六年級數學下冊教案15篇【優秀】
作為一名教師,時常需要編寫教案,借助教案可以更好地組織教學活動。快來參考教案是怎么寫的吧!下面是小編為大家整理的六年級數學下冊教案,歡迎閱讀,希望大家能夠喜歡。
六年級數學下冊教案1
教學目標:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、進一步提高學生解決問題的能力。
教學重、難點:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、理解圓柱體積公式的推導過程。
教學準備:圓柱切割組合模具、小黑板。
教學過程:
一、創設情境,生成問題
1、什么是體積?( 物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計算?歸納到底面積乘高上來。
3、圓的面積怎樣計算?
二、探索交流,解決問題
1、計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體 圖形來計算它的體積?
(啟發學生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導學生進行觀察。
3、思考:
(1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實驗你發現了什么?
小組討論:實驗前后,什么變了?什么沒變?
討論后,整理出來,再進行匯報。
(拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方
體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發生變化。近似長方形的高就是圓柱的高,沒有變化。)
4、推導圓柱體積公式
小組討論:怎樣計算圓柱的體積?
學生匯報討論結果。
長方體的'體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書: V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應用練習。
1、一個圓柱形水桶,從桶內量得底面直徑是3分米,高是4分米,
這個水桶的容積是多少升?
說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
先求底面半徑再求底面積,最后求體積。
已知底面周長對解決問題有什么幫助嗎?必須先求出什么? 四:課堂小結:
通過這節課你學會了哪些知識,有什么收獲?五:課后作業:
教材第9頁,練一練第1、3、4、題
六年級數學下冊教案2
學情分析
在此之前,他們學習了正比例的意義,對“相關聯的量”、“成正比例的兩個量的變化規律”、“如何判斷兩個量是否成正比例”已經有了認識,這為學習《反比例的意義》奠定了基礎。
教學目標
1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規律及其特征,能依據判斷兩種量成不成反比例關系。
2.進一步培養學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯的量成不成反比例的方法,培養學生判斷、推理的能力。
教學重點和難點
教學重點:認識反比例關系的意義。
教學難點 :掌握成反比例量的變化規律及其特征。
教學過程一、復習導入
1.正比例關系的意義是什么?怎樣用字母表示這種關系?
判斷兩種相關聯量成不成正比例的關鍵是什么?
2.下面哪兩種量成正比例關系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數量一定,單價和總價。
3.說一說工作效率、工作時間和工作總量之間的數量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)
二、教學新課
1.教學例4。
出示例4。讓學生計算,在課本上填表,并觀察思考能發現什么?點名讓學生按學習正比例的方法觀察表里內容,相互之間討論,發現了什么?
點名學生口答討論的結果,得出:
(1)每天運的噸數和需要的天數是兩種相關聯的量,(板書:兩種相關聯的量)需要的天數隨著每天運的噸數的變化而變化。
(2)每天運的噸數縮小,需要的天數反而擴大,每天運的噸數擴大,需要的天數反而縮小。
(3)可以看出它們的變化規律是:每天運的噸數和天數的積總是一定的。(板書:每天運的噸數和天數的積一定)因為每天運的噸數和天數的積都是240。提問:這里的'240是什么數量?誰能說出這里的數量關系式?想一想,這個式子表示的是什么意思?(板書補充:運的總噸數一定時,每天運的噸數和天數的積一定)
2.教學例5。
出示例5。
按照剛才學習例4的方法,自己學習例5,仔細想想你發現了些什么?學生觀察思考后,指名學生口答從表里發現了些什么?再提問:這兩種相關聯量變化的規律是什么?
(板書:每袋重量和袋數的積一定)
乘積8000是什么數量,這種數量關系用式子怎樣表示?
[板書:每袋重量×袋數=糖果總重量(積一定)]這個式子表示什么意思?(把上面板書補充成:糖果總重量一定時,每袋重量和袋數的積一定)
3.概括。
(1)綜合例4、例5的共同點。
提問:請你比較一下例4和例5,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例4、例5里兩種相關聯的量,它們是什么關系的量呢?
像例4、例5里這樣兩種相關聯的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數的積一定。這樣兩種相關聯的量就叫做成反比例的量,它們之間的關系叫做反比例關系。
問:兩種相關聯的量成不成反比例的關鍵是什么?
(乘積是不是一定)提問:如果用x和y表示兩種相關聯的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個式子表示兩種相關聯的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用x×y=k(一定)來表示。
4.具體認識。
(1)提問:例4里有哪兩種相關聯的量?這兩種量成反比例關系嗎?為什么,
例5里的兩種量成反比例關系嗎?為什么?
(2)提問:看兩種相關聯的量成不成反比例,關鍵要看什么?
(3)做練習八第4題。
讓學生讀題思考。指名依次口答題里的問題。[結合板書;每天裝配的臺數×天數=一批計算機的總臺數(一定)]
(4)判斷。
現在回過來看開始寫的關系式:工作效率×工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據上面所說的,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。
三、鞏固練習
1. 做“練一練”第l,2,3,4,5題。
指名口答,說說理由。思考時可以引導看數量關系式,說明理由。
2.拓展應用。
3.綜合練習
四、課堂小結
這節課學習的是什么內容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?
五、課堂作業
六年級數學下冊教案3
教學目標:
1、知識技能
運用遷移規律,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、過程方法
讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。
3、情感態度價值觀
通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。
教學重點:
圓柱體體積的計算公式的推導過程及其應用。
教學難點:
理解圓柱體體積公式的推導過程。
教學準備:圓柱體積公式推導演示學具、多媒體課件。
教學過程:
一、復習導入
同學們,我們的圖形世界十分豐富,回憶一下,什么叫做物體的體積?我們已經學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體
的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
二、圖柱轉化,自主探究,驗證猜想。
(一)猜想。
1、大家看圓柱的底面是一個圓形,在學習圓面積計算時,我們是把圓轉化成哪種圖形來計算的?(演示課件:圓轉化成長方形,推導圓面積公式的過程。)
[數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。教師由復習圓面積公式的推導過程入手,實現知識的遷移。]
2、引發思考:我們能否把圓柱體也轉化成學過的'立體圖形來計算它的體積呢?如果能,猜一猜能轉化成哪種立體圖形?揭示課題:圓柱的體積。
(二)操作驗證。
1、請學生拿出圓柱體的演示學具,以小組為單位,聯想圓形面積的轉化方式,合作探究將圓柱轉化為長方體的方法。
在操作時,學生分組邊操作邊討論以下問題:
①拼成的近似長方體的體積與原來的圓柱體積有什么關系?
②拼成的近似長方體的底面積與原來圓柱的底面積有什么關系?
?.拼成的近似長方體的高與原來的圓柱的高有什么關系?
2、小組代表匯報
(學生按照自己的方式來轉化,會有多種轉化方法,教師適時加以鼓勵)
3、電腦演示操作
(1)電腦演示圓柱體轉化成長方體的過程:
仔細觀察:圓柱體轉化成一個長方體后,長方體的長相當于圓柱的什么?長方體的寬和高又相當于圓柱的什么?
動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?
