1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>六年級數學教案>六年級上冊數學教案

    六年級上冊數學教案

    時間:2024-10-18 09:02:49 六年級數學教案 我要投稿

    六年級上冊數學教案人教版

      在教學工作者實際的教學活動中,時常需要用到教案,教案有利于教學水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!以下是小編整理的六年級上冊數學教案人教版,歡迎閱讀與收藏。

    六年級上冊數學教案人教版

      一、分數乘法

      (一)、分數乘法的計算法則:

      1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。

      (整數和分母約分)

      2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。

      3、為了計算簡便,能約分的要先約分,再計算。

      注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。

      (二)、規律:(乘法中比較大小時)

      一個數(0除外)乘大于1的數,積大于這個數。

      一個數(0除外)乘小于1的數(0除外),積小于這個數。

      一個數(0除外)乘1,積等于這個數。

      (三)、分數混合運算的運算順序和整數的運算順序相同。

      (四)、整數乘法的交換律、結合律和分配律,對于分數乘法也同樣適用。

      乘法交換律: a × b = b × a

      乘法結合律: ( a × b )×c = a × ( b × c )

      乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c

      二、分數乘法的解決問題

      (已知單位“1”的量(用乘法),求單位“1”的幾分之幾是多少)

      1、找單位“1”:

      在分率句中分率的前面; 或 “占”、“是”、“比”的后面

      2、求一個數的幾倍:

      一個數×幾倍; 求一個數的幾分之幾是多少: 一個數× 。

      3、寫數量關系式技巧:

      (1)“的” 相當于 “×” “占”、“是”、“比”相當于“ = ”

      (2)分率前是“的”: 單位“1”的量×分率=分率對應量

      (3)分率前是“多或少”的意思: 單位“1”的量×(1 分率)=分率對應量

      三、倒數

      1、倒數的意義:

      乘積是1的兩個數互為倒數。

      強調:互為倒數,即倒數是兩個數的關系,它們互相依存,倒數不能單獨存在。

      (要說清誰是誰的倒數)。

      2、求倒數的方法:

      (1)、求分數的倒數:交換分子分母的位置。(2)、求整數的倒數:把整數看做分母是1的分數,再交換分子分母的位置。(3)、求帶分數的倒數:把帶分數化為假分數,再求倒數。

      (4)、求小數的倒數: 把小數化為分數,再求倒數。

      3、1的倒數是1;

      0沒有倒數。 因為1×1=1;0乘任何數都得0, (分母不能為0)

      4、對于任意數

      ,它的倒數為 ;非零整數 的倒數為 ;分數 的倒數是 ;

      5、真分數的倒數大于1;

      假分數的倒數小于或等于1;帶分數的倒數小于1。六年級上冊數學人教版知識2

      分數除法

      一、分數除法

      1、分數除法的意義:

      分數除法與整數除法的意義相同,表示已知兩個因數的積和其中一個因數,求另一個因數的運算。

      2、分數除法的計算法則:

      除以一個不為0的數,等于乘這個數的倒數。

      3、規律(分數除法比較大小時):(1)、當除數大于1,商小于被除數;

      (2)、當除數小于1(不等于0),商大于被除數;(3)、當除數等于1,商等于被除數。

      4、“

      ”叫做中括號。一個算式里,如果既有小括號,又有中括號,要先算小括號里面的, 再算中括號里面的。

      二、分數除法解決問題

      (未知單位“1”的量(用除法): 已知單位“1”的幾分之幾是多少,求單位“1”的量。 )

      1、數量關系式和分數乘法解決問題中的關系式相同:

      (1)分率前是“的”: 單位“1”的量×分率=分率對應量

      (2)分率前是“多或少”的意思: 單位“1”的量×(1 分率)=分率對應量

      2、解法:(建議:最好用方程解答)

      (1)方程: 根據數量關系式設未知量為X,用方程解答。

      (2)算術(用除法): 分率對應量÷對應分率 = 單位“1”的量

      3、求一個數是另一個數的幾分之幾:就

      一個數÷另一個數

      4、求一個數比另一個數多(少)幾分之幾:

