高二數學教案15篇【優】
在教學工作者實際的教學活動中,時常會需要準備好教案,借助教案可以提高教學質量,收到預期的教學效果。那么你有了解過教案嗎?下面是小編幫大家整理的高二數學教案,希望能夠幫助到大家。
高二數學教案1
一、教學目標
(1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;
(2)理解邏輯聯結詞“或”“且”“非”的含義;
(3)能用邏輯聯結詞和簡單命題構成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯結詞及其聯結的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎上,培養學生簡單推理的技能。
二、教學重點難點:
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解。
三、教學過程
1.新課導入
在當今社會中,人們從事任何工作、學習,都離不開邏輯。具有一定邏輯知識是構成一個公民的文化素質的重要方面。數學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性。如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤。其實,同學們在初中已經開始接觸一些簡易邏輯的知識。
初一平面幾何中曾學過命題,請同學們舉一個命題的例子。(板書:命題。)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識。)
(同學議論結果,答案是肯定的。)
教師提問:什么是命題?
(學生進行回憶、思考。)
概念總結:對一件事情作出了判斷的語句叫做命題。
(教師肯定了同學的回答,并作板書。)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題。
(教師利用投影片,和學生討論以下問題。)
例1判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題。
初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識。
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內容主要講了哪些問題?
(片刻后請同學舉手回答,一共講了四個問題。師生一道歸納如下。)
(1)什么叫做命題?
可以判斷真假的語句叫做命題。
判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題。有些語句中含有變量,如x2-5x+6=0
中含有變量,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯結詞“或”、“且”、“非”。
“或”、“且”、“非”這些詞叫做邏輯聯結詞。邏輯聯結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式。
命題可分為簡單命題和復合命題。
不含邏輯聯結詞的命題叫做簡單命題。簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題。
由簡單命題和邏輯聯結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡單命題“6是自然數”和“6是偶數”由邏輯聯結詞“且”構成的復合命題。
(4)命題的表示:用p,q,r,s,……來表示。
(教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開。)
我們接觸的復合命題一般有“p或q”“p且q”、“非p”、“若p則q”等形式。
給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯結詞;應能根據所給出的兩個簡單命題,寫出含有邏輯聯結詞“或”、“且”、“非”的'復合命題。
對于給出“若p則q”形式的復合命題,應能找到條件p和結論q.
在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”。例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數的末位數字不是0就是5”的字面上無“或”,但它們都是復合命題。
3.鞏固新課
例2判斷下列命題,哪些是簡單命題,哪些是復合命題。如果是復合命題,指出它的構成形式以及構成它的簡單命題。
(1)12>5;
(2)0.5非整數;
(3)內錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0,則a=0.
(讓學生有充分的時間進行辨析。教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充。)
例3寫出下表中各給定語的否定語(用課件打出來).
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個”的否定語是“至少有兩個”;
“至少有一個”的否定語是“一個都沒有”;
“至多有n個”的否定語是“至少有n+1個”。
(如果時間寬裕,可讓學生討論后得出結論。)
置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當的辨析與展開。)
4.課堂練習:第26頁練習1,2.
5.課外作業:第29頁習題1.61,2.
高二數學教案2
教學目標
使學生了解并會作二元一次不等式和不等式組表示的區域.
重點難點
了解二元一次不等式表示平面區域.
教學過程
【引入新課】
我們知道一元一次不等式和一元二次不等式的解集都表示直線上的點集,那么在平面坐標系中,二元一次不等式的解集的意義是什么呢?
【二元一次不等式表示的平面區域】
1.先分析一個具體的例子
我們知道,在平面直角坐標系中,以二元一次方程 的解為坐標的點的集合 是經過點(0,1)和(1,0)的一條直線 l (如圖)那么,以二元一次不等式(即含有兩個未知數,且未知數的最高次數都是1的不等式) 的解為坐標的點的集合 是什么圖形呢?
在平面直角坐標系中,所有點被直線 l 分三類:①在 l 上;②在 l 的右上方的平面區域;③在 l 的左下方的平面區域(如圖)取集合 A 的點(1,1)、(1,2)、(2,2)等,我們發現這些點都在 l 的右上方的平面區域,而點(0,0)、(-1,-1)等等不屬于 A ,它們滿足不等式 ,這些點卻在l的左下方的平面區域.