(分的分數越多,拼成的圖形就越接近長方體)
(2)根據學生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
(3)你的猜想正確嗎?學生齊讀圓柱的體積計算公式。
三、練習鞏固,靈活應用
闖關1.一根圓柱形鋼材,底面積是75平方厘米,長是90厘米。它的體積是多少?
讓學生試做,集體反饋。
闖關2.想一想:如果已知圓柱底面的半徑(r)和高(h),圓柱的體積的計算公式是什么?如果已知圓柱底面的直徑(d)和高(h)呢?如果已知圓柱的底面周長(C)和高(h)呢?
學生討論、交流、匯報。
小結:解決以上問題的關鍵是先求出什么?(生:底面積)
闖關3.下面這個杯子能不能裝下這袋奶?(杯子的數據是從里面測量得到的。)學生在練習本上獨立完成,集體反饋。
四、課堂小結
學習本節課你有哪些收獲?還有哪些疑惑?(生匯報收獲)
五、布置作業
教科書第21頁練習三第1-4題。
板書設計:
圓柱的體積
長方體的體積=底面積×高
圓柱的體積=底面積×高
V= Sh
六年級數學下冊教案4
課前準備
教師準備 PPT課件
教學過程
⊙談話導入
師:看下面的字母,你知道它們分別是什么意思嗎?
SOS EMS m2
(SOS:求助信號;EMS:中國郵政快遞;m2:平方米)
字母在生活中隨處可見,這說明它很重要。今天我們就來進一步鞏固用字母表示數及解方程等知識。(板書課題:用字母表示數、解方程)
⊙回顧與整理
1.用字母表示數。
(1)用字母表示數的作用和意義。
用字母可以簡明地表示數、數量關系、運算定律和計算公式,為研究和解決問題帶來了很多方便。
(2)我們曾經學過哪些用字母表示數的.知識?
整理:
①用字母表示數的簡寫。
②用字母表示數量關系。
③用字母表示運算定律。
④用字母表示計算公式。
(3)常見的用字母表示的數量關系有哪些?
預設
生1:路程用s表示,速度用v表示,時間用t表示,三者之間的關系如下:
s=vt v= t=
生2:總價用a表示,單價用b表示,數量用c表示,三者之間的關系如下:
a=bc b= c=
(4)常用的運算定律有哪些?
預設
生1:加法交換律:a+b=b+a
生2:加法結合律:(a+b)+c=a+(b+c)
生3:乘法交換律:a×b=b×a
生4:乘法結合律:a×b×c=a×(b×c)
生5:乘法分配律:a×(b+c)=a×b+a×c
(5)常見的用字母表示的計算公式有哪些?
預設
生1:長方形的長用a表示,寬用b表示,周長用C表示,面積用S表示。
C=2(a+b) S=ab
生2:正方形的邊長用a表示,周長用C表示,面積用S表示。
C=4a S=a2
生3:平行四邊形的底用a表示,高用h表示,面積用S表示。
S=ah
生4:三角形的底用a表示,高用h表示,面積用S表示。
S=
六年級數學下冊教案5
第一單元:認識負數
教學內容:
1、認識負數:教材第1—6頁例1—例4以及練習一
2、實踐活動:面積是多少第10—11頁
教學目標:
1、讓學生在熟悉的生活情境中初步認識負數,知道負數和正數的讀、寫方法,知道0既不是正數也不是負數,正數都大于0,負數都小于0。
2、讓學生初步學會用負數表示日常生活中的簡單問題,體會數學與日常生活中的簡單聯系。
3、通過學生的實踐操作,讓學生初步體會化難為易、化繁為簡的解決問題的策略,為后面學習多邊形面積的計算做些準備。
教學重點:正數、負數的意義
教學難點:理解0既不是正數也不是負數
課時安排:3課時
(1)認識負數的意義
教學內容:p.1、2,完成第3頁的練一練和練習一的第1~5題
教學目標:
1、在現實情境中了解負數產生的背景,理解正負數及零的意義,掌握正負數表達方法。
2、能用正負數描述現實生活中的現象,如溫度、收支、海拔高度等具有相反意義的量。
3、體驗數學與日常生活密切相關,激發學生對數學的興趣。
教學重點:在現實情境中理解正負數及零的意義。
教學難點:用正負數描述生活中的現象。
教學準備:溫度計掛圖等
教學過程:
一、談話導入:
通過復習,你知道這節課要學什么么?(板書:負數)
說我們以前認識過哪些數?(自然數、小數、分數)
分別舉例。指出:最常見的是自然數,小數有個特殊的標記“小數點”,分數有個特殊標記是“分數線”,你知道負數有什么特殊標記么?(負號,類似于減法)
二、學習例1:
1、你知道今天的最高溫度么?你能在溫度計上找到這個溫度么?
介紹溫度計:(1)℃、℉,我們中國人用攝氏度為單位,即℃;℉是華士度,是歐美國家用的`。(2)以0為界,0上面的溫度表示零上,0下面的溫度表示零下。(3)刻度。要注意一大格、一小格分別表示多少度?
在溫度計上找到表示35℃的刻度。
你知道什么時候是0℃嗎?(水和冰的混合物)
你知道太倉一年中的最低溫度么?(零下5度左右)你能在溫度計上找到它嗎?
分別寫出這三個溫度:0℃,為了強調這個溫度在零上,35℃還可以寫成+35℃,而這個零下5度,應該寫成—5℃。
讀一讀:正35,負5
分別說說在這3個不同的溫度你的感受。
2、完成試一試:
寫出下面溫度計上顯示的氣溫各是多少攝氏度,并讀一讀。
對零下幾度,可能學生會不能正確地看,注意指導。
3、完成第3頁第2題的看圖寫一寫,再讀一讀。
簡單介紹有關赤道、北極、南極的知識。
4、完成第6頁第4題:
先指名說說這三條魚分別所處的地方,再選擇合適的溫度。也可選擇幾個讓學生說說選擇的理由。
5、讀第7頁第5題。,讓學生說說體會。
6、完成第6題,分別在溫度計上表示4個季節的溫度。加強指導與檢查。
三、學習例2:
1、出示例2圖片,介紹“海平面”“海拔”的基本知識。
讓學生指一指珠穆朗瑪峰的高度是從哪里到哪里。補充:最新的測量,這個數據有所變化,有興趣的同學可以查一查。
再指一指吐魯番盆地的海拔。
指出:這兩個地方,一個是高于海平面的,可以用“+8848米”來表示,另一個是低于海平面的,可以用“-155米”表示。
用你自己的理解來說說這樣記錄有什么好處?
2、完成第6頁第1題:用正數或負數表示下面的海拔高度。
讀一讀第2題的海拔高度,它們是高于海平面還是低于海平面。
三、認識正負數的意義:
1、像溫度在零上和零下或是海拔是高于和低于海平面可以用正數和負數來表示。黑板上這些數,哪些是正數?哪些是負數?
你能用自己的話來說說怎樣的數是正數?怎樣的數是負數?
0呢?為什么?
