做好鋪墊、

      反思過程不僅是學生學習過程的繼續,更重要的是一種提高和發展自己的過程、

      基礎性作業:P65習題1、2、3、4

    八年級數學教案7

      一、教材分析:

      《正方形》這節課是九年義務教育人教版數學教材八年級下冊第十九章第二節的內容。縱觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續,又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環節。

      本節課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯系。根據大綱要求,本節課制定了知識、能力、情感三方面的目標。

      (一)知識目標:

      1、要求學生掌握正方形的概念及性質;

      2、能正確運用正方形的性質進行簡單的計算、推理、論證;

      (二)能力目標:

      1、通過本節課培養學生觀察、動手、探究、分析、歸納、總結等能力;

      2、發展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;

      (三)情感目標:

      1、讓學生樹立科學、嚴謹、理論聯系實際的良好學風;

      2、培養學生互相幫助、團結協作、相互討論的團隊精神;

      3、通過正方形圖形的完美性,培養學生品格的完美性。

      二、學生分析:

      該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節課的教學過程中,特意設計了讓學生自己組織語言培養說理能力,讓學生們能逐步提高。

      三、教法分析:

      針對本節課的特點,采用"實踐--觀察--總結歸納--運用"為主線的教學方法。

      通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。

      四、學法分析:

      本節課重點是從培養學生探索精神和分析歸納總結能力為出發點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。

      五、教學程序:

      第一環節:相關知識回顧

      以提問的形式復習的平行四邊形、矩形、菱形的定義及性質之后,引導學生發現矩形、菱形的實質是由平行四邊形角度、邊長的變化得到的。并啟發學生考慮,若這兩種變化同時發生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結論。

      第二環節:新課講解通過學生們的發現引出課題“正方形”

      1、正方形的定義

      引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發言,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發學生們發現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發學生發現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。

      2、正方形的性質

      定理1:正方形的四個角都是直角,四條邊都相等;

      定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

      以上是對正方形定義和性質的學習,之后是進行例題講解。

      3、例題講解

      求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時強調證明格式的'書寫。從而培養他們語言表達能力,讓學生的個性得到充分的展示

      4、課堂練習

      第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。

      第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要服務于生活。

      5、課堂小結

      此環節我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯系,通過對所學幾種四邊形內在聯系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。

      6、作業設計

      作業是教材159頁,第12、14兩小道證明題,通過此作業讓同學們進一步鞏固有關正方形的知識。

    八年級數學教案8

      總課時:7課時 使用人:

      備課時間:第八周 上課時間:第十周

      第4課時:5、2平面直角坐標系(2)

      教學目標

      知識與技能

      1.在給定的直角坐標系下,會根據坐標描出點的位置;

      2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

      過程與方法

      1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;

      2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。

      情感態度與價值觀

      通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。

      教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的'大致形狀。

      教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學過程

      第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

      在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

      練習:指出下列 各點以及所在象限或坐標軸:

      A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

      由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。

      第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)

      1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

      (-9,3),(-9,0),(-3,0),( -3,3)

      ( 學生操作完畢后)

      2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

      (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

      (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

      (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

      (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

      觀察所得的圖形,你覺得它像什么?

      分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

      (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

      這個圖形像一棟房子旁邊還有一棵大樹。

      3.做一做

      (出示投影)

      在書上已建立的直角坐標系畫,要求每位同學獨立完成。

      (學生描點、畫圖)

      (拿出一位做對的學生的作品投影)

      你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

      (像貓臉)

      第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)

      (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

      (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

      (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

      (3)(2,0)

      觀察所得的圖形,你覺得它像什么?(像移動的菱形)

      2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

      先獨立完成,然后小組討論是否正確。

      第四環節 感悟與收獲(5分鐘,學生總結,全班交流)

      本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

      在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

      第五環節 布置作業

      習題5、4

      A組(優等生)1、2、3

      B組(中等生)1、2

      C組(后三分之一生)1、2

    八年級數學教案9

      教學目標:

      1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

      2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

      3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

      4、能利和計算器求一組數據的算術平均數。

      教學重點:體會平均數、中位數、眾數在具體情境中的意義和應用。

      教學難點:對于平均數、中位數、眾數在不同情境中的應用。

      教學方法:歸納教學法。

      教學過程:

      一、知識回顧與思考

      1、平均數、中位數、眾數的概念及舉例。

      一般地對于n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

      如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

      中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

      眾數就是一組數據中出現次數最多的那個數據。

      如3,2,3,5,3,4中3是眾數。

      2、平均數、中位數和眾數的特征:

      (1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

      (2)平均數能充分利用數據提供的.信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

      (3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

      (4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

      3、算術平均數和加權平均數有什么區別和聯系:

      算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

      4、利用計算器求一組數據的平均數。

      利用科學計算器求平均數的方法計算平均數。

      二、例題講解:

      例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:

      每人銷售件數 1800 510 250 210 150 120

      人數 113532

      (1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;

      (2)假設銷售部負責人把每位營銷員的月銷售額定為平均數,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。

      例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

      三、課堂練習:復習題A組

      四、小結:

      1、掌握平均數、中位數與眾數的概念及計算。

      2、理解算術平均數與加權平均數的聯系與區別。

      五、作業:復習題B組、C組(選做)

    八年級數學教案10

      第三十四學時:14.2.1平方差公式

      一、學習目標:

      1.經歷探索平方差公式的過程。

      2.會推導平方差公式,并能運用公式進行簡單的'運算。

      二、重點難點

      重點:平方差公式的推導和應用;

      難點:理解平方差公式的結構特征,靈活應用平方差公式。

      三、合作學習

      你能用簡便方法計算下列各題嗎?

      (1)20xx×1999(2)998×1002

      導入新課:計算下列多項式的積.

      (1)(x+1)(x—1);

      (2)(m+2)(m—2)

      (3)(2x+1)(2x—1);

      (4)(x+5y)(x—5y)。

      結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。

      即:(a+b)(a—b)=a2—b2

      四、精講精練

      例1:運用平方差公式計算:

      (1)(3x+2)(3x—2);

      (2)(b+2a)(2a—b);

      (3)(—x+2y)(—x—2y)。

      例2:計算:

      (1)102×98;

      (2)(y+2)(y—2)—(y—1)(y+5)。

      隨堂練習

      計算:

      (1)(a+b)(—b+a);

      (2)(—a—b)(a—b);

      (3)(3a+2b)(3a—2b);

      (4)(a5—b2)(a5+b2);

      (5)(a+2b+2c)(a+2b—2c);

      (6)(a—b)(a+b)(a2+b2)。

      五、小結

      (a+b)(a—b)=a2—b2

    八年級數學教案11

      教學內容

      本節課主要介紹全等三角形的概念和性質.

      教學目標

      1.知識與技能

      領會全等三角形對應邊和對應角相等的有關概念.

      2.過程與方法

      經歷探索全等三角形性質的過程,能在全等三角形中正確找出對應邊、對應角.

      3.情感、態度與價值觀

      培養觀察、操作、分析能力,體會全等三角形的應用價值.

      重、難點與關鍵

      1.重點:會確定全等三角形的對應元素.

      2.難點:掌握找對應邊、對應角的方法.

      3.關鍵:找對應邊、對應角有下面兩種方法:(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;(2)對應邊所對的角是對應角,?兩條對應邊所夾的角是對應角.教具準備

      四張大小一樣的紙片、直尺、剪刀.

      教學方法

      采用“直觀──感悟”的教學方法,讓學生自己舉出形狀、大小相同的實例,加深認識.教學過程

      一、動手操作,導入課題

      1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?

      2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?

      【學生活動】動手操作、用腦思考、與同伴討論,得出結論.

      【教師活動】指導學生用剪刀剪出重疊的兩個多邊形和三角形.

      學生在操作過程中,教師要讓學生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心.

      【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個圖形叫做全等形,用“≌”表示.

      概念:能夠完全重合的兩個三角形叫做全等三角形.

      【教師活動】在紙版上任意剪下一個三角形,要求學生手拿一個三角形,做如下運動:平移、翻折、旋轉,觀察其運動前后的三角形會全等嗎?

      【學生活動】動手操作,實踐感知,得出結論:兩個三角形全等.