由此我們猜想,對直線 l 右上方的任意點 成立;對直線l左下方的任意點 成立,下面我們證明這個事實.
在直線 上任取一點 ,過點 P 作垂直于 y 軸的直線 ,在此直線上點 P 右側的任意一點 ,都有 ∴
于是
所以
因為點 ,是 L 上的任意點,所以,對于直線 右上方的任意點 ,
都成立
同理,對于直線 左下方的任意點 ,
都成立
所以,在平面直角坐標系中,以二元一次不等式 的解為坐標的點的集點.
是直線 右上方的平面區域(如圖)
類似地,在平面直角坐標系中,以二元一次不等式 的解為坐標的點的集合 是直線 左下方的平面區域.
2.二元一次不等式 和 表示平面域.
(1)結論:二元一次不等式 在平面直角坐標系中表示直線 某一側所有點組成的平面區域.
把直線畫成虛線以表示區域不包括邊界直線,若畫不等式 就表示的面區域時,此區域包括邊界直線,則把邊界直線畫成實線.
(2)判斷方法:由于對在直線 同一側的'所有點 ,把它的坐標 代入 ,所得的實數的符號都相同,故只需在這條直線的某一側取一個特殊點 ,以 的正負情況便可判斷 表示這一直線哪一側的平面區域,特殊地,當 時,常把原點作為此特殊點.
【應用舉例】
例1? 畫出不等式 表示的平面區域
解;先畫直線 (畫線虛線)取原點(0,0),代入 ,
∴ ∴? 原點在不等式 表示的平面區域內,不等式 表示的平面區域如圖陰影部分.
例2? 畫出不等式組
表示的平面區域
分析:在不等式組表示的平面區域是各個不等式所表示的平面點集的交集,因而是各個不等式所表示的平面區域的公共部分.
解:不等式 表示直線 上及右上方的平面區域, 表示直線 上及右上方的平面區域, 上及左上方的平面區域,所以原不等式表示的平面區域如圖中的陰影部分.
課堂練習
作出下列二元一次不等式或不等式組表示的平面區域.
高二數學教案3
學習目標:
1、了解本章的學習的內容以及學習思想方法
2、能敘述隨機變量的定義
3、能說出隨機變量與函數的關系
4、能夠把一個隨機試驗結果用隨機變量表示
重點:能夠把一個隨機試驗結果用隨機變量表示
難點:隨機事件概念的透徹理解及對隨機變量引入目的的認識:
環節一:隨機變量的定義
1、通過生活中的一些隨機現象,能夠概括出隨機變量的定義
2能敘述隨機變量的定義
3能說出隨機變量與函數的區別與聯系
一、閱讀課本33頁問題提出和分析理解,回答下列問題?
1、了解一個隨機現象的規律具體指的`是什么?
2、分析理解中的兩個隨機現象的隨機試驗結果有什么不同?建立了什么樣的對應關系?