2、完成第3頁第1題,先讀一讀,再把這些數填入相應的圈內。
3、完成第6頁第3題:分別寫出5個正數和5個負數。
四、全課小結:(略)
六年級數學下冊教案6
一、學習目標
(一)學習內容
《義務教育教科書數學》(人教版)六年級下冊第五單元第68~69頁的例1、2。“抽屜原理”是一類較為抽象和艱澀的數學問題,對全體學生而言具有一定的挑戰性。為此,教材選擇了一些常見的、熟悉的事物作為學習內容,經歷將具體問題“數學化”的過程。
(二)核心能力
經歷將具體問題“數學化”的過程,初步形成模型思想,發展抽象能力、推理能力和應用能力。
(三)學習目標
1.理解“鴿巢原理”的基本形式,并能初步運用“鴿巢原理”解決相關的實際問題或解釋相關的現象。
2.通過操作、觀察、比較、說理等數學活動,經歷鴿巢原理的形成活動,初步形成模型思想,發展抽象能力、推理能力和應用能力。
(四)學習重點
了解簡單的鴿巢問題,理解“總有”和“至少”的含義。
(五)學習難點
運用“鴿巢原理”解決相關的實際問題或解釋相關的現象。
(六)配套資源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
(一)課堂設計
1.談話導入
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請一位同學任意抽5張,不要讓我看到你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個學生再次證明。
師:看來我兩次都猜對了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學習完這節課以后大家就知道了。
2.問題探究
(1)呈現問題,引出探究
出示例1:小明說“把4支鉛筆放進3個筆筒里。不管怎么放,總有一個筆筒里至少放進2支鉛筆”,他說得對嗎?請說明理由。
師:“總有”是什么意思?“至少”有2支是什么意思?
學生自由發言。
預設:一定有
不少于兩只,可能是2支,也可能是多于2支。
就是不能少于2支。
(2)體驗探究,建立模型
師:好的,看來大家已經理解題目的意思了。那么把4支鉛筆放進3個筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請大家擺擺看,看有什么發現?
小組活動:學生思考,擺放。
①枚舉法
師:大部分同學都擺完了,誰能說說你們是怎么擺的。能不能邊擺邊給大家說。
預設1:可以在第一個筆筒里放4支鉛筆,其它兩個空著。
師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個筆筒里嗎?
(不一定,也可能放在其它筆筒里。)
師:對,也可以記作(0,4,0)或者(0,0,4),但是,不管放在哪個筆筒里,總有一個筆筒里放進4支鉛筆。還可以怎么放?
預設2:第一個筆筒里放3支鉛筆,第二個筆筒里放1支,第三個筆筒空著。
師:這種放法可以記作(3,1,0)
師:這3支鉛筆一定要放在第一個筆筒里嗎?
(不一定)
師:但是不管怎么放——總有一個筆筒里放進3支鉛筆。
預設3:還可以在第一個筆筒里放2支,第二個筆筒里也放2支,第三個筆筒空著,記作(2,2,0)。
師:這2支鉛筆一定要放在第一個和第二個筆筒里嗎?還可以怎么記?
預設:也可能放在第三個筆筒里,可以記作(2,0,2)、(0,2,2)。
預設4:還可以(2,1,1)
或者(1,1,2)、(1,2,1)
師:還有其它的放法嗎?
(沒有了)
師:在這幾種不同的放法中,裝得最多的那個筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒有)
師:這幾種放法如果用一句話概括可以怎樣說?
(裝得最多的'筆筒里至少裝2支。)
師:裝得最多的那個筆筒一定是第一個筆筒嗎?
(不一定,哪個筆筒都有可能。)
【設計意圖:在理解題目要求的基礎上,通過操作活動,用畫圖和數的分解來表示上述問題的結果,更直觀。再通過對“總有”“至少”的意思的單獨說明,讓學生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話。】
②假設法
師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進了幾支鉛筆。怎樣能使這個放得最多的筆筒里盡可能的少放?
預設:先把鉛筆平均放,然后剩下的再放進其中一個筆筒里。
師:“平均放”是什么意思?
預設:先在每個筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進一個筆筒里。
師:為什么要先平均分?
學生自由發言。
引導小結:因為這樣分,只分一次就能確定總有一個筆筒至少有幾支筆了。
師:好!先平均分,每個筆筒中放1支,余下1支,不管放在哪個筆筒里,一定會出現總有一個筆筒里至少有2支鉛筆。
師:這種思考方法其實是從最不利的情況來考慮,先平均分,每個筆筒里都放一支,就可以使放得較多的這個筆筒里的鉛筆盡可能的少。這樣,就能很快得出不管怎么放,總有一個筆筒里至少放進2支鉛筆。我們可以用算式把這種想法表示出來。
【設計意圖:讓學生自己通過觀察比較得出“平均分”的方法,將解題經驗上升為理論水平,進一步強化方法、理清思路。】
(3)提升思維,建立模型
①加深感悟
師:如果把5支筆放進4個筆筒里呢?大家討論討論。
預設:5支鉛筆放在4個筆筒里,先平均分,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:把7支筆放進6個筆筒里呢?還用擺嗎?
學生自由發言。
師:把10支筆放進9個筆筒里呢?把100支筆放進99個筆筒里呢?
師:你發現了什么?
預設:我發現鉛筆的支數比筆筒數多1,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:你的發現和他一樣嗎?
學生自由發言。
師:你們太了不起了!
師:難道這個規律只有在鉛筆的支數比筆筒數多1的情況下才成立嗎?你認為還有什么情況?
練一練:
師:我們來看這道題“5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子,為什么?”
師:說說你的想法。
師:由此看來,只要分的物體比抽屜的數量多,就總有一個抽屜里至少放進2個物體。這就是最簡單的鴿巢原理。【板書課題】
介紹狄利克雷:
師:鴿巢原理最先是由19世紀的德國數學家狄利克雷提出來應用于解決問題的,后來人們為了紀念他從這么平凡的事情中發現的規律,就把這個規律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。
②建立模型
出示例2:一位同學學完了“鴿巢原理”后說:把7本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有3本書。他說得對嗎?
學生獨立思考、討論后匯報:
師:怎樣用算式表示我們的想法呢?生答,板書如下。
7÷3=2本……1本(2+1=3)
師:如果有10本書會怎么樣能?會用算式表示嗎?寫下來。
出示:
把10本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
10÷3=3本……1本(3+1=4)
師:觀察板書你有什么發現?
預設:我發現“總有一個抽屜里至少有2本”,只要用“商+1”就可以得到。
師:那如果把8本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?請大家算一算。
學生討論,匯報:
8÷3=2……22+1=3
8÷3=2……22+2=4
師:到底是“商+1”還是“商+余數”呢?誰的結論對呢?在小組里進行研究、討論。
師:認真觀察,你認為“抽屜里至少有幾本書”或“鴿籠里至少有幾只鴿子”可能與什么有關?
