1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>六年級數(shù)學教案>六年級下冊數(shù)學教案優(yōu)秀

    六年級下冊數(shù)學教案優(yōu)秀

    時間:2024-06-18 07:11:55 六年級數(shù)學教案 我要投稿
    • 相關推薦

    人教版六年級下冊數(shù)學教案優(yōu)秀

      作為一無名無私奉獻的教育工作者,就有可能用到教案,教案有助于順利而有效地開展教學活動。如何把教案做到重點突出呢?下面是小編整理的人教版六年級下冊數(shù)學教案優(yōu)秀,僅供參考,大家一起來看看吧。

    人教版六年級下冊數(shù)學教案優(yōu)秀

      教學目標:

      1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。

      2、探索并理解直角三角形的三邊之間的數(shù)量關系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。

      重點難點:

      重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

      難點:勾股定理的發(fā)現(xiàn)

      教學過程

      一、創(chuàng)設問題的情境,激發(fā)學生的學習熱情,導入課題

      出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。

      出示投影2(書中的P2圖1—2)并回答:

      1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。

      正方形B中有_______個小方格,即A的面積為______個單位。

      正方形C中有_______個小方格,即A的面積為______個單位。

      2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發(fā)問:

      3、圖1—2中,A,B,C之間的面積之間有什么關系?

      學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A,B,C的關系呢?

      二、做一做

      出示投影3(書中P3圖1—4)提問:

      1、圖1—3中,A,B,C之間有什么關系?

      2、圖1—4中,A,B,C之間有什么關系?

      3、從圖1—1,1—2,1—3,1—4中你發(fā)現(xiàn)什么?

      學生討論、交流形成共識后,教師總結:

      以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

      三、議一議

      1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

      2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關系嗎?

      在同學的交流基礎上,老師板書:

      直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”。

      也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c,那么我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

      3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

      四、想一想

      這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

      五、鞏固練習

      1、錯例辨析:

      △ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應滿足=25

      即:c=5

      辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

      △ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

     。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

      綜上所述這個題目條件不足,第三邊無法求得。

      2、練習P7§1、11

      六、作業(yè)

      課本P7§1、12、3、4

    【六年級下冊數(shù)學教案優(yōu)秀】相關文章:

    六年級下冊數(shù)學教案01-19

    六年級下冊人教版數(shù)學教案11-08

    六年級下冊數(shù)學教案05-06

    六年級下冊數(shù)學教案07-21

    【精選】六年級下冊數(shù)學教案06-15

    小學六年級下冊數(shù)學教案02-13

    【熱門】六年級下冊數(shù)學教案02-15

    【推薦】六年級下冊數(shù)學教案02-11

    人教版六年級下冊數(shù)學教案06-30

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产熟女激情精品视频 | 亚洲第一页A∨在线 | 中文字幕精品一区二区2022年 | 日韩欧美一区二区久久婷婷 | 亚洲午夜高清国产 | 中文字幕在线视频观看进入 |