1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>七年級下冊數學教案

    七年級下冊數學教案

    時間:2024-05-06 12:31:20 數學教案 我要投稿

    七年級下冊數學教案(匯總15篇)

      作為一位兢兢業業的人民教師,時常會需要準備好教案,借助教案可以有效提升自己的教學能力。寫教案需要注意哪些格式呢?以下是小編整理的七年級下冊數學教案,歡迎閱讀,希望大家能夠喜歡。

    七年級下冊數學教案(匯總15篇)

    七年級下冊數學教案1

      教學目標

      1、掌握絕對值的概念,有理數大小比較法則。

      2、學會絕對值的計算,會比較兩個或多個有理數的大小。

      3、體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想。

      教學難點兩個負數大小的比較

      知識重點絕對值的概念

      教學過程(師生活動)設計理念

      設置情境

      引入課題星期天黃老師從學校出發,開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

      學生思考后,教師作如下說明:

      實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離。

      學生回答后,教師說明如下:

      數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|例如,上面的問題中|20|=20|—10|=10顯然|0|=0這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義。為引入絕對值概念做準備。并使學生體

      驗數學知識與生活實際的聯系。因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備。

      合作交流

      探究規律例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規律?

      —3,5,0,+58,0.6

      要求小組討論,合作學習。

      教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則(見教科書第15頁)。

      鞏固練習:教科書第15頁練習。

      其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區別。求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例。學生能做的盡量讓學生完成,教師在教學過程中只是組織者。本著這個理念,設計這個討論。結合實際發現新知引導學生看教科書第16頁的圖,并回答相關問題:把14個氣溫從低到高排列;把這14個數用數軸上的點表示出來;觀察并思考:觀察這些點在數軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數可以比較大小嗎?應怎樣比較兩個數的大小呢?

      學生交流后,教師總結:

      14個數從左到右的順序就是溫度從低到高的順序:

      在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數。

      在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則

      想象練習:想象頭腦中有一條數軸,其上有兩個點,分別表示數一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系。

      要求學生在頭腦中有清晰的圖形。讓學生體會到數學的規定都來源于生活,每一種規定都有它的合理性

      數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的'數左小右大這方面結合起來來了解,所以配置想象練習,加強數與形的想象。

      課堂練習例2,比較下列各數的大小(教科書第17頁例)

      比較大小的過程要緊扣法則進行,注意書寫格式

      練習:第18頁練習

      小結與作業

      課堂小結怎樣求一個數的絕對值,怎樣比較有理數的大小?

      本課作業

      1、必做題:教產書第19頁習題1,2,第4,5,6,10

      2、選做題:教師自行安排

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1、情景的創設出于如下考慮:

      ①體現數學知識與生活實際的緊密聯系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發學習的興趣。

      ②教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受。

      2、一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發展和學生的能力培養角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。

      3、有理數大小的比較法則是大小規定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規定:“在數軸上表示有理數,它們從左到右的順序就是從小到大的順序”,幫助學生建立“數軸上越左邊的點到原點的距離越大,所以表示的數越小”這個數形結合的模型。為此設置了想象練習。

      4、本節課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節課教學。

    七年級下冊數學教案2

      一.教學目標:

      1.認知目標:

      1)了解二元一次方程組的概念。

      2)理解二元一次方程組的解的概念。

      3)會用列表嘗試的方法找二元一次方程組的解。

      2.能力目標:

      1)滲透把實際問題抽象成數學模型的思想。

      2)通過嘗試求解,培養學生的探索能力。

      3.情感目標:

      1)培養學生細致,認真的學習習慣。

      2)在積極的教學評價中,促進師生的情感交流。

      二.教學重難點

      重點:二元一次方程的意義及二元一次方程的解的概念。

      難點:把一個二元一次方程形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

      三.教學過程

      (一)創設情景,引入課題

      1.本班共有40人,請問能確定男女生各幾人嗎?為什么?

      (1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)

      (2)這是什么方程?根據什么?

      2.男生比女生多了2人。設男生x人,女生y人.方程如何表示? x,y的值是多少?

      3.本班男生比女生多2人且男女生共40人.設該班男生x人,女生y人。方程如何表示?

      兩個方程中的x表示什么?類似的兩個方程中的y都表示?

      像這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。

      4.點明課題:二元一次方程組。

      (設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學)

      (二)探究新知,練習鞏固

      1.二元一次方程組的概念

      (1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。

      [讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]

      (2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。

      ①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

      (設計意圖:這一環節是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發學生對“項的次數的思考”,進而完善血生對二元一次方程概念的理解。)

      2.二元一次方程組的解的概念

      (1)由學生給出引例的答案,教師指出這就是此方程組的解。

      (2)練習:把下列各組數的題序填入圖中適當的位置:

      方程x+y=0的解,方程2x+3y=2的解,方程組的解。

      (3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

      (4)練習:已知是方程組的解,求a,b的值。

      (三)合作探索,嘗試求解

      現在我們一起來探索如何尋找方程組的'解呢?

      1.已知兩個整數x,y,試找出方程組的解.

      學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。

      一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試.

      (設計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數學活動的經驗)

      2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。

      (1) 設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。

      由學生獨立完成,并分析講解。

      3.例 已知方程3X+2Y=10

      ⑴當X=2時,求所對應的Y 的值;

      ⑵取一個你自己喜歡的數作為X的值,求所對應的Y的值;

      ⑶用含X的代數式表示Y;

      ⑷用含Y 的代數式表示X;

      ⑸當X=-2,0 時,所對應的Y值是多少;

      (設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程。)

      (四)課堂小結,布置作業

      1.這節課學哪些知識和方法?

      2.你還有什么問題或想法需要和大家交流?