預設:我認為根“商”有關,只要用“商+1”就可以得到。
師:我們一起來看看是不是這樣(引導學生再觀察幾個算式)啊!果然是只要用“商+1”就可以了。
引導總結:我們把要分的物體數量看做a,抽屜的個數看做n,如果滿足【a÷n=b……c(c≠0)】,那么不管怎樣放,總有一個抽屜里至少放(b+1)本書。這就是抽屜原理的一般形式。
鴿巢原理可以廣泛地運用于生活中,來解決一些簡單的實際問題。解決這類問題時要注意把誰看做“抽屜”。
【設計意圖:借助直觀操作和假設法,將問題轉化為“有余數的除法”的形式。可以使學生更好地理解“抽屜原理”的一般思路,經歷將具體問題“數學化”的過程,初步形成模型思想,發展抽象能力、推理能力和應用能力。考查目標1、2】
3.鞏固練習
(1)學習了“鴿巢原理”,我們再回到課前的“撲克牌”游戲,你現在能解釋一下嗎?(出示課件)學生思考,討論。
(2)第69頁的做一做第1、2題。
4.全課總結
師:通過這節的學習,你有什么收獲?
小結:今天這節課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問題關鍵就是找準物體和抽屜,在一些復雜的題中,還需要我們去制造抽屜。
(三)課時作業
1.一個小組共有13名同學,其中至少有幾名同學同一個月出生?
答案:2名。
解析:把1—12月看作是12個抽屜,13÷12=1…11+1=2【考查目標1、2】
2.希望小學籃球興趣小組的同學中,最大的12歲,最小的6歲,最少從中挑選幾名學生,就一定能找到兩個學生年齡相同。
答案:8名。
解析:從6歲到12歲一共有7個年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標1、2】
第二課時鴿巢原理
中原區汝河新區小學師芳
一、學習目標
(一)學習內容
《義務教育教科書數學》(人教版)六年級下冊教材第70頁例3。本例是“鴿巢原理”的具體應用,也是運用“鴿巢原理”進行逆向思維的一個典型例子。要解決這個問題,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”,這樣就把“摸球問題”轉化為“抽屜問題”。
(二)核心能力
在理解鴿巢原理的基礎上,利用轉化的思想,把新知轉化為鴿巢問題,提高分析和推理的能力。
(三)學習目標
1.進一步理解“抽屜原理”,運用“抽屜原理”進行逆向思維,解決實際問題,體會轉化思想。
2.經歷運用“抽屜原理”解決問題的過程,體驗觀察猜想,實踐操作的學習方法,提高分析和推理的能力。
(四)學習重點
引導學生把具體問題轉化為“抽屜原理”。
(五)學習難點
找出“抽屜”有幾個,再應用“抽屜原理”進行反向推理。
(六)配套資源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
(一)課堂設計
1.情境導入
師:同學們,你們喜歡魔術嗎?今天老師給你們表演一個怎么樣?看,這是一副撲克牌,去掉兩張王牌,還剩下52張,請同學們任意挑出5張。(讓5名學生抽牌)好,見證奇跡的時刻到了!你們手里的牌至少有2張是同花色的。
師:神奇吧!你們想不想表演一個呢?
師:現在老師這里還是剛才這副牌,請你抽牌,至少抽多少張牌才能保證至少有2張牌的點數相同呢?
在學生抽的基礎上揭示課題。教師:這節課我們學習利用“鴿巢原理”解決生活中的實際問題。(板書課題:鴿巢原理)
2.探究新知
(1)學習例3
①猜想
出示例3:盒子里有同樣大小的紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?
預設:2個、3個、5個…
②驗證
師:我們的猜想是不是正確呢?我們可以用畫一畫、寫一寫的方法來說明理由,并把驗證的過程進行整理。
可以用表格進行整理,課件出示空白表格:
學生獨立思考填表,小組交流。
全班匯報。
匯報時,指名按猜測的不同情況逐一驗證,說明理由,看看解決這個問題是否有規律可循。
課件匯總,思考:從這里你能發現什么?
教師:通過驗證,說說你們得出什么結論。
小結:盒子里有同樣大小的紅球和藍球各4個。想要摸出的球一定有2個同色的,最少要摸3個球。
③小結
師:為什么球的個數一定要比抽屜數多?而且是多1呢?
預設:球有兩種顏色,就是兩個抽屜,從最不利的情況考慮摸2個球都不同色,就必須多摸一個,所以球一定要比抽屜數多1。其實摸4個球、5個球或者更多球,都能保證一定有2個球同色,但問題中要求摸的球數必須“至少”,所以摸3個球就夠了。
師:說得好!運用學過的知識、逆推的方法說明了“只要摸出的球比球的顏色種數至少多1,就能保證有2個球同色”。這一結論是正確的。
板書:只要摸出的球比球的顏色種數至少多1,就能保證有2個球同色。或者說只要物體數比抽屜數至少多1,就能保證有一個抽屜至少放2個物體。
(2)引導學生把具體問題轉化成“抽屜原理”。
師:生活中像這樣的例子很多,我們不能總是猜測或動手試驗,能不能把這道題與前面講的“抽屜原理”聯系起來思考呢?
思考:①摸球問題與“抽屜原理”有怎樣的聯系?
②應該把什么看成“抽屜”?有幾個“抽屜”?要分別放的東西是什么?
學生討論,匯報結果,教師講評:因為有紅、藍兩種顏色的球,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”。這樣把“摸球問題”轉化成“抽屜問題”,即“只要分的物體比抽屜多1,就能保證有一個抽屜至少有2個同色球”。
從最特殊的情況想起,假設兩種顏色的球各拿了1個,也就是在兩個抽屜里各拿了1個球,不管從哪個抽屜里再拿1個球,都有2個球是同色的。假設至少摸a個球,即a÷2=1……b,當b=1時,a就最小。所以一次至少應拿出1×2+1=3個球,就能保證有2個球同色。
結論:要保證摸出的球有兩個同色,摸出的球數至少要比抽屜數多1。
3.鞏固練習
(1)完成教材第70頁“做一做”第1題。
(2)完成教材第70頁“做一做”第2題。
4.課堂總結
師:這節課你學到了什么知識?談談你的收獲和體驗。
(三)課時作業
1.有黑色、白色、藍色、紅色手套各10只(不分左、右手),至少要拿出多少只(拿的時候不看顏色),才能在拿出的手套中,一定有兩只不同顏色的手套?
答案:5只。
解析:4個顏色相當于4個抽屜,保證一定有兩只不同的顏色,相當于分的物體個數比抽屜多1。【考查目標1、2】
2.一個魚缸里有很多條魚,共有5個品種。至少撈出多少條魚,才能保證有4條魚的品種相同?
答案:16條。
解析:5個品種相當于5個抽屜,保證有4條魚品種相同,所放物品的個數是:5×3+1=16。【考查目標1、2】
六年級數學下冊教案7
(一)教學要求:
1.使學生初步認識扇形統計圖,知道扇形統計圖的意義和用途。
2.通過觀察分析,使學生學會看扇形統計圖,并掌握它的特點。
3.激發學生求知欲,調動學生學習數學的積極性。
教學重點:扇形統計圖的特點及繪制步驟。
教學難點:繪制扇形統計圖時表示各部分數量的扇形的圓心角的度數。教學過程:
一、回顧舊知,復習鋪墊
1.什么叫圓心角?