      【教師活動】要求學生用字母表示出每個剪下的三角形,同時互相指出每個三角形的`頂點、三個角、三條邊、每條邊的邊角、每個角的對邊.

      【學生活動】把兩個三角形按上述要求標上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?

      【交流討論】通過同桌交流,實驗得出下面結論:

      1.任意放置時,并不一定完全重合,?只有當把相同的角旋轉到一起時才能完全重合.

      2.這時它們的三個頂點、三條邊和三個內角分別重合了.

      3.完全重合說明三條邊對應相等,三個內角對應相等,?對應頂點在相對應的位置.

    八年級數學教案12

      教學目標:

      知識目標:

      1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

      2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

      3、會對一個具體實例進行概括抽象成為數學問題。

      能力目標:

      1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

      2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

      情感目標:

      1、經歷函數概念的抽象概括過程,體會函數的模型思想。

      2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。

      教學重點:

      掌握函數概念。

      判斷兩個變量之間的關系是否可看作函數。

      能把實際問題抽象概括為函數問題。

      教學難點:

      理解函數的概念。

      能把實際問題抽象概括為函數問題。

      教學過程設計:

      一、創設問題情境,導入新課

      『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

      『生』:摩天輪。

      『師』:你們坐過嗎?

      ……

      『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?

      『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。

      『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。

      大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:

      t/分 0 1 2 3 4 5 …… h/米

      t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

      『師』:對于給定的時間t,相應的高度h確定嗎?

      『生』:確定。

      『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

      『生』:研究的對象有兩個,是時間t和高度h。

      『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。

      二、新課學習

      做一做

      (1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?

      填寫下表:

      層數n 1 2 3 4 5 … 物體總數y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

      『生』:變量有兩個,是層數與圓圈總數。

      (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的`速度(單位:千米/時)

      ①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

      ②給定一個V值,你能求出相應的S值嗎?

      解:略

      議一議

      『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

      『生』:相同點是:這三個問題中都研究了兩個變量。

      不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。

      『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

      函數的概念

      在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

      一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

      三、隨堂練習

      書P152頁 隨堂練習1、2、3

      四、本課小結

      初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。

      在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。

      函數的三種表達式:

      圖象;(2)表格;(3)關系式。

      五、探究活動

      為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?

      (答案:Y=1.8x-6或)

      六、課后作業

      習題6.1

    八年級數學教案13

      教學目標:

      (1)理解通分的意義,理解最簡公分母的意義;

      (2)掌握分式的通分法則,能熟練掌握通分運算。

      教學重點:分式通分的理解和掌握。

      教學難點:分式通分中最簡公分母的確定。

      教學工具:投影儀

      教學方法:啟發式、討論式

      教學過程:

      (一)引入

      (1)如何計算:

      由此讓學生復習分數通分的意義、通分的根據、通分的法則以及最簡公分母的概念。

      (2)如何計算:

      (3)何計算:

      引導學生思考,猜想如何求解?

      (二)新課

      1、類比分數的通分得到分式的通分:

      把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

      注意:通分保證

      (1)各分式與原分式相等;

      (2)各分式分母相等。

      2.通分的依據:分式的基本性質.

      3.通分的關鍵:確定幾個分式的最簡公分母.

      通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

      根據分式通分和最簡公分母的`定義,將分式通分:

      最簡公分母為:

      然后根據分式的基本性質,分別對原來的各分式的分子和分母乘一個適當的整式,使各分式的分母都化為通分如下:xxx

      通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。

      例1 通分:xxx

      分析:讓學生找分式的公分母,可設問“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。

      解:∵ 最簡公分母是12xy2,

      小結:各分母的系數都是整數時,通常取它們的系數的最小公倍數作為最簡公分母的系數.

      解:∵最簡公分母是10a2b2c2,

      由學生歸納最簡公分母的思路。

      分式通分中求最簡公分母概括為:(1)取各分母系數的最小公倍數;(2)凡出現的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數最大的。取這些因式的積就是最簡公分母。

    八年級數學教案14

      菱形

      學習目標(學習重點):

      1.經歷探索菱形的識別方法的過程,在活動中培養探究意識與合作交流的習慣;

      2.運用菱形的識別方法進行有關推理.