     、 求多幾分之幾:大數÷小數 – 1 ② 求少幾分之幾: 1 - 小數÷大數

      或① 求多幾分之幾(大數-小數)÷小數② 求少幾分之幾:(大數-小數)÷大數

      六年級上冊數學人教版知識3

      比和比的應用

      (一)、比的意義

      1、比的意義:兩個數相除又叫做兩個數的比。

      2、在兩個數的比中,比號前面的數叫做比的前項,比號后面的數叫做比的后項。

      比的前項除以后項所得的商,叫做比值。

      例如 15 :10 = 15÷10= (比值通常用分數表示,也可以用小數或整數表示)

      ∶ ∶ ∶ ∶

      前項 比號 后項 比值

      3、比可以表示兩個相同量的關系,即倍數關系。

      也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。

      4、區分比和比值

      比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。

      比值:相當于商,是一個數,可以是整數,分數,也可以是小數。

      5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。

      6、 比和除法、分數的聯系:

      比 前 項 比號“:” 后 項 比值

      除 法 被除數 除號“÷” 除 數 商

      分 數 分 子 分數線“—” 分 母 分數值

      7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。

      8、根據比與除法、分數的關系,可以理解比的后項不能為0。

      體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。

      (二)、比的基本性質

      1、根據比、除法、分數的關系:

      商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。

      分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。

      比的基本性質:比的前項和后項同時乘或除以相同的數(0除外),比值不變。

      2、最簡整數比:比的前項和后項都是整數,并且是互質數,這樣的比就是最簡整數比。

      3、根據比的基本性質,可以把比化成最簡單的整數比。

      4.化簡比:

     、儆帽鹊那绊椇秃箜椡瑫r除以它們的最大公因數。

      (1) ②兩個分數的比:用前項后項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。

      ③兩個小數的比:向右移動小數點的位置,先化成整數比再化簡。

      (2)用求比值的方法。注意: 最后結果要寫成比的形式。

      如: 15∶10 = 15÷10 = = 3∶2

      5.按比例分配:把一個數量按照一定的比來進行分配。

      這種方法通常叫做按比例分配。

      如: 已知兩個量之比為 ,則設這兩個量分別為 。

      6、路程一定,速度比和時間比成反比。

      (如:路程相同,速度比是4:5,時間比則為5:4)

      工作總量一定,工作效率和工作時間成反比。

      (如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)

      六年級上冊數學人教版知識4

      圓的面積

      1、圓的面積:圓所占平面的大小叫做圓的面積。

      用字母S表示。

      2、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。

      頂點在圓心的角叫做圓心角。

      3、圓面積公式的推導:

      (1)、用逐漸逼近的轉化思想: 體現化圓為方,化曲為直;化新為舊,化未知為已知,化復雜為簡單,化抽象為具體。

      (2)、把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。

      (3)、拼出的圖形與圓的周長和半徑的關系。

      圓的半徑 = 長方形的寬

      圓的周長的一半 = 長方形的長

      因為: 長方形面積 = 長 × 寬

      所以: 圓的面積 = 圓周長的一半 × 圓的半徑

      S圓 = πr × r

      圓的面積公式: S圓 = πr2

      4、環形的面積:

      一個環形,外圓的半徑是R,內圓的半徑是r。(R=r+環的寬度.)

      S環 = πR?-πr?  或

      環形的面積公式: S環 = π(R?-r?)。

      5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。

      而面積擴大或縮小的倍數是這倍數的平方倍。 例如:

      在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大9倍。

      6、兩個圓:

      半徑比 = 直徑比 = 周長比;而面積比等于這比的平方。 例如:

      兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9

      7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π

      8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。

      反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。

      9、確定起跑線:

      (1)、每條跑道的長度 = 兩個半圓形跑道合成的圓的周長 + 兩個直道的長度。

      (2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)

      (3)、每相鄰兩個跑道相隔的距離是: 2×π×跑道的寬度

      (4)、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

      11、常用各π值結果:

      π = 3.14

      2π = 6.28

      3π = 9.42

      5π = 15.7

      6π = 18.84

      7π = 21.98

      9π = 28.26

      10π = 31.4

      16π = 50.24

      36π = 113.04

      64π = 200.96

      96π = 301.44

      4π = 12.56 8π = 25.12 25π = 78.5

      六年級上冊數學人教版知識5

      一、認識圓

      1、圓的定義:圓是由曲線圍成的一種平面圖形。

      2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。

      一般用字母O表示。它到圓上任意一點的距離都相等.