2.求一個數是另一個數的百分之幾用什么方法計算?
3.求一個數的百分之幾是多少用什么方法計算?
4.條形統計圖的特點有哪些?折線統計圖的特點是什么?
5.畫一個半徑為3厘米的圓形。
二、引導探索,學習新知
1.揭示課題。
今天我們學習扇形統計圖。
2.介紹扇形統計圖的特點。
(1)出示P106圖,觀察主題圖和條形統計圖。
你從中得到了哪些有用的信息?
(2)還有哪些信息從條形統計圖中不容易表示出來?
(3)生成扇形統計圖,引導學生觀察從扇形統計圖中,你得到了哪些有用的數學信息?
(4)扇形統計圖用整個圓表示什么?用圓內各個扇形的大小表示什么?
(5)扇形統計圖的特點是什么?
扇形統計圖可以很清楚地表示出各部分數量同總數之間的'關系。
3.教學扇形統計圖的繪制步驟和方法。
(1)根據上圖,分析各部分占總數的百分數與各扇形圓心角大小的關系。
(2)制作扇形統計圖。
(3)引導學生歸納繪制扇形統計圖的一般步驟。
A.先求出喜歡各種運動項目的人數占總人數的百分之幾。
B.再算出表示各部分數量的扇形的圓心角的度數。
C.按照紙的大小用圓規畫一個合適的圓表示總數。
D.根據圓心角的度數畫出各個扇形。
E.在各個扇形內寫上相應的名稱和百分數。
三、鞏固深化,拓展思維
四、分課小結,提高認識
扇形統計圖的特點是什么?
五、課堂練習,輔助消化
練習二十五第3題、
六年級數學下冊教案8
教學目標
1:能正確判斷問題中數量之間的比例關系。
2:正確利用比例知識解決問題。
3:通過策略多樣化的訓練,培養學生的發散性思維。
教學重難點
教學重點:能用正、反比例知識解決實際問題。
教學難點:正確分析題中的比例關系,列出方程。
教學工具
課件
教學過程
一、復習鋪墊,引入新課。
師:同學們,我們先來回憶一下有關正、反比例的知識。
師:判斷下面每題中的兩種量成什么比例?(課件出示)
(1)速度一定,路程和時間. (2)路程一定,速度和時間. (3)單價一定,總價和數量. (4)每小時耕地的公頃數一定, 耕地的總公頃數和時間. ( 5)全校學生做操,每行站的人數和站的行數. 【設計意圖】 通過比較和判斷,讓學生加深對正比例、反比例意義的理解,使學生體會到數學在生活中的運用,同時為新知的學習做好準備。
師:(對于學生回答教師給予肯定)看樣子同學們掌握的很不錯,前面我們學習了比例、正比例、反比例的意義,還學習了解比例。這節課我們就應用比例的知識解決生活中的一些實際問題。板書課題《用比例解決問題》。
二、探究新知
1:(一)用正比例的知識解決問題(探究例5)
過渡語:看,李大媽和張奶奶在討論什么問題,想不想去看看!(出示情境圖)
師:這幅圖中你能知道哪些信息?你能不能運用學過的方法來幫李奶奶解決這個問題?
學生自己解答,然后交流解答方法。
2:師:像這樣的問題也可以用比例的知識來解決。
出示自學提綱。
(1)題目中有幾個量。
(2) 誰和誰成什么比例關系?你是怎么判斷的?
(3 )哪個量是固定不變的。
(4) 根據比例關系,列出等式。
3:學生交流自學結果,相互補充,呈現一個完整的解答過程。
師:誰來說說你是怎樣用比例知識來解決問題的?
根據上面三個問題,概括:因為水價一定,所以水費和用水的噸數成正比例。也就是說,兩家的水費和用水的噸數的比值是相等的。引導生說出等量關系:水費∶噸數=水費∶噸數,然后嘗試解答。
4、師:這個問題我們用比例的.知識解決了,你有什么方法檢驗自己的解答是正確的呢?(啟發學生自主選擇檢驗方法。如:將結果代入原題、運用比例的基本性質、用算術方法。
5即時練習
過渡語:同學們幫助李奶奶解決問題,我們一起去看看王大爺家又發生了什么事情呢?
出示對話情景。
師:觀察幫助要王大爺的問題和幫助李奶奶的事對比,你有什么發現?
在學生的交流中逐步認識到這道題與例5相比,條件和問題改變了,但題目中水費和用水的噸數的正比例關系沒變。
小結:用正比例解決問題的關鍵是找到不變量,只要兩個量的比值一定,就可以用正比例關系解答。
(二)用反比例的知識解決問題(學習P62例6)
師:解決了生活中水的問題,下面我們一起看看生活的電中蘊含著什么數學問題。
1課件出示情境圖,了解題目條件與問題。
生:獨立解決,并在小組交流解題思路和計算方法。
學生匯報解題思路。
過渡語:像這樣的問題也能用比例的方法解決。請同學們仿照正比例的解題方法,并參照課本62頁的內容,自學例6.
生:交流匯報解題思路。
師:誰來和大家分享一下你們的結果。
師:(教師手指25x=100×5,x=20。)為什么這樣列式?根據是什么?
生匯報:因為總的用電量一定,所以用電天數和每天的用電量成反比例.也就是說,每天的用電量和天數的乘積相等。
2.即時練習
課件出示:現在30天的用電量原來只夠用多少天?
師:會解決嗎?
生:獨立解決,交流訂正。
小結:解決這個問題的關鍵是找到哪兩個量的乘積一定。只要兩個量的乘積一定,就可以用反比例關系來解答。 3:總結用比例解決問題的幾個步驟:
(1) 梳理相關聯的兩種量。
(2) 判斷相關聯的兩種量成什么比例。
(3) 解比例。
(4) 用自己熟練的方法來檢驗。
三:鞏固練習
1:小明買4支圓珠筆用6元。小剛想買3支同樣的圓珠筆,要用多少錢?(要求用比例知識解)
學生自己獨立解決問題并說說原因。
學情預設:小明買的是同一種圓珠筆,所以圓珠筆的單價不變。那么買的支數和所用的錢數成正比例關系,所以用正比例關系能解決這個問題。
2:學校小商店有兩種圓珠筆。小明帶的錢剛好可以買4支單價是1.5元的,如果他只買單價是2元的,可以買多少支。
第2題,用反比例關系可以解決這個問題。
設計意圖:再次讓學生感受用比例的知識解決問題的方法,豐富解決問題的思路。
四:課堂小結
通過這節課的學習,你有哪些收獲?談談你的感受。
板書
用比例解決問題
解:設李奶奶家上個月的水費是x元。 解:設原來5天的用電量現在可以用x天。
X:10=28:8 25x=100×5
8x=28×10 x=500÷25
X=35 x=20
答:李奶奶家上個月的水費是35元。 答:原來5天的用電量現在可以用20天
六年級數學下冊教案9
教學目標
1、通過切割圓柱體,拼成近似的長方體,從而推導出圓柱的體積公式這一教學過程,向學生滲透轉化思想。
2、通過圓柱體體積公式的推導,培養學生的分析推理能力。
3、理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。
教學重難點
圓柱體體積的計算
教學過程
(一)創設情境,激趣引入。
師:同學們,周末老師去超市買飲料,看到同一品牌兩種包裝的飲料售價都是3.5元,你能幫老師挑選出哪一種飲料含量最多嗎?