總結:
3、隨機變量
(1)定義:
這種對應稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結果所組成的
到的映射。
(2)表示:隨機變量常用大寫字母。等表示。
(3)隨機變量與函數的區別與聯系
函數隨機變量
自變量
因變量
因變量的范圍
相同點都是映射都是映射
環節二隨機變量的應用
1、能正確寫出隨機現象所有可能出現的結果2、能用隨機變量的描述隨機事件
例1:已知在10件產品中有2件不合格品。現從這10件產品中任取3件,其中含有的次品數為隨機變量的學案。這是一個隨機現象。(1)寫成該隨機現象所有可能出現的結果;(2)試用隨機變量來描述上述結果。
變式:已知在10件產品中有2件不合格品。從這10件產品中任取3件,這是一個隨機現象。若Y表示取出的3件產品中的合格品數,試用隨機變量描述上述結果
例2連續投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數,則X是一個隨機變
量,分別說明下列集合所代表的隨機事件:
(1){X=0}(2){X=1}
(3){X0}
變式:連續投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數,則X是一個隨機變量,X的可能取值是?并說明這些值所表示的隨機試驗的結果。
練習:寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結果。
(1)從學校回家要經過5個紅綠燈路口,可能遇到紅燈的次數;
(2)一個袋中裝有5只同樣大小的球,編號為1,2,3,4,5,現從中隨機取出3只球,被取出的球的號碼數;
小結(對標)
高二數學教案4
【教材分析】
1、知識內容與結構分析
集合論是現代數學的一個重要的基礎。在高中數學中,集合的初步知識與其他內容有著密切的聯系,是學習、掌握和使用數學語言的基礎,集合論以及它所反映的數學思想在越來越廣泛的領域中得到應用。課本從學生熟悉的集合(自然數集合、有理數的集合等)出發,結合實例給出了元素、集合的含義,學生通過對具體實例的抽象、概括發展了邏輯思維能力。
2、知識學習意義分析
通過自主探究的學習過程,了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言描述不同的具體問題,感受集合語言的意義和作用。
3、教學建議與學法指導
由于本節新概念、新符號較多,雖然內容較為淺顯,但不應講得過快,應在講解概念的同時,讓學生多閱讀課本,互相交流,在此基礎上理解概念并熟悉新符號的使用。通過問題探究、自主探索、合作交流、自我總結等形式,調動學生的積極性。
【學情分析】
在初中,學生學習過一些點的集合或軌跡,如:平面內到一個定點的距離等于定長的點的集合(圓);到一條線段的兩個端點的距離相等的點的集合(線段的垂直平分線)。這對學生學習本節課的知識有一定的幫助,只不過現在我們要把這個“集合”推廣,它不僅僅是點的集合或圖形的集合,而是“指定的某些對象的全體”。集合語言是現代數學的基本語言,使用這種語言,不僅有助于簡潔、準確地表達數學內容,還可以用來刻畫和解決生活中的許多問題。學習集合,可以發展同學們用數學語言進行交流的能力。
【教學目標】
1、知識與技能
(1)學生通過自主學習,初步理解集合的概念,理解元素與集合間的.關系,了解集合元素的確定性、互異性,無序性,知道常用數集及其記法;
(2)掌握集合的常用表示法——列舉法和描述法。
2、過程與方法
通過實例了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉換和抽象概括能力,樹立用集合語言表示數學內容的意識。
3、情態與價值
在掌握基本概念的基礎上,能夠解決相關問題,獲得數學學習的成就感,提高學生分析問題和解決問題的能力,培養學生的應用意識。
【重點難點】
1、教學重點:集合的基本概念與表示方法。
2、教學難點:選擇合適的方法正確表示集合。
【教學思路】
通過實例以及學生熟悉的數集,引入集合的概念,進而給出集合的表示方法,學生通過自我體會、自主學習、自我總結達到掌握本節課內容的目的。教學過程按照“提出問題——學生討論——歸納總結——獲得新知——自我檢測”環節安排。
【教學過程】
課前準備:
提前留給學生預習方案:a.預習初中數學中有關集合的章節;b.預習本節內容,試著找出與以往的聯系;c.搜集生活中的集合的使用實例。
導入新課:同學們,我們今天要學習的是集合的知識,在小學和初中,我們已經接觸過了一些集合,例如,自然數的集合,有理數的集合,不等式x-7<3的解得集合,到一個頂點的距離等于定長的點的集合(即圓),等等。現在呢,我要說的是:我們大家通過對初中知識的預習和對本節課的預習我相信你們能夠很大一部分已經掌握了本節知識的主要問題,對不對?(同學們會高興地說:對!)
下面我們分三個小組,做個游戲,好不好?我們互相競賽答題,互相評論優點與不足,好不好?(同學們在被調動起情緒的時候應該說:好!)