      3.教材P82

      教學設計說明:

      1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環環相扣,層層遞進;第二是能力培養線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

      2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。

      3.本課在設計時對教材也進行了適當改動。例題方面考慮到數碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。

    七年級下冊數學教案3

      教學目標

      1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。

      2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。

      3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。

      教學重點

      1.列二元一次方程組解簡單問題。

      2.徹底理解題意

      教學難點

      找等量關系列二元一次方程組。

      教學過程

      一、情境引入。

      小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元。回家路上,他們遇上了好朋友小軍,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的`幾千克水果和總共的錢,要小軍猜。聰明的同學們,小軍能猜出來嗎?

      二、建立模型。

      1.怎樣設未知數?

      2.找本題等量關系?從哪句話中找到的?

      3.列方程組。

      4.解方程組。

      5.檢驗寫答案。

      思考:怎樣用一元一次方程求解?

      比較用一元一次方程求解,用二元一次方程組求解誰更容易?

      三、練習

      1.根據問題建立二元一次方程組。

      (1)甲、乙兩數和是40差是6,求這兩數。

      (2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。

      (3)已知關于求x、的方程,是二元一次方程。求a、b的值。

      2.P38練習第1題。

      四、小結

      小組討論:列二元一次方程組解應用題有哪些基本步驟?

      五、作業

      P42。習題2.3A組第1題。

      后記:

    七年級下冊數學教案4

      【知識講解】

      一、本講主要學習內容

      1、代數式的意義

      2、列代數式的注意點

      3、代數式值的意義

      其中列代數式是重點,也是難點。

      下面講述一下這三點知識的主要內容。

      1、代數式的意義

      用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數及 表示數的字母連接而成的式子叫代數式。單個的數字或字母也叫代數式。如:5,a, 4x, ab, x+2y, , a2等

      2.列代數式的注意點

      ⑴在代數式中出現的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。

      ⑵數字與數字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。

      ⑶數字寫在字母的前面。

      ⑷在代數式中出現除法運算時,一般按照分數的寫法來寫, 如s÷t寫作 。

      ⑸代數式中帶分數與字母相乘時,應寫成假分數與字母相乘的形式,如 應寫作 。

      (6)兩個代數式相乘,應該用分數形式表示。

      3.代數式值的意義

      用數值代替代數式里的字母,按照代數式指明的運算,計算出的結果,就叫做代數式的值。

      二、典型例題

      例1 填空

      ①棱長是acm 的正方體的體積是___cm3。

      ②溫度由t°c下降2°c后是___°c。

      ③產量由m千克增長10%,就達到___千克。

      ④a和b 的倒數和是___。

      ⑤a和b的和的倒數是___。

      解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤

      說明: ⑴列代數式的關鍵在于仔細審題,弄清題意,正確找出題中的數量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數量關系,可先分段考慮,要正確地使用括號。

      ⑵像a3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。

      例2、用代數式表示

      ⑴被4整除得 m的數

      ⑵被2除商為 a余1的數

      ⑶兩數的平均數

      ⑷a和b兩數的平方差與這兩數平方和的商

      ⑸一項工程,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數式表示此人行完全路程的平均速度。

      ⑺個位數字是8,十位數字是 b 的兩位數。

      解: ⑴4m ⑵2a+1 ⑶設這兩個數分別為a、b、則平均數為 。

      ⑷ ⑸ ⑹ ⑺10b+8

      分析說明:

      ⑴數a除以數b,除得的商正好是整數,而沒有余數,我們稱a能被b整除。

      ⑵能被2整除的數叫偶數,不能被2整除的數叫奇數。兩個連續奇數,若較小的是n,則較大的是n +2 。

      ⑶對于題⑶中兩數沒有給出,為說明其一般性。可先設這兩個數為a, b;用字母表示數時,在同一個問題中,不同的數要用不同的字母表示。

      ⑷題⑷中的a,b兩數的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。

      ⑸題⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。

      ⑹平均速度=

      所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。

      題⑺中主要應清楚自然數的十進制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數總可以用它各個數位上的數字來表示。

      例3說出下列代數式的意義。

      ⑴ 3a+2 ⑵ 3(a+2) (3)

      (4) a- (5)(a-b)2 (6)a2-b2

      分析:說出代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點。

      ①不含括號的代數式習慣從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;

      ②含括號的代數應該把括號里的代數式看作一個整體,按運算結果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;

      ③由于分數線具有除法和括號的雙重作用,應該把分子與分母看成一個整體來讀。

      解:(1)a的3倍與2的和;

      (2)a與2的和的3倍;

      (3)a與b的差除以c的商;

      (4)a與b除以c的差;

      (5)a與b的差的平方;

      (6)a、b的平方差。

      例4、當x=7,y=4, z=0時,求代數式x ( 2x-y+3z)的值。

      解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70

      說明:⑴由比例題可以看出,求代數式值的一般步驟是:①代入 ②計算⑵在代數式中,數字與字母之間,字母與字母之間的乘號是省略不寫的。而當代入數據求值時,都變成了數字相乘,原來省略的乘號“×”應補上。

      【一周一練】

      1、選擇題

      (1)下列各式中,屬于代數式的有( )個。

      , s= ah, 5× , -y, x-2=y, a-b, 3x>y

      a、2 b、3 c、4 d、5

      (2)下列代數式,書寫正確的是( )

      a、2 b、m· n c、 mn d、(m+n)÷2

      (3)用代數式表示“a的 乘以b減去c的積”是( )

      a、 ab-c b、 a(b-c) c、 a( b-c) d、

      (4)用語言敘述代數式 ,表述不正確的是( )

      a、比a的倒數小2的`數; b、a與2的差的倒數

      c、1除以a減去2的商 d、比a小2的數的倒數

      2、判斷題

      ⑴n除m用代數式可表示成 ( )

      ⑵三個連續的奇數,中間一個是n,其余兩個分別是n-2和n+2( )

      ⑶如果n是偶數,則緊跟在n后面的兩個連續奇數分別是n+1,n+3( )