出示:兩種圓柱體飲料。
師:對,它們的粗細、長短都不同,要知道它們的體積才行。
(二)探索嘗試,解釋交流。
師:怎樣求圓柱的體積呢?
師:首先想一想,在學習計算圓的面積時,我們是怎樣把圓變成已學過的圖形來計算面積的?
(出示:圓面積推導過程)
1、師:通過剛才的回顧,你們能想辦法將圓柱轉化成我們已經學過的立體圖形來求體積嗎?(學生:把圓柱切開,拼成長方體)
師:你的想法很好,怎樣轉化呢?
2、師:請小組內想一下,把怎么把圓柱轉化為近似的長方體?并研究轉化后的長方體和圓柱體積、底面積、高之間的關系?
3、師:哪個小組愿意展示一下你們小組的研究結果?
師:同學們真了不起!你們的發現非常正確。我們來看一看演示。
(演示將圓柱的割拼過程)
師:其實大家剛才又采用了“化圓為方”的方法將圓柱轉化成了長方體。
你現在能總結出圓柱體積的.計算公式嗎?說一說你是怎樣想的?
根據學生的回答師板書:
長方體的體積=底面積×高
圓柱的體積=底面積×高
師:如果用V表示體積,用S表示圓柱的底面積,用h表示高。你能用字母表示圓柱的體積公式嗎?
4、師:剛才我們共同研究出了求圓柱的體積的計算公式,你能根據公式計算兩瓶飲料的體積嗎?(師給出有關數據,由學生計算。)
(三)課堂練習。
1、計算下面圓柱體積。
2、用數學
(1)一根圓柱形柱子,底面半徑是0.4米,高是5米。它的體積是多少?
(2)從水杯里面量,水杯的底面積直徑是6厘米,高是16厘米,這個水杯能容多少毫升水?
(3)金箍棒底面周長是12.56厘米,長是200厘米。這根金箍棒的體積是多少立方厘米?如果這根金箍棒是鐵制的,每立方厘米鐵的質量是7.9g,這根金箍棒的質量是多少千克?
總結
談談這節課的收獲?
六年級數學下冊教案10
【教學目標】
A類:1、進一步感受對稱、平移、旋轉、放大與縮小在現實生活中的廣泛應用。
2、掌握對稱、平移、旋轉、放大與縮小等圖形變換的特征。
B類:1、學會運用對稱、平移、旋轉、放大與縮小的特征進行圖形的變換.
2、在豐富的現實情境中,經歷觀察、操作、欣賞、分析、想象、創作等數學活動過程,進一步發展學生的空間觀念。
C類:1、通過欣賞圖形變換所創造出的美,感受幾何圖體蘊藏的美,產生創造美的欲望。
2、培養學生對數學學科的興趣與情感,體會數學的文化價值,感受數學的`美。
3、在活動中培養學生合作、探討、交流、反思的意識。
【教學重點】
進一步掌握對稱、平移、旋轉、放大與縮小的特征。
【教學難點】
綜合運用對稱、平移、旋轉、放大與縮小的特征進行圖形的變換,進一步發展學生空間觀念。
【預習作業】
1、預習78頁,回憶思考圖形變換的方式有哪些?各有什么特征?生活中有哪些應用。完成表格
2、回顧與交流的第2題
3、78頁鞏固應用的第2題
【教學過程】
第一板塊:創設情境,談話引入。(A1/3分鐘)
師:在生活中大家一定見過很多優美生動、栩栩如生的圖案,這些美麗的圖案看上去很神秘,復雜。如果你仔細的觀察,你會驚喜的發現其實他們的組成也有一定的規律,你知道它們其中的奧秘嗎?(都是由一個或幾個圖形變換所得到的這節課我們就一起再去學習了解它。揭題:圖形與變換
現在請大家欣賞這些漂亮的圖案,第二板塊:、自主探索,整理概括。(A2、B1、B2、C2/17分鐘)
師:在這些漂亮的圖案中,你知道哪些圖形變換的信息?誰能給大家說一說。
教師根據學生回答板書:軸對稱、平移、旋轉、放大與縮小
交流預習作業1.
1、小組交流:
1)他們各自的特征是什么呢?
2)在生活中有哪些應用(同桌互相交流,教師巡視,適當參與學生活動)
交流預習作業2
[第三板塊:綜合運用,拓展思維。(B1、C1、C2、/15分鐘)
師:
1、請打開預習作業3
2、利用所學知識動手完成下列各題。
3、說出下列各題的變換過程
四,全課總結回顧。欣賞優美圖案(C2、C3/5分鐘)
今天我們用40分鐘的時間復習了圖形與變換,回顧整節課,什么地方讓你印象最深刻呢?
師:生活中有很多的圖案都是經過變換所得到的,只要同學們有一雙善于觀察的眼睛和勤于思考的大腦,會有更多美麗的圖案等著我們去發現去創造。最后希望同學們能夠學好數學,用知識去美化、點綴我們的生活,讓我們的生活更加多姿多彩。
五:課后作業——設計優美圖案。
圖形與變換
軸對稱:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。這條直線就是對稱軸。
平移:方向與距離
旋轉:旋轉中心,方向和角度
六年級數學下冊教案11
教學目標
1.使學生掌握分析分數應用題的方法,會分析關系句,找準單位1。
2.使學生弄清題中的數量關系,掌握解題思路,正確列式解答。
3.培養學生分析、解決問題的能力,以及知識遷移的能力。
4.培養學生良好的審題習慣。
教學重點和難點
1.會分析數量關系,掌握解題思路,正確解答。
2.找準單位1;根據問題需要的條件,把間接條件轉化為直接條件。
教學過程
導語:前邊我們已經學過了簡單的分數應用題,今天繼續學習分數應用題。(板書課題:分數乘法應用題)
(一)復習鋪墊
1.說圖意填空。(投影)
問:誰是單位1?
2.說圖意回答問題。(投影)
問:①誰和誰比,誰是單位1?
3.準備題:
(做在練習本上,畫圖列式計算,一個學生到黑板板演。)
教師訂正講評。
提問:①誰是單位1?
③要求用去多少噸就是求什么?
少。)
④根據什么用乘法計算?
(根據分數乘法的意義,求一個數的幾分之幾是多少用乘法計算。)
師:如果把問改成還剩多少噸應該怎樣計算呢?這就是今天要研究的稍復雜的分數應用題。(在課題板書前加上稍復雜的。)
(二)學習新課
1.學習例4。
(1)讀題找出條件和問題,并問:問題變了,現在?應畫在哪?(在線段圖中把?號移動。)
(2)分析數量關系。(同桌互相說。)
提問:單位1變了嗎?單位1是誰?