教與學的過程:
預設問題設計意圖師生活動教師活動
一組二組三組活動同學們,通過看課本2頁的(1)至(8)個例子,同學們有什么啟發嗎?提出一個模糊一點的問題,留給三組學生更寬的思考空間。啟發思考,激發興趣。教師點撥,及時糾正偏差的回答方向。(理想答案:我們學過很多集合的知識了。我們會舉出一些集合的例子。)
學生三個組分組輪流回答。你能說出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養學生的總結概括能力。引導學生共同得出正確的結論。最后給出準確的定義:我們把研究的對象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡稱集)。學生討論,分組輪流回答。你們能說出元素與集合是什么關系嗎?怎么表示呀?用什么額符號表示啊?通過學生自己總結,對元素與集合的關系記憶更深刻。教師指導學生得出準確答案。(理想答案:集合是整體,元素是個體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a.如果a是集合A的元素,就說a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說a不屬于集合A,記做A)學生討論,分組輪流回答。
可以互相挑出對方回答問題的錯誤來比賽。我們描述集合常用哪些方法呢?怎么表示?引導學生認識集合的兩種常見表示方法。教師引導指正。(理想答案:列舉法:把集合的元素一一列舉出來,并用花括號“{}”括起來表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內線寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。同學們上黑板邊回答邊演練。誰能試著說說集合中的元素有什么特點啊?拓展知識,讓學生對元素的特征有極愛哦理性的認識,并開發其探究思維。教師點撥。(理想答案:元素一旦給出是確定的,確定性,沒有相同的,互異性,是沒有順序的,無序性。
即(1)確定性:對于任意一個元素,要么它屬于某個指定集合,要么它不屬于該集合,二者必居其一。
(2)互異性:同一個集合中的元素是互不相同的。
(3)無序性:任意改變集合中元素的排列次序,它們仍然表示同一個集合。)學生探究討論,回答。什么叫兩個集合相等呢?深刻理解集合。教師給出答案。(如果構成兩個集合的元素是一樣的,我們稱這兩個集合是相等的。)學生探討回答。
高二數學教案5
教學內容
教材第2頁的例2,第3頁的小數乘法法則和“做一做”,練習一的第5?9題。
素質教育目標
(一)知識教學點
1.使學生理解一個數乘以小數的意義。
2.掌握小數乘法的計算法則。
(二)能力訓練點
1.能說出小數乘法算式所表示的意義。
2.能比較正確地計算小數乘法,提高計算能力。
3.培養學生的遷移類推能力和概括能力以及運用所學知識解決新問題的能力。
(三)德育滲透點
繼續滲透轉化思想。
教學重點:
理解一個數乘以小數的意義,會應用小數乘法的計算法則正確地進行計算。
教學難點:
理解一個數乘以小數的意義和小數乘法中積的小數點的定位。
教具學具準備:
口算卡片、投影片。
教學步驟
一、鋪墊孕伏
1.口算:
0.3×6 0.8×4 7.2×0 4.2×8
0.25×4 3.6×3 4.3×5 0.6×9
2.說出下列小數表示的意義:
0.2 0.5 0.45 0.824
使學生明確一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
3.復習例1,花布每米6.5元,買5米要用多少元?
(1)指名列式計算,然后說一說小數乘以整數的`意義和小數乘以整數的計算方法。
(2)引導學生知道:每米6.5元是單價,5米是數量,求的是總價。根據單價×數量=總價也可以列出乘法算式。
二、探究新知
1.理解一個數乘以小數的意義。
(1)教學例2
①出示例2花布每米6.5元,買0.5米用多少元?
②讀題,理解題意,從題中你知道了什么?
引導學生知道:每米6.5元是單價,0.5米是買的數量,求的是總價。根據單價×數量=總價可以列式為6.5×0.5。
教師板書:
6.5×0.5
③用線段圖表示題中的數量關系:
④啟發學生理解:0.5米是1米的十分之五,6.5×0.5就是求6.5的十分之五是多少。
教師板書:
求6.5的十分之五
引導學生類推:
6.5×0.4就是求6.5的十分之四是多少,6.5×0.7就是求6.5的十分之七是多少,……
一個數乘以零點幾就是求這個數的十分之幾是多少。
互相討論得出結論:一個數乘以一位小數的意義是求這個數的十分之幾。
(2)補充例2,買0.82米用多少元?