      3、填空題

      ⑴每本練習本是0.3元,買a本練習本需__元。

      ⑵小明有5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。

      ⑶被3整除得n 的數是__。

      ⑷個位上的數是a,十位上的數是個位上的數的2倍少3的兩位數是_。

      ⑸加工一批零件共m個,乙先加工n個零件后,甲單獨再做3天才完成任務,則甲平均每天加工零件__個。

      ⑹一種小麥磨成面粉后,重量減少數15%, b千克小麥磨成面粉后,面粉的重量是__千克。

      ⑺一個長方形的長是a,寬是長的 還多1,這個長方形的周長是__

      ⑻a、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。

      4.求下列代數式的值。

      ⑴ 其中a=2

      ⑵當 時,求代數式 的值。

      5、填表

      x

      y

      x+y

      x-y

      xy

      5

      15

      6、某班級里男生人數比女生人數的 多16人,男生人數是a,問a的代數式表示:⑴女生人數。 ⑵該班學生總數;當a=25時,求該班學生總數。

    七年級下冊數學教案5

      一、素質教育目標

      (一)知識教學點

      1.了解有理數除法的定義.

      2.理解倒數的意義.

      3.掌握有理數除法法則,會進行運算.

      (二)能力訓練點

      1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.

      2.培養學生運用數學思想指導思維活動的能力.

      (三)德育滲透點

      通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.

      (四)美育滲透點

      把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.

      二、學法引導

      1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語 并及時點撥,使學生主動發展思維和能力.

      2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

      三、重點、難點、疑點及解決辦法

      1.重點:除法法則的靈活運用和倒數的概念.

      2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.

      3.疑點:對零不能作除數與零沒有倒數的理解.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、自制膠片、彩粉筆.

      六、師生互動活動設計

      教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

      七、教學步驟

      (一)創設情境,復習導入

      師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.

      【教法說明】

      同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.

      (二)探索新知,講授新課

      1.倒數.

      (出示投影1)

      4×( )=1; ×( )=1; 0.5×( )=1;

      0×( )=1; -4×( )=1; ×( )=1.

      學生活動:口答以上題目.

      【教法說明】

      在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數的`全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.

      師問:兩個數乘積是1,這兩個數有什么關系?

      學生活動:乘積是1的兩個數互為倒數.(板書)

      師問:0有倒數嗎?為什么?

      學生活動:通過題目0×( )=1得出0乘以任何數都不得1,0沒有倒數.

      師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.

      提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?

      【教法說明】

      教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

      (出示投影2)

      求下列各數的倒數:

      (1); (2); (3);

      (4); (5)-5; (6)1.

      學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.

      2.計算:8÷(-4).

      計算:8×()=? (-2)

      8÷(-4)=8×().

      再嘗試:-16÷(-2)=? -16×()=?

      師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

      學生活動:同桌互相討論.(一個學生回答)

      師強調后板書:

      [板書]

      【教法說明】

      通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

      (三)嘗試反饋,鞏固練習

      師在黑板上出示例題.

      計算(1)(-36)÷9, (2)()÷().

      學生嘗試做此題目.

      (出示投影3)

      1.計算:

      (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

      (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

      2.計算:

      (1)()÷(); (2)(-6.5)÷0.13;

      (3)()÷(); (4)÷(-1).

      學生活動:

      1題讓學生搶答,教師用復合膠片顯示結果.

      2題在練習本上演示,兩個同學板演(教師訂正).

      【教法說明】

      此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.

      提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?

      學生活動:分組討論,1—2個同學回答.

      [板書]

      2.兩數相除,同號得正,異號得負,并把絕對值相除.

      0除以任何不等于0的數,都得0.

      【教法說明】

      通過上組練習的結果,不難看出與有理數乘法有類似的法則,這個法則的得出為計算有理數除法又添了一種方法,這時教師要及時指出,在做有理數除法的題目時,要根據具體情況,靈活運用這兩種方法.

      (四)變式訓練,培養能力

      回顧例1 計算:

      (1)(-36)÷9; (2)()÷().

      提出問題:每個題目你想采用哪種法則計算更簡單?

      學生活動:(1)題采用兩數相除,異號得負并把絕對值相除的方法較簡單.

      (2)題仍用除以一個數等于乘以這個數的倒數較簡單.

      提出問題:-36:9=?;:()=?它們都屬于除法運算嗎?

      學生活動:口答出答案.

      (出示投影4)

      例2 化簡下列分數

      例3 計算

      (1)()÷(-6);

      (2)-3.5÷×();

      (3)(-6)÷(-4)×().

      學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

      【教法說明】

      例2是檢查學生對有理數除法法則的靈活運用能力,并滲透了除法、分數、比可互相轉化,并且通過這種轉化,常常可能簡化計算.例3培養學生分析問題的能力,優化學生思維品質:

      如在(1)()÷(-6)中.

      根據方法①()÷(-6)=×()=.

      根據方法②()÷(-6)=(24+)×=4+=.

      讓學生區分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數乘法運算律簡化運算.(2)(3)小題也是如此.

      (五)歸納小結

      師:今天我們學習了及倒數的概念,回答問題:

      1.的倒數是__________________();

      學生活動:分組討論。

      【教法說明】

      對這節課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節內容進行了梳理,并且上升到了用字母表示的數學式子,逐步培養學生用數學語言表達數學規律的能力.

      八、隨堂練習

      1.填空題

      (1)的倒數為__________,相反數為____________,絕對值為___________

      (2)(-18)÷(-9)=_____________;

      (3)÷(-2.5)=_____________;

      (4);

      (5)若,是;

      (6)若、互為倒數,則;

      (7)或、互為相反數且,則,;

      (8)當時,有意義;

      (9)當時,;

      (10)若,,則,和符號是_________,___________.

      2.計算

      (1)-4.5÷()×;

      (2)(-12)÷〔(-3)+(-15)〕÷(+5).