請同學們認真觀察線段圖,再根據剛才復習的有關知識討論這道題如何解答,試著做一做。
學生匯報結果,讓學生說解題思路,老師一邊把圖補充完整。
=2500-1500
=1000(噸)
答:還剩1000噸。
生:把原有煤的總數看作單位1,先求出用去多少噸,就可以求出還剩多少噸。
師追問:求用去多少噸你是怎么想的?
答:還剩1000噸。
生:把原有煤的總數看作單位1,欲求剩下多少噸,就要先求
(3)引導學生比較:這兩種解法在思路上有什么相同點和不同點?
相同點:兩種解法都是經過兩步計算。
不同點:第一種解法是先求出用去了多少噸,再用總噸數減去用去的噸數,得到的`就是剩下多少噸。
第二種解法是先求出剩下的占總噸數的幾分之幾,再求剩下的是多少噸。
(4)練習做一做(1):
昆蟲標本有多少件?
(做完讓學生說解題思路、投影訂正。)
2.學習例5。
六月份捕魚多少噸?
(1)讀題找出條件、問題。
(2)師生合作畫出線段圖,并分析數量關系。(讓學生說畫圖過程)
問:①誰和誰比,誰是單位1?
(3)列式解答。
師:請同學們認真觀察線段圖,分析數量關系。小組討論如何解答,并考慮可用幾種方法解答。
學生匯報結果。(老師板書列式)
答:六月份捕魚3000噸。
師追問:你是怎么想的?
生:要想求六月份捕魚多少噸,就得先求出六月份比五月份多捕魚多少噸。
師再追問:怎樣求六月份比五月份多捕的噸數?
捕的噸數。
答:六月份捕魚3000噸。
師追問:怎么想的?
生:把五月份的噸數看作單位1,先求出六月份捕的相當于五月份捕的幾分之幾,就可以求出六月份捕魚多少噸。
師問:這兩種解法有什么聯系和區別?
(聯系:兩種解法都利用了分數乘法的意義求已知數的幾分之幾。區別:解題思路不同。)
(4)練習做一做(2)。
答。
(三)鞏固練習
1.補充問題并列式解答。(復合投影片)
________?
2.選擇正確答案的序號填在( )里。
包?列式是
[ ]
[ ]
A.乙隊修了多少米?
B.乙隊比甲隊多修多少米?
C.甲隊比乙隊多修多少米?
D.乙隊比甲隊少修多少米?
(3)根據條件和問題列出算式。
已知一袋大米重40千克。
(四)課堂總結
今天我們學習了較復雜的分數應用題,復雜在哪?解題的關鍵是什么?
(復雜在問題所需要的條件沒有直接給出,解題關鍵必須先把這個條件求出來。)
課堂教學設計說明
(1)在簡單分數應用題的基礎上進行本節課教學,學生已有了一定基礎,因此首先設計三道復習題,為學生學習新知識做好輔墊。尤其從準備題過渡到例4,給學生搭了從舊知識遷移到新知識的橋梁,學生容易接受。同時使學生悟出新知識是在原有知識基礎上發展起來的規律。
(2)老師圍繞重點難點精心設計提問,并充分利用線段圖引導學生分析題中數的關系,抓住解題關鍵,明確解題思路,掌握解題方法。并通過兩次對兩種不同的解法對比及課后小結,進一步突出本節課的重點、難點。
(3)因為學生有了學習簡單分數應用題的基礎,因此老師大膽放手,讓學生同桌或小組討論、分析、試做,做完后讓學生自己說解題思路。學生充分參與了課堂教學過程,成為學習的主人,調動了積極性。同時培養了學生的口頭表達、分析和與人合作的能力。
六年級數學下冊教案12
【教學目標】
1.在熟悉的生活情境中初步認識負數,能正確地讀寫正數和負數,知道0既不是正數也不是負數。
2.初步學會用負數表示一些日常生活中的實際問題。
3.能借助數軸初步理解正數、0和負數之間的關系。
【重點難點】
負數的意義和數軸的意義及畫法。
【教學指導】
1.通過豐富多彩的生活情境,加深學生對負數的認識。
負數的出現,是生活中表示兩種相反意義的量的需要。教學時,教師應通過豐富多彩的生活實例,特別是學生感興趣的一些素材來喚起學生已有的生活經驗,激發學生的學習興趣,在具體情境中感受出現負數的必要性,并通過兩種相反意義的量的對比,初步建立負數的概念。在引入負數以后,教師要鼓勵學生舉出生活中用正負數表示兩種相反意義的量的實際例子,培養學生用數學的眼光觀察生活,并通過大量的事例加深對負數的認識,感受數學在實際生活中的廣泛應用。
2.把握好教學要求。
對負數的教學要把握好要求,作為中學進一步學習有理數的過渡,小學階段只要求學生初步認識負數,能在具體的情境中理解負數的意義,初步建立負數的概念。這里不出現正負數的數學定義,而是描述什么樣的數是正數,什么樣的數是負數,只要求學生能辨認正負數。關于數軸的認識,這里還沒有出現嚴格的`數學定義,
而是描述性的定
義,只是讓學生借助已有的在直線上表示正數和0的經驗,遷移類推到負數,能在數軸上表示出正數、0和負數所對應的點。
3.培養學生多角度觀察問題,解決問題的能力。
教材創設了開放性的思維空間,在解決問題時應著眼于讓學生自主地理解數學信息、尋找解題思路。教師要有意識地引導學生從不同角度尋找答案,對于學生有道理的闡述,教師要積極鼓勵,激發學生求知的欲望,逐步增強學生學好數學的內驅力。
【課時安排】
建議共分3課時:
負數的初步認識2課時 在數軸上表示正數、0和負數 1課時
【知識結構】
第1課時 負數的初步認識(1)
【教學內容】
負數的初步認識
(1)(教材第2頁例1)。
【教學目標】
結合生活實例,引導學生初步理解正、負數可以表示兩種相反意義的量。
【重點難點】
體會負數的重要性。
【教學準備】
多媒體課件。
【情景導入】
1.教師利用課件向學生展示教材第2頁主題圖。(有條件的可播放天氣預報視頻)
2.引導學生觀察圖片,說出圖中內容。(教師:觀察上圖,你能發現什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)
引出課題并板書:負數的初步認識(1)
【新課講授】
教學教材第2頁例1。
(1)教師板書關鍵數據:0℃。
(2)教師講解0℃的意思。0℃表示淡水開始結冰的溫度。比0℃低的溫度叫零下溫度,通常在數字前加“-”(負號):如-3℃表示零下3攝氏度,讀作負三攝氏度。比0℃高的溫度叫零上溫度,在數字前加“+”(正號),一般情況下可省略不寫:如+3℃表示零上3攝氏度,讀作正三攝氏度,也可以寫成3℃,讀作三攝氏度。
(3
)我們來看一下課本上的圖,你知道北京的氣溫嗎?最高氣
溫和最低氣溫都是多少呢?隨機點同學回答。
(4)剛剛同學回答得很對,讀法也很正確。
(5)了解了北京的氣溫,下面我想請同學告訴我哈爾濱的氣溫,它與上海氣溫比較又怎樣呢?用手勢告訴大家好嗎?
