七年級數學《絕對值》教案
作為一名辛苦耕耘的教育工作者,常常要寫一份優秀的教案,教案是備課向課堂教學轉化的關節點?靵韰⒖冀贪甘窃趺磳懙陌桑∠旅媸切【帋痛蠹艺淼钠吣昙墧祵W《絕對值》教案,歡迎大家分享。
一、重點、難點分析
絕對值概念既是本節的教學重點又是教學難點。關于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數定義,都揭示了絕對值的一個重要性質——非負性,也就是說,任何一個有理數的絕對值都是非負數,即無論a取任意有理數,都有 。
教材上絕對值的定義是從幾何角度給出的,也就是從數軸上表示數的點在數軸上的位置出發,得到的定義。這樣,數軸的概念、畫法、利用數軸比較有理數的大小、相反數,以及絕對值,通過數軸,這些知識都聯系在一起了。此外,0的絕對值是0,從幾何定義出發,就十分容易理解了。
二、知識結構
絕對值的定義 絕對值的表示方法 用絕對值比較有理數的大小
三、教法建議
用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數軸定義絕對值,從理論上講都是可以的.初學絕對值用語言敘述的定義,好像更便于學生記憶和運用,以后逐步改用解析式表示絕對值的定義,即
在教學中,只能突出一種定義,否則容易引起混亂.可以把利用數軸給出的定義作為絕對值的一種直觀解釋.
此外,要反復提醒學生:一個有理數的絕對值不能是負數,但不能說一定是正數.“非負數”的概念視學生的情況,逐步滲透,逐步提出.
四、有關絕對值的一些內容
1.絕對值的代數定義
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;零的絕對值是零.
2.絕對值的幾何定義
在數軸上表示一個數的點離開原點的距離,叫做這個數的絕對值.
3.絕對值的主要性質
(2)一個實數的絕對值是一個非負數,即|a|≥0,因此,在實數范圍內,絕對值最小的數是零.
(4)兩個相反數的絕對值相等.
五、運用絕對值比較有理數的大小
1.兩個負數大小的比較,因為兩個負數在數軸上的位置關系是:絕對值較大的負數一定在絕對值較小的負數左邊,所以,兩個負數,絕對值大的反而小。
比較兩個負數的方法步驟是:
。1)先分別求出兩個負數的絕對值;
(2)比較這兩個絕對值的大小;
(3)根據“兩個負數,絕對值大的反而小”作出正確的判斷.
2.兩個正數大小的比較,與小學學習的方法一致,絕對值大的較大.
【七年級數學《絕對值》教案】相關文章:
初中數學絕對值教案12-30
七年級數學絕對值教案10-19
七年級數學《絕對值》教案09-11
七年級數學絕對值教案10-21
(精品)七年級數學《絕對值》教案12-11
七年級數學絕對值教案(合集)08-29
(通用)七年級數學《絕對值》教案07-22
七年級數學絕對值教案(精選12篇)07-04
七年級數學上冊《絕對值》教案10-16