      九、布置作業

      (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

      2.計算:(1)()×()÷();

      (2)-6÷(-0.25)×.

      3.當,,時求的值.

      (二)選做題:1.填空:用“>”“<”“=”號填空

      (1)如果,則,;

      (2)如果,則,;

      (3)如果,則,;

      (4)如果,則,;

      2.判斷:正確的打“√”錯的打“×”

      (1)( );

      (2)( ).

      3.(1)倒數等于它本身的數是______________.

      (2)互為相反數的數(0除外)商是________________.

      【教法說明】

      必做題為本節的重點內容,首先在這節課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.

      選作題是對這節課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

      十、板書設計

    七年級下冊數學教案6

      教學目標:

      1、通過現實情景感受利用有序數對表示位置的廣泛性,能利用有序數對來表示位置。

      2、讓學生感受到可以用數量表示圖形位置,幾何問題可以轉化為代數問題,形成數形結合的意識。

      教學重點:理解有序數對的概念,用有序數對來表示位置。

      教學難點:理解有序數對是“有序的”并用它解決實際問題,課時安排:1課時

      教學過程

      一、創設問題情境,引入新課

      展示書p105畫面并提出問題,在建國50周年的慶典活動中,天安門廣場上出現了壯觀的背景圖案,你知道它是怎么組成的嗎?

      原來,他們舉起不同顏色的花束(如第10排第25列舉紅花,第28排第30列舉黃花)整個方陣就組成了絢麗的背景圖章。類似用“第幾排第幾列”來確定同學的位置,我們在日常生活中經常用的方法。

      二、師生共同參于教學活動

      (1)影院對觀眾席所有的座位都按“幾排幾號”編號,以便確定每個座位在影院中的位置觀眾根據入場券上的“排數”和“號數”準確入座。

      師:只給一個數據如“第5號”你能確定某個同學的位置嗎?為什么?要確定必須怎樣?

      生:不能,要確定還必須知道“排數”。

      (2)教師書寫平面圖通知,由學生分組討論。

      今天以下座位的同學放學后參加數學問題討論:(1,5),(2,4),(4,2),(3,3),(5,6)。

      師:你們能明白它的意思嗎?

      學生通過交流合作后得到共識:規定了兩個數所表示的含義后就可以表示座位的位置。

      師:請同學們思考以下問題:

      ①怎樣確定你自己的座位的位置?

      ②排數和列數先后須序對位置有影響嗎?

      生:通過討論,交流后得到以下共識:

      ①可用排數和列數兩個不同的數來確定位置。

      ②排數和列數的先后須序對位置有影響。

      (3)讓學生的問題都是通過像“9排8號”,第2列第4排,這樣含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義。例如前面的表示“排數”后面的表示“列數”。我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)。

      (4)在生活中還有用有序數對表示一個位置的例子嗎?

      學生分組討論,交流,教師深入小組參與活動,傾聽學生的交流,并對學生提供的生活素材給予肯定和鼓勵。

      例如:人們常用經緯度來表示,地球上的地點

      三、鞏固練習

      讓學生完成p46的練習。

      四、布置作業

      1、課本習題6,1,1。

      2、“怪獸吃豆豆”是一種計算機游戲,圖中標志表示“怪獸”按圖中箭頭先后經過的幾個位置,如果用(1,2)表示“怪獸”按圖中箭頭所指路線經過的第3個位置,那么你能用同樣的方式表示出圖中“怪獸”經過的其他幾個位置嗎?

      1 2 3 4 5 6 7 8

      五、教后反思

      師:談談本節課,你有哪些收獲?

      由同學交流解決問題,教師設疑為以后的學習奠定基礎。

      一、教學目標

      知識與技能

      了解數軸的概念,能用數軸上的點準確地表示有理數。

      過程與方法

      通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。

      情感、態度與價值觀

      在數與形結合的過程中,體會數學學習的樂趣。

      二、教學重難點

      教學重點

      數軸的三要素,用數軸上的點表示有理數。

      教學難點

      數形結合的思想方法。

      三、教學過程

      (一)引入新課

      提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。

      (二)探索新知

      學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的.關系:

      提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數和負數可以表示具有相反意義的量,那么,如何用數表示這些樹、電線桿與汽車站牌的相對位置呢?

      學生活動:畫圖表示后提問。

      提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。

      教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

      提問3:你是如何理解數軸三要素的?

      師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。

      (三)課堂練習

      如圖,寫出數軸上點a,b,c,d,e表示的數。

      (四)小結作業

      提問:今天有什么收獲?

      引導學生回顧:數軸的三要素,用數軸表示數。

      課后作業:

      課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?

      學習目標(學習重點):

      1、經歷探索菱形的識別方法的過程,在活動中培養探究意識與合作交流的習慣;

      2、運用菱形的識別方法進行有關推理。

      補充例題:

      例1.如圖,在△abc中,ad是△abc的角平分線。de∥ac交ab于e,df∥ab交ac于f.四邊形aedf是菱形嗎?說明你的理由。

      例2.如圖,平行四邊形abcd的對角線ac的垂直平分線與邊ad、bc分別交于e、f.

      四邊形afce是菱形嗎?說明理由。

      例3.如圖,abcd是矩形紙片,翻折b、d,使bc、ad恰好落在ac上,設f、h分別是b、d落在ac上的兩點,e、g分別是折痕ce、ag與ab、cd的交點

      (1)試說明四邊形aecg是平行四邊形;

      (2)若ab=4cm,bc=3cm,求線段ef的長;

      (3)當矩形兩邊ab、bc具備怎樣的關系時,四邊形aecg是菱形。

      課后續助:

      一、填空題

      1、如果四邊形abcd是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

      2、如圖,d、e、f分別是△abc的邊bc、ca、ab上的點,且de∥ba,df∥ ca

      (1)要使四邊形afde是菱形,則要增加條件______________________

      (2)要使四邊形afde是矩形,則要增加條件______________________

      二、解答題

      1、如圖,在□abcd中,若2,判斷□abcd是矩形還是菱形?并說明理由。

      2、如圖,平行四邊形a bcd的兩條對角線ac,bd相交于點o,oa=4,ob=3,ab=5.