學生討論合作,交流反饋。
(6)請同學們把圖上其它各地的溫度都寫出來,并讀一讀。
(7)教師展示學生不同的表示方法。
(8)小結:通過剛才的學習,我們用“+”和“-”就能準確地表示零上溫度和零下溫度。
【課堂作業】
完成教材第4頁的“做一做”第1題。
組織學生獨立完成,指名回答。
答案:-18℃溫度低。
【課堂小結】
通過這節課的學習,你有什么收獲?
【課后作業】
完成練習冊中本課時的練習。
第1課時 負數的初步認識(1)
0℃
-3℃
3℃(+3℃)
通過溫度的概念,初步學習負數,理解氣溫高低與溫度的關系,是負數學習的第一步。
第2課時 負數的初步認識(2)
【教學內容】
負數的初步認識
(2)(教材第3頁例2)。
【教學目標】
通過呈現存折上的明確數據,讓學生體會負數在生活中的廣泛應用,進一步體會負數的含義。
【重點難點】
體會引入負數的必要性,初步理解負數的含義。
【情景導入】
教師:上一節課我們已經一起學習了氣溫的表示,誰能說一說溫度都是怎樣讀寫的?
組織學生討論回憶上一課內容。
師:很好,大家都很棒。今天我們繼續學習負數知識。
引出課題并板書:負數的初步認識(2)
六年級數學下冊教案13
教學理念
注重學生已有的生活經驗,感受數學來源于生活,運用于生活。教學伊始,先出示情境圖,讓學生觀察生活中的圓錐,并讓學生舉出成活中的圓錐,這樣,讓學生進一步認識圓錐。并通過測量的實踐操作活動,使學生親身感受“做數學”的過程。
教學目標
1、認識圓錐,圓錐的高和側面,掌握圓錐的特征,會看圓錐的平面圖,會正確測量圓錐的`高。
2、通過動手測量圓錐的高,培養學生的動手操作能力和一定的空間想象能力。
教學準備
圓錐形實物、圓錐形教具
教學流程
一、復習
1、圓柱體積的計算公式是什么?
2、圓柱的特征是什么?
二、新課
1、圓錐的認識
(1)實物投影呈現課文情境圖,讓學生觀察這些物體有什么特征。
(2)讓學生拿著圓錐模型觀察和擺弄后,指定幾名學生說出自己觀察的結果,從而使學生認識到圓錐有一個曲面,一個頂點和一個面是圓的,等等。
(3)圓錐有一個頂點,它的底面是一個圓、(在圖上標出頂點,底面及其圓心O)
(4)圓錐有一個曲面,圓錐的這個曲面叫做側面。(在圖上標出側面)
(5)讓學生看著教具,指出:從圓錐的頂點到底面圓心的距離叫做高。(沿著曲面上的線都不是圓錐的高,由于圓錐只有一個頂點,所以圓錐只有一條高)
2、小結
圓錐的特征(可以啟發學生總結),強調底面和高的特點,使學生弄清圓錐的特征是:底面是圓,側面是一個曲面,有一個頂點和一條高.
3、測量圓錐的高
由于圓錐的高在它的內部,我們不能直接量出它的長度,這就需要借助一塊平板來測量。
(1)先把圓錐的底面放平;
(2)用一塊平板水平地放在圓錐的頂點上面;
六年級數學下冊教案14
教學內容:
比較正數和負數的大小。
教學目的:
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
教學重、難點:
負數與負數的比較。
教學過程:
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的`數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
A、從0起往右依次是?從0起往左依次是?你發現什么規律?
B、在數軸上除了可以表示整數外,還可以表示分數和小數。請學生在數軸上分別找到1.5和-1.5對應的點。如果從起點分別到1.5和-1.5處,應如何運動?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“-8在-6的左邊,所以-8〈-6”
5、再通過讓另一學生比較“8〉6,但是-8〈-6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是 攝氏度。
四、全課總結
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握。可如果深入鉆研教材,其實會發現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1.5。建議此處教師補充要求學生表示出“+1.5”的位置,因為這樣便于對比發現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1.5和—1.5絕對值相等。
同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小。”即使有學生在比較—8和—6大小時是用“8>6,所以—8。
六年級數學下冊教案15
教學內容:
北師大版數學六年級下冊2-4頁。
教學目標:
1. 通過觀察面的旋轉的特點,理解圓柱和圓錐的形成與面的旋轉之間的關系。
2. 聯系生活,在生活中辨認圓柱和圓錐體的物體,并能抽象出幾何圖形的形狀來。
3. 通過觀察,初步了解圓柱和圓錐的組成及其特點。
教學重點:
聯系生活,在生活中辨認圓柱和圓錐體的物體,并能抽象出幾何圖形的形狀來。
教學難點:
通過觀察,初步了解圓柱和圓錐的組成及其特點。
教學過程:
活動一:初步認識圓柱和圓錐。
1. 將自行車后輪支架支起,在后輪輻條上系上彩帶。轉動后輪,觀察并思考彩帶隨車輪轉動形成的'圖形是什么?
請學生想象后回答自己的想法。
2. 觀察下圖,你發現了什么?
延伸的鐵路,雨刮器刮過的車窗,旋轉門。
3. 用紙片和小棒做成小旗,快速旋轉小棒,觀察并想象紙片旋轉后所形成的圖形,再連一連。
4. 介紹:圓柱、圓錐、球的名稱。并請學生根據自己的觀察介紹一下這幾個立體圖形的特點。
小結:我們學過的長方體、正方體都是由平面圍成的立體圖形,今天我們學習的圓柱、圓錐和球也是立體圖形,只是與長方體、正方體不同,圍成的圖形上可能有曲面。
5. 找一找:請你找出我們學過的立體圖形。
活動二:進一步認識圓柱和圓錐。
1. 圓柱與圓錐分別有什么特點?
2. 認識圓柱和圓錐各部分的名稱。
圓柱的上下兩個面叫做底面,它們是完全相同的兩個圓。
圓柱有一個曲面,叫做側面。
圓柱兩個底面之間的距離叫做高。
圓錐的底面是一個圓。
圓錐的側面是一個曲面。
從圓錐頂點到底面圓心的距離是圓錐的高。
教師畫出平面圖進行講解。并在圖上標出各部分的名稱。
3. 找一找下面的物體中,哪些部分的形狀是圓柱或圓錐?
4. 找一找還有哪些物體的形狀是圓柱或圓錐?
5. 下面圖形是圓柱或圓錐的在括號里寫出圖形的名稱,并標出底面直徑和高。
6. 想一想,轉動后會形成怎樣的圖形?
7. 看圖算出箱子的長、寬和高。
【六年級數學下冊教案】相關文章:
數學下冊教案03-16
數學六年級下冊教案優秀04-23
蘇教版數學六年級下冊教案01-07
六年級數學下冊教案06-12
六年級數學下冊教案11-23
數學六年級下冊教學教案01-06
六年級下冊人教版教案數學12-23
新人教版六年級數學下冊六年級數學下冊教案05-31
數學六年級下冊圓柱的體積教案08-26
六年級下冊數學教案01-19