      補充例題:

      例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

      例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.

      四邊形AFCE是菱形嗎?說明理由.

      例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

      (1)試說明四邊形AECG是平行四邊形;

      (2)若AB=4cm,BC=3cm,求線段EF的長;

      (3)當矩形兩邊AB、BC具備怎樣的關系時,四邊形AECG是菱形.

      課后續助:

      一、填空題

      1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

      2.如圖,D、E、F分別是△ABC的'邊BC、CA、AB上的點,

      且DE∥BA,DF∥ CA

      (1)要使四邊形AFDE是菱形,則要增加條件______________________

      (2)要使四邊形AFDE是矩形,則要增加條件______________________

      二、解答題

      1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

      2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

      (1) AC,BD互相垂直嗎?為什么?

      (2) 四邊形ABCD是菱形 嗎?

      3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

      4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

      ⑴求證:ABF≌

      ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

    八年級數學教案15

      教學目標

      理解平行四邊形的定義,能根據定義探究平行四邊形的性質.

      教學思考

      1.通過觀察、實驗、猜想、驗證、推理、交流等數學活動,發展學生合情推理能力和動手操作能力及應用數學的意識與能力.

      2.能夠根據平行四邊形的性質進行簡單的推理和計算.

      解決問題

      通過平行四邊形性質的探索過程,豐富學生從事數學活動的經驗與體驗,能運用平行四邊形的性質進行有關的推理和計算,發展應用意識.

      情感態度

      在應用平行四邊形的性質的過程養成獨立思考的習慣,在數學學習活動中獲得成功的體驗.

      重點

      平行四邊形的性質的探究和平行四邊形的性質的應用.

      難點

      平行四邊形的'性質的應用.

      教學流程安排

      活動流程圖

      活動內容和目的

      活動1欣賞圖片,了解生活中的特殊四邊形

      活動2剪三角形紙片,拼凸四邊形

      活動3理解平行四邊形的概念

      活動4探究平行四邊形邊、角的性質

      活動5平行四邊形性質的應用

      活動6評價反思、布置作業

      熟悉生活中特殊的四邊形,導出課題.

      通過用三角形拼四邊形的過程,滲透轉化思想,激發探索精神.

      掌握平行四邊形的定義及表示方法.

      探究平行四邊形的性質.

      運用平行四邊形的性質.

      學生交流,內化知識,課后鞏固知識.

      教學過程設計

      問題與情景

      師生行為

      設計意圖

    [活動1]

      下面的圖片中,有你熟悉的哪些圖形?

      (出示圖片)

      演示圖片,學生欣賞.

      教師介紹四邊形與我們生活密切聯系,學生可再補充列舉.

      從實例圖片中,抽象出的特殊四邊形,培養學生的抽象思維.通過舉例,讓學生感受到數學與我們的生活緊密聯系.

      問題與情景

      師生行為

      設計意圖

      [活動2]

      拼一拼

      將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.

      (1)你拼出了怎樣的凸四邊形?與同伴交流.

      (2)一位同學拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關系?說說你的理由.

      學生經過實驗操作,開展獨立思考與合作學習.

      教師深入學生之中,觀察學生頻出的方法與過程,接受學生質疑并指導個別學生探究.

      教師待學生充分探究后,請學生展示拼圖的方法和不同的圖形.并引導學生分析(2)中的四邊形的邊的位置特征,從而引出本節課研究的內容

    【八年級數學教案】相關文章:

    八年級《函數》數學教案04-03

    八年級《函數》數學教案02-07

    (經典)八年級數學教案06-25

    八年級數學教案12-31

    八年級數學教案12-09

    八年級數學教案(合集)05-29

    八年級數學教案[精品]05-29

    八年級數學教案【精華】05-28

    八年級數學教案[通用]06-21

    八年級數學教案(精品)06-23

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      制服中文字幕在线一区 | 午夜自产精品一区二区三区 | 亚洲欧美va动漫一区二区 | 久国产乱子精品免费视频 | 亚洲国产中字幕在线尤物视频 | 日韩欧美tv一区二区在线观看 |