      (1)ac,bd互相垂直嗎?為什么?

      (2)四邊形abcd是菱形嗎?

      3、如圖,在□abcd中,已知adab,abc的平分線交ad于e,ef∥ab交bc于f,試問:四邊形abfe是菱形嗎?請說明理由。

      4、如圖,把一張矩形的紙abcd沿對角線bd折疊,使點c落在點e處,be與ad交于點f.

      ⑴求證:abf≌

      ⑵若將折疊的圖形恢復原狀,點f與bc邊上的點m正好重合,連接dm,試判斷四邊形bmdf的形狀,并說明理由。

    七年級下冊數學教案7

      教學目標:

      1.會用代入法解二元一次方程組。

      2.初步體會解二元一次方程組的基本思想――“消元”。

      3.通過研究解決問題的方法,培養學生合作交流意識與探究精神。

      重點:

      用代入消元法解二元一次方程組。

      難點:

      探索如何用代入法將“二元”轉化為“一元”的消元過程。

      教學過程:

      復習提問:

      籃球聯賽中,每場比賽都要分出勝負,每隊勝一場得2分。負一場得1分,某隊為了爭取較好的名次,想在全部20場比賽中得到38分,那么這個隊勝負場數分別是多少?

      解:設這個隊勝x場,根據題意得

      解得

      x=18

      則 20-x=2

      答:這個隊勝18場,負2場。

      新課:

      在上述問題中,我們可以設出兩個未知數,列出二元一次方程組

      設勝的場數是x,負的場數是y,x+y=20

      2x+y=38

      那么怎樣求解二元一次方程組呢?上面的`二元一次方程組和一元一次方程有什么關系?可以發現,二元一次方程組中第1個方程x+y=20說明y=20-x,將第2個方程

      2x+y=38的y換為20-x,這個方程就化為一元一次方程。

      二元一次方程組中有兩個未知數,如果消去其中一個未知數,將二元一次方程組轉化為我們熟悉的一元一次方程,我們就可以先解出一個未知數,然后再設法求另一未知數。這種將未知數的個數由多化少、逐一解決的想法,叫做消元思想。

      歸納:

      上面的解法,是由二元一次方程組中一個方程,將一個未知數用含另一未知數的式子表示出來,再代入另一方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

      例1 把下列方程寫成用含x的式子表示y的形式:

      (1)2x-y=3 (2)3x+y-1=0

      例2 用代入法解方程組

      x-y=3 ①

      3x-8y=14 ②

      例3 根據市場調查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產品的銷售數量比(按瓶計算)為2:5。某廠每天生產這種消毒液22.5噸,這些消毒液應該分裝大、小瓶裝兩種產品各多少瓶?

      用代入消元法解二元一次方程組的步驟:

      (1)從方程組中選取一個系數比較簡單的方程,把其中的某一個未知數用含另一個未知數的式子表示出來。

      (2)把(1)中所得的方程代入另一個方程,消去一個未知數。

      (3)解所得到的一元一次方程,求得一個未知數的值。

      (4)把所求得的一個未知數的值代入(1)中求得的方程,求出另一個未知數的值,從而確定方程組的解。

      作業:

      教科書第98頁第3題

      第4題

    七年級下冊數學教案8

      一、教學目標

      1、理解一個數平方根和算術平方根的意義;

      2、理解根號的意義,會用根號表示一個數的平方根和算術平方根;

      3通、過本節的訓練,提高學生的邏輯思維能力;

      4、通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統一的辯證關系,激發學生探索數學奧秘的興趣。

      二、教學重點和難點

      教學重點:平方根和算術平方根的概念及求法。

      教學難點:平方根與算術平方根聯系與區別。

      三、教學方法

      講練結合。

      四、教學手段

      多媒體

      五、教學過程

      (一)提問

      1、已知一正方形面積為50平方米,那么它的邊長應為多少?

      2、已知一個數的平方等于1000,那么這個數是多少?

      3、一只容積為0.125立方米的正方體容器,它的棱長應為多少?

      這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節內容所要學習的下面作一個小練習,填空:

      1、(  )2=9;

      2、(  )2 =0.25;

      3、(  )2=0.0081。

      學生在完成此練習時,最容易出現的錯誤是丟掉負數解,在教學時應注意糾正。

      由練習引出平方根的概念。

      (二)平方根概念

      如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。

      用數學語言表達即為:若x2=a,則x叫做a的平方根。

      由練習知:±3是9的`平方根;

      ±0.5是0.25的平方根;

      0的平方根是0;

      ±0.09是0.0081的平方根。

      由此我們看到3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

      (   )2=—4

      學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的平方為非負數。由此我們可以得到結論,負數是沒有平方根的下面總結一下平方根的性質(可由學生總結,教師整理)。

      (三)平方根性質

      1、一個正數有兩個平方根,它們互為相反數。

      2、0有一個平方根,它是0本身。

      3、負數沒有平方根。

      (四)開平方

      求一個數a的平方根的運算,叫做開平方的運算。

      由練習我們看到3與—3的平方是9,9的平方根是3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。

      (五)平方根的表示方法

      一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作,其中讀作“二次根號”,讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。

      練習:

      1、用正確的符號表示下列各數的平方根:

      ①26

      ②247

      ③0.2

      ④3

      ⑤

      解:①26的平方根是

      ②247的平方根是

      ③0.2的平方根是

      ④3的平方根是

      ⑤的平方根是

    七年級下冊數學教案9

      教學目標

      掌握冪的乘方法則,并能夠運用法則進行計算。

      會進行簡單的冪的混合運算。

      在推導法則的過程中,培養學生觀察、概括與抽象的能力;在運用法則的過程中培養學生思維的靈活性,以及應用“轉化”的數學思想方法的能力。

      讓學生通過參與探索過程,培養合作、探索問題的能力,以及質疑、獨立思考的習慣。

      重點難點

      重點

      冪的乘方法則的運用。

      難點

      冪的乘方法則的推導以及冪的混合運算。

      教學過程

      一、復習導入

      1.表示什么意義?表示什么意思呢?