      3、半徑:連接圓心到圓上任意一點的線段叫做半徑。

      一般用字母r表示。

      把圓規兩腳分開,兩腳之間的距離就是圓的半徑。

      4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。

      一般用字母d表示。

      直徑是一個圓內最長的線段。

      5、圓心確定圓的位置,半徑確定圓的大小。

      6、在同圓或等圓內,有無數條半徑,有無數條直徑。

      所有的半徑都相等,所有的直徑都相等。

      7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的

      。

      用字母表示為:d=2r或r =

      8、軸對稱圖形:

      如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。

      折痕所在的這條直線叫做對稱軸。(經過圓心的任意一條直線或直徑所在的直線)

      9、長方形、正方形和圓都是對稱圖形,都有對稱軸。

      這些圖形都是軸對稱圖形。

      10、只有1一條對稱軸的圖形有:

      角、等腰三角形、等腰梯形、扇形、半圓。

      只有2條對稱軸的圖形是: 長方形

      只有3條對稱軸的圖形是: 等邊三角形

      只有4條對稱軸的圖形是: 正方形;

      有無數條對稱軸的圖形是: 圓、圓環。

      二、圓的周長

      1、圓的周長:圍成圓的曲線的長度叫做圓的周長。

      用字母C表示。

      2、圓周率實驗:

      在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。

      發現一般規律,就是圓周長與它直徑的比值是一個固定數(π)。

      3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。

      用字母π(pai) 表示。

      (1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。

      圓周率π是一個無限不循環小數。在計算時,一般取π ≈ 3.14。

      (2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。

      (3)、世界上第一個把圓周率算出來的人是我國的數學家祖沖之。

      4、圓的周長公式:

      C= πd d = C ÷π

      或C=2π r r = C ÷ 2π

      5、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。

      在一個長方形里畫一個最大的圓,圓的直徑等于長方形的寬。

      6、區分周長的一半和半圓的周長:

      (1) 周長的一半:等于圓的周長÷2 計算方法:2π r ÷ 2 即 π r

      (2)半圓的周長:等于圓的周長的一半加直徑。 計算方法:πr+2r

      六年級上冊數學教案人教版2

      六年級上冊數學書習題為范文網的會員投稿推薦,但愿對你的學習工作帶來幫助。

      數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從各種各樣的習題中就可以很好的體現出來。以上就是小編為大家梳理歸納的知識,希望能夠夠幫助到大家。

      六年級上冊數學書習題及答案

      1.按照圖上所示的位置填空。

      (1)游泳館在小文家的北偏____方向,距離是___米;

      (2)電影院在小文家的東偏___°方向,距離是_____米。

      (3)圖書館在小文家的____偏_____方向,距離是_____米;

      (4)百貨超市在小文家的_____偏______°方向,距離是_____米。

      2、找到每個建筑物的位置。

      (1)體育館在學校的北偏_____°方向,距離是_____米;

      (2)新華書店在學校的___偏10°方向,距離是_____米;

      (3)李小旭家在學校的_____偏____°方向,距離是____米;

      (4)百貨大樓在學校的____偏_____°方向,距離是_____米。

      3.量一量,填一填。

      (1)瘋狂老鼠在噴泉___偏____°的方向上,距離是___米;

      (2)空中飛車在噴泉___偏___°的方向上,距離是___米;

      (3)時間隧道在噴泉____偏___°的方向上,距離是____米;

      (4)碰碰車在噴泉____偏____°的方向上,距離是___米。

      4.按要求畫出各景點位置。

      (1)鱷魚潭在大象館西偏南40°方向,距離300米;

      (2)熊貓館在大象館北偏西15°方向,距離200米;

      (3)花果山在大象館東偏北60°方向,距離500米。

    【六年級上冊數學教案】相關文章:

    六年級上冊數學教案12-25

    六年級上冊數學教案11-16

    人教版六年級上冊數學教案01-08

    【推薦】六年級上冊數學教案01-24

    六年級上冊數學教案【薦】01-25

    六年級上冊數學教案【熱】01-25

    六年級上冊數學教案【精】02-09

    六年級上冊數學教案:比的意義02-16

    六年級上冊數學教案優秀05-26

    人教版六年級上冊數學教案05-10

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      一本色道久久88加勒比—综 | 中文字幕亚洲综合久久青草 | 日本精品在线观看 | 尤物在线视频国产区 | 一本色道久久综合亚洲精品高清 | 亚洲精选91福利在线观看 |