①引導學生用線段圖表示:
②啟發學生理解:每米6.5元是布的單價,0.82米是買布的數量,求的是總價,列式為6.5×0.82。
教師板書:
6.5×0.82
0.82米是1米的百分之八十二,6.5×0.82就是求6.5的百分之八十二。
教師板書:
求6.5的百分之八十二
仿照6.5×0.5的教學方法,引導學生類推得出:
一個數乘以兩位小數的意義就是求這個數的百分之幾。
③師生共同小結:一個數乘以一位小數的意義是求這個數的十分之幾,乘以兩位小數的意義是求這個數的百分之幾。
④引導學生類推:一個數乘以三位小數就是求這個數的千分之幾,一個數乘以四位小數就是求這個數的萬分之幾,……
最后概括板書:一個數乘以小數的意義是求這個數的十分之幾,百分之幾,千分之幾……
2.探究一個數乘以小數的計算方法。
(1)提出問題,學生討論:
計算小數乘以整數,是把小數轉化成整數計算的,6.5×0.5和6.5×0.82這兩個算式中,被乘數和乘數都含有小數位,應該怎樣計算?
(2)通過討論匯報,使學生明白:把6.5×0.5變成整數乘法,6.5變成65擴大了10倍,0.5變成5也擴大了10倍,這樣乘出來的積就擴大了10×10=100倍,要求原來的積,應把乘出來的積再縮小100倍。同時教師板書:
把6.5×0.82變成整數乘法,6.5變成65擴大10倍,0.82變成82擴大100倍,這樣乘出來的積就擴大了10×100=1000倍。要求原來的積,應把乘出來的積再縮小1000倍。教師板書:
說明書寫的格式,并提示學生:要先點小數點,再把小數末尾的“0”劃掉。
3.總結小數乘法的計算法則。
(1)引導學生觀察算式得出:兩個因數中一共有兩位小數,積中就有兩位小數;兩個因數中一共有三位小數,積中就有三位小數。
(2)想一想:6.05×0.82的積中有幾位小數?6.052×0.82的積中有幾位小數?
(3)引導學生概括:兩個因數中一共有幾位小數,積中就幾位小數。
(4)在小數乘以整數的計算方法的基礎上,師生共同歸納總結出小數乘法的計算法則。
(5)完成法則下面的“做一做”。
出示 67×0.3 2.14×6.2 0.375×12.4 2.16×3.52先判斷積里應該有幾位小數,再讓學生獨立計算,然后集體訂正。訂正時學生說一說是怎樣計算的。
三、鞏固發展
1.練習一5題
(1)題,先引導學生理解“十分之三”和“一半”分別用什么數表示,然后學生獨立列式。
(2)題,學生獨立列式,訂正時,說一說根據什么列式的。
2.說出下列算式表示的意義:
2.54×0.8 13×0.36 16.2×15 24×0.035
3.練習一6題
4.在下面各式的積中點上小數點。
5.練習一8題。學生獨立填書,訂正時指名說一說是怎樣想的。
四、全課小結:引導學生回憶這節課學習了什么知識?
五、布置作業:練習一7題、9題。
高二數學教案6
教學目標
1.掌握分析法證明不等式;
2.理解分析法實質--執果索因;
3.提高證明不等式證法靈活性。
教學重點分析法
教學難點分析法實質的理解
教學方法 啟發引導式
教學活動
(一)導入 新課
(教師活動)教師提出問題,待學生回答和思考后點評。
(學生活動)回答和思考教師提出的問題。
[問題1]我們已經學習了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?
[問題 2]能否用比較法或綜合法證明不等式:
[點評]在證明不等式時,若用比較法或綜合法難以下手時,可采用另一種證明方法:分析法。(板書課題)
設計意圖:復習已學證明不等式的方法。指出用比較法和綜合法證明不等式的不足之處,激發學生學習新的證明不等式知識的積極性,導入 本節課學習內容:用分析法證明不等式。
(二)新課講授
【嘗試探索、建立新知】
(教師活動)教師講解綜合法證明不等式的邏輯關系,然后提出問題供學生研究,并點評。幫助學生建立分析法證明不等式的知識體系。投影分析法證明不等式的概念。
(學生活動)與教師一道分析綜合法的邏輯關系,在教師啟發、引導下嘗試探索,構建新知。
[講解]綜合法證明不等式的邏輯關系:以已知條件中的不等式或基本不等式作為結論,逐步尋找它成立的必要條件,直到必要條件就是要證明的不等式。
[問題1]我們能不能用同樣的思考問題的方式,把要證明的不等式作為結論,逐步去尋找它成立的充分條件呢?