      2.同底數冪乘法法則是什么,它是怎樣推導的?

      通過討論,使學生正確讀出式子并理解式子所表達的運算,指出這種式子表達的是冪的乘方運算,怎樣進行冪的乘方運算呢?

      二、新課講解

      探究新知

      1.思考:

      ①請根據的意義計算出它的結果,并想一想每一步計算的依據是什么?

      ②你能說出、的意義嗎?

      ③請你計算、,并想一想每一步計算的依據是什么?

      (鼓勵學生站起來回答,培養學生數學表達的能力)

      2.發現:

      ①從上面的計算中你發現了這幾道題的運算結果有什么共同之處嗎?從中你能發現運算的方法嗎?猜一猜的結果是什么?

      ②驗證猜想,得出結論

      ===(m,n都是正整數)

      用語言敘述為:冪的乘方,底數不變,指數相乘。

      三、典例剖析

      例1計算:

      (1);(2);(3)(m是正整數);(4)(n是正整數)

      要求學生讀出式子并按法則運算,提高符號演算的能力。注意(2)應讀成a的3次冪的4次方的.相反數(或者-1乘以a的3次冪的4次方),強調求相反數是運算的最后一步,訓練學生在計算式子前先正確理解式子的良好習慣。

      例2計算:

      學生獨立思考后進行交流,交流時要求學生按照先讀式子,再分析式子的步驟給全班同學講解。重視數學的表達和交流能促進學生養成良好的思維能力和思維習慣。

      四、課堂練習

      基礎練習

      1.填空:

      (1);(2);

      2.下面的計算對不對?如果不對,應怎樣改正?

      教師要注意發現學生的錯誤,組織學生對錯誤進行分析,對于第2題可以引導學生分析導致錯誤的原因,(1)是混淆了冪的乘法運算,(2)是把兩個指數理解成了3的2次方。強調正確記憶法則,仔細分析式子里的運算。

      提高訓練:

      3.對比同底數冪的乘法法則和冪的乘方法則,你有好的方法來記憶嗎?

      引導學生觀察兩種運算的共同點。冪的這兩種運算最終都轉化成了對指數的運算,其中冪的乘法轉化成了指數的加法,冪的乘方轉化成了指數的乘法,初一看兩個法則截然不同,但從轉化的角度來看,它們又有共同之處,那就是都將原來的冪的運算降了一級,乘法變了加法,乘方變了乘法。

      4.自編兩道同底數冪的乘法、冪的乘方混合運算題,并與同學交流計算過程與結果。

      學生活動后,教師選取編的好的題向全班展示,提高學生的興趣。

      5.已知,求的值。

      逆向運用冪的運算性質,能培養學生思維的靈活性。由,我們不能求出m,n的值,但我們可以從入手,觀察到,從而可以通過整體代入來求解。

      五、小結

      師生共同回顧冪的運算法則,互相交流解答運算題的經驗,教師對課堂上學生掌握不夠牢固的知識進行辨析、強調與補充,學生也可以談一談個人的學習感受。

      六、布置作業

      1.P40第2題

      2.自編兩道同底數冪的乘法、冪的乘方混合運算題,并計算。

    七年級下冊數學教案10

      教學目標

      1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。

      2.提高分析問題、解決問題的能力。

      3.體會數學的應用價值。

      教學重點

      根據實際問題列二元一次方程組。

      教學難點

      1.找實際問題中的相等關系。

      2.徹底理解題意。

      教學過程

      一、引入。

      本節課我們繼續學習用二元一次方程組解決簡單實際問題。

      二、新課。

      例1. 小琴去縣城,要經過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的.速度嗎?還能算出她家與外祖母家相距多遠嗎?

      探究: 1. 你能畫線段表示本題的數量關系嗎?

      2.填空:(用含S、V的代數式表示)

      設小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米。

      3.列方程組。

      4.解方程組。

      5.檢驗寫出答案。

      討論:本題是否還有其它解法?

      三、練習

      1.建立方程模型。

      (1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度。

      (2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?

      2.P38練習第2題。

      3.小組合作編應用題:兩個寫一方程組,另兩人根據方程組編應用題。

      四、小結

      本節課你有何收獲?

      五、作業

    七年級下冊數學教案11

      一、教學目標

      1、知識目標:掌握數軸三要素,會畫數軸。

      2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;

      3、情感目標:向學生滲透數形結合的思想。

      二、教學重難點

      教學重點:數軸的三要素和用數軸上的點表示有理數。

      教學難點:有理數與數軸上點的對應關系。

      三、教法

      主要采用啟發式教學,引導學生自主探索去觀察、比較、交流。

      四、教學過程

      (一)創設情境激活思維

      1。學生觀看鐘祥二中相關背景視頻

      意圖:吸引學生注意力,激發學生自豪感。

      2。聯系實際,提出問題。

      問題1:鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

      師生活動:學生思考解決問題的方法,學生代表畫圖演示。

      學生畫圖后提問:

      1。馬路用什么幾何圖形代表?(直線)

      2。文中相關地點用什么代表?(直線上的點)

      3。學校大門起什么作用?(基準點、參照物)

      4。你是如何確定問題中各地點的位置的?(方向和距離)

      設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。

      問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?

      師生活動:

      學生思考后回答解決方法,學生代表畫圖。

      學生畫圖后提問:

      1。0代表什么?

      2。數的符號的實際意義是什么?

      3。—75表示什么?100表示什么?

      設計意圖:繼續以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。

      問題3:生活中常見的溫度計,你能描述一下它的結構嗎?

      設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。

      問題4:你能說說上述2個實例的共同點嗎?

      設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。

      (二)自主學習探究新知

      學生活動:帶著以下問題自學課本第8頁:

      1。什么樣的直線叫數軸?它具備什么條件。

      2。如何畫數軸?

      3。根據上述實例的經驗,“原點”起什么作用?

      4。你是怎么理解“選取適當的長度為單位長度”的?

      師生活動:

      學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。

      設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。

      至此,學生已會畫數軸,師生共同歸納總結(板書)

      ①數軸的定義。

      ②數軸三要素。

      練習:(媒體展示)

      1。判斷下列圖形是否是數軸。

      2。口答:數軸上各點表示的數。

      3。在數軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。

      (三)小組合作交流展示

      問題:觀察數軸上的`點,你有什么發現?

      數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和—a的點進行同樣的討論。

      設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養學生的抽象概括能力。

      (四)歸納總結反思提高

      師生共同回顧本節課所學主要內容,回答以下問題:

      1。什么是數軸?

      2。數軸的“三要素”各指什么?

      3。數軸的畫法。

      設計意圖:梳理本節課內容,掌握本節課的核心――數軸“三要素”。

      (五)目標檢測設計

      1。下列命題正確的是()

      A。數軸上的點都表示整數。

      B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

      C。數軸包括原點與正方向兩個要素。

      D。數軸上的點只能表示正數和零。

      2。畫數軸,在數軸上標出—5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。

      3。畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有_______個。4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。

      五、板書

      1。數軸的定義。

      2。數軸的三要素(圖)。

      3。數軸的畫法。

      4。性質。

      六、課后反思

      附:活動單

      活動一:畫一畫

      鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

      思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?

      活動二:讀一讀

      帶著以下問題閱讀教科書P8頁:

      1。什么樣的直線叫數軸?

      定義:規定了_________、________、_________的直線叫數軸。

      數軸的三要素:_________、_________、__________。

      2。畫數軸的步驟是什么?

      3。“原點”起什么作用?__________

      4。你是怎么理解“選取適當的長度為單位長度”的?

      練習:

      1。畫一條數軸

      2。在你畫好的數軸上表示下列有理數:1。5,—2,—2。5,2,2。5,0,—1。5

      活動三:議一議

      小組討論:觀察你所畫的數軸上的點,你有什么發現?

      歸納:一般地,設a是一個正數,則數軸上表示數a在原點的____邊,與原點的距離是____個單位長度;表示數—a的點在原點的____邊,與原點的距離是____個單位長度。

      練習:

      1。數軸上表示—3的點在原點的_______側,距原點的距離是______;表示6的點在原點的______側,距原點的距離是______;兩點之間的距離為_______個單位長度。

      2。距離原點距離為5個單位的點表示的數是________。

      3。在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點B,則點B表示的數是________。

      附:目標檢測

      1。下列命題正確的是()

      A。數軸上的點都表示整數。

      B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

      C。數軸包括原點與正方向兩個要素。

      D。數軸上的點只能表示正數和零。

      2。畫數軸,在數軸上標出—5和+5之間的所有整數。列舉到原點的距離小于3的所有整數。

      3。畫數軸,觀察數軸,在原點左邊的點有_______個。

      4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。

    七年級下冊數學教案12

      第一章 一元一次不等式組

      1.1 一元一次不等式組

      第1教案

      教學目標

      1. 能結合實例,了解一元一次不等式組的相關概念。

      2. 讓學生在探索活動中體會化陌生為熟悉,化復雜為簡單的“轉化”思想方法。

      3. 提高分析問題的能力,增強數學應用意識,體會數學應用價值。

      教學重、難點

      1..不等式組的解集的'概念。

      2.根據實際問題列不等式組。

      教學方法

      探索方法,合作交流。

      教學過程

      一、 引入課題:

      1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。

      2. 由許多問題受到多種條件的限制引入本章。

      二、 探索新知:

      自主探索、解決第2頁“動腦筋”中的問題,完成書中填空。

      分別解出兩個不等式。

      把兩個不等式解集在同一數軸上表示出來。

      找出本題的答案。

      三、 抽象:

      教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)

    七年級下冊數學教案13

      教學目標:

      1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;

      2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;

      3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。

      教學難點:

      數軸的概念和用數軸上的點表示有理數

      知識重點

      教學過程(師生活動) 設計理念

      設置情境

      引入課題

      教師通過實例、課件演示得到溫度計讀數.

      問題1:溫度計是我們日常生活中用來測量溫度的.重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

      (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

      問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

      (小組討論,交流合作,動手操作) 創設問題情境,激發學生的學習熱情,發現生活中的數學。

      探究新知

      教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?

      讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?

      從而得出數軸的三要素:原點、正方向、單位長度 體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。

      從游戲中學數學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數軸概念的理解

      尋找規律

      歸納結論

      問題3:

      1, 你能舉出一些在現實生活中用直線表示數的實際例子嗎?

      2, 如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?

      3, 哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?

      4, 每個數到原點的距離是多少?由此你會發現了什么規律?

      (小組討論,交流歸納)

      歸納出一般結論,教科書第12的歸納。 這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

      鞏固練習

      教科書第12頁練習

      小結與作業

      課堂小結

      請學生總結:

      1, 數軸的三個要素;

      2, 數軸的作以及數與點的轉化方法。

      本課作業

      1, 必做題:教科書第18頁習題1.2第2題

      2,選做題:教師自行安排

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1, 數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。

      2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。

      3, 注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。

    七年級下冊數學教案14

      教學目標:

      1、知識與技能

      (1)通過實例,感受引入負數的必要性和合理性,能應用正負數表示生活中具有相反意義的量。

      (2)理解有理數的意義,體會有理數應用的廣泛性。

      2、過程與方法

      通過實例的引入,認識到負數的產生是來源于生產和生活,會用正、負數表示具有相反意義的量,能按要求對有理數進行分類。

      重點、難點:

      1、重點:正數、負數有意義,有理數的意義,能正確對有理數進行分類。

      2、難點:對負數的理解以及正確地對有理數進行分類。

      教學過程:

      一、創設情景,導入新課

      大家知道,數學與數是分不開的`,現在我們一起來回憶一下,小學里已經學過哪些類型的數?

      學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的

      為了表示一個人、兩只手、……,我們用到整數1,2,……

      為了表示“沒有人”、“沒有羊”、……,我們要用到0。

      但在實際生活中,還有許多量不能用上述所說的自然數、零或分數、小數表示。

      二、合作交流,解讀探究

      1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數,都記作5℃,就不能把它們區別清楚。它們是具有相反意義的兩個量。

      現實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的。“運進”和“運出”,其意義是相反的。

      同學們能舉例子嗎?

      學生回答后,教師提出:怎樣區別相反意義的量才好呢?

      待學生思考后,請學生回答、評議、補充。

      教師小結:同學們成了發明家。甲同學說,用不同顏色來區分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學說,在數字前面加不同符號來區分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數學家就曾經采用不同的顏色來區分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。

      現在,數學中采用符號來區分,規定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。

      讓學生用同樣的方法表示出前面例子中具有相反意義的量:

      高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

      教師講解:什么叫做正數?什么叫做負數?強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號。

      2、給出新的整數、分數概念

      引進負數后,數的范圍擴大了。過去我們說整數只包括自然數和零,引進負數后,我們把自然數叫做正整數,自然數前加上負號的數叫做負整數,因而整數包括正整數(自然數)、負整數和零,同樣分數包括正分數、負分數。

      3、給出有理數概念

      整數和分數統稱為有理數。

      4、有理數的分類

      為了便于研究某些問題,常常需要將有理數進行分類,需要不同,分類的方法也常常不同根據有理數的定義可將有理數分成兩類:整數和分數。有理數還有沒有其他的分類方法?

      待學生思考后,請學生回答、評議、補充。

      教師小結:按有理數的符號分為三類:正有理數、負有理數和零。在有理數范圍內,正數和零統稱為非負數。向學生強調:分類可以根據不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類。

      三、總結反思

      引導學生回答如下問題:本節課學習了哪些基本內容?學習了什么數學思想方法?應注意什么問題?

      由于實際生活中存在著許多具有相反意義的量,因此產生了正數與負數。正數是大于0的數,負數就是在正數前面加上“—”號的數,負數小于0。0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃。

      四、課后作業:課本P5習題1。1A第1、2、4題。

    七年級下冊數學教案15

      教學目標:1.能夠在實際情境中,抽象概括出所要研究的數學問題,增強學生的數感符號感。

      2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數冪乘法運算性質

      過程,進一步體會冪的意義,發展合作交流能力、推理能力和有條理的表達能力。

      3.了解同底數冪乘法的運算性質,并能解決一些實際問題,感受數學與現實生活的密切聯系,

      增強學生的數學應用意識,訓練他們養成學會分析問題、解決問題的良好習慣。

      教學重點:同底數冪乘法的運算性質,并能解決一些實際問題。

      教學過程

      一、復習回顧

      活動內容:復習七年級上冊數學課本中介紹的有關乘方運算知識:

      二、情境引入

      活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數學模型,實際在列式計算時遇到了同底數冪相乘的形式,給出問題,啟發學生進行獨立思考,也可采用小組合作交流的形式,結合學生現有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。

      三、講授新課

      1.利用乘方的意義,提問學生,引出法則:計算103×102.

      解:103×102=(10×10×10)×(10×10)(冪的意義)

      =10×10×10×10×10(乘法的結合律)=105.

      2.引導學生建立冪的運算法則:

      將上題中的底數改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

      用字母m,n表示正整數,則有即am·an=am+n.

      3.引導學生剖析法則

      (1)等號左邊是什么運算?(2)等號兩邊的底數有什么關系?

      (3)等號兩邊的指數有什么關系?(4)公式中的底數a可以表示什么

      (5)當三個以上同底數冪相乘時,上述法則是否成立?

      要求學生敘述這個法則,并強調冪的底數必須相同,相乘時指數才能相加.

      三、應用提高

      活動內容:1.完成課本“想一想”:a?a?a等于什么?

      2.通過一組判斷,區分“同底數冪的`乘法”與“合并同類項”的不同之處。

      3.獨立處理例2,從實際情境中學會處理問題的方法。

      4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp

      四、拓展延伸

      活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

      (5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542

      2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

      (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

      五、課堂小結

      活動內容:師生互相交流總結本節課上應該掌握的同底數冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。

      六、布置作業

      1.請你根據本節課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。

      2.完成課本習題1.4中所有習題。

      1.2冪的乘方與積的乘方(一)

    【七年級下冊數學教案】相關文章:

    (經典)七年級下冊數學教案11-07

    七年級下冊數學教案01-24

    七年級下冊數學教案12-05

    初中七年級下冊數學教案01-13

    【精】七年級下冊數學教案03-16

    【熱】七年級下冊數學教案03-16

    七年級下冊數學教案【精】03-14

    【薦】七年級下冊數學教案03-14

    【熱門】七年級下冊數學教案03-15

    七年級下冊數學教案【薦】03-15

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲中文自拍另类 | 亚洲中文字幕综合久久 | 日本AⅤ碰碰碰视频 | 天天天天香蕉线视频国产 | 亚洲成Av人片乱码午夜 | 五月婷婷丁香综合中文字幕 |