[問題2]當我們尋找的充分條件已經是成立的不等式時,說明了什么呢?
[問題3]說明要證明的不等式成立的理由是什么呢?
[點評]從要證明的結論入手,逆求使它成立的充分條件,直到充分條件顯然成立為止,從而得出要證明的結論成立。就是分析法的邏輯關系。
[投影]分析法證明不等式的概念。(見課本)
設計意圖:對比綜合法的邏輯關系,教師層層設置問題,激發學生積極思考、研究。建立新的知識;分析法證明不等式。培養學習創新意識。
【例題示范、學會應用】
(教師活動)教師板書或投影例題,引導學生研究問題,構思證題方法,學會用分析法證明不等式,并點評用分析法證明不等式必須注意的問題。
(學生活動)學生在教師引導下,研究問題,與教師一道完成問題的論證。
例1 求證
[分析]此題用比較法和綜合法都很難入手,應考慮用分析法。
證明:(見課本)
[點評]證明某些含有根式的不等式時,用綜合法比較困難。此例中,我們很難想到從“ ”入手,因此,在不等式的證明中,分析法占有重要的位置,我們常用分析法探索證明途徑,然后用綜合法的形式寫出證明過程,這是解決數學問題的一種重要思維方法,事實上,有些綜合法的表述正是建立在分析法思索的基礎上,分析法的優越性正體現在此。
例2 已知: ,求證: (用分析法)請思考下列證法有沒有錯誤?若有錯誤,錯在何處?
[投影]證法一:因為 ,所以 、去分母,化為 ,就是 .由已知 成立,所以求證的不等式成立。
證法二:欲證 ,因為
只需證 ,即證 ,即證
因為 成立,所以 成立。
(證法二正確,證法一錯誤。錯誤的原因是:雖然是從結論出發,但不是逐步逆戰結論成立的充分條件,事實上找到明顯成立的不等式是結論的必要條件,所以不符合分析法的邏輯原理,犯了邏輯上的錯誤。)
[點評]①用分析法證明不等式的`邏輯關系是:
(結論)(步步尋找不等式成立的充分條件)(結論)
分析法是“執果索因”,它與綜合法的證明過程(由因導果)恰恰相反。②用分析法證明時要注意書寫格式。分析法論證“若A則B”這個命題的書寫格式是:
要證命題B為真,只需證明 為真,從而有……
這只需證明 為真,從而又有……
……
這只需證明A為真。
而已知A為真,故命題B必為真。
要理解上述格式中蘊含的邏輯關系。
[投影] 例3 證明:通過水管放水,當流速相同時,如果水管截面(指橫截面,下同)的周長相等,那么截面是圓的水管比截面是正方形的水管流量大。
[分析]設未知數,列方程,因為當水的流速相同時,水管的流量取決于水管截面面積的大小,設截面的周長為 ,則周長為 的圓的半徑為 ,截面積為 ;周長為 的正方形邊長為 ,截面積為 ,所以本題只需證明:
證明:(見課本)
設計意圖:理解分析法與綜合法的內在聯系,說明分析法在證明不等式中的重要地位。掌握分析法證明不等式,特別重視分析法證題格式及格式中蘊含的邏輯關系。靈活掌握分析法的應用,培養學生應用數學知識解決實際問題的能力。
高二數學教案7
教學要求:理解曲線交點與方程組的解的關系,掌握直線與曲線位置關系的討論,能熟練地求曲線交點。
教學重點:熟練地求交點。
教學過程:
一、復習準備:
1、直線A x+B +C =0與直線A x+B +C =0,平行的充要條件是 ,相交的充要條件是 ;
重合的充要條件是 ,垂直的`充要條件是 。
2、知識回顧:充分條件、必要條件、充要條件。
二、講授新課:
1、教學例題:
①出示例:求直線=x+1截曲線= x 所得線段的中點坐標。
②由學生分析求解的思路→學生練→老師評講
(聯立方程組→消用韋達定理求x坐標→用直線方程求坐標)
③試求→訂正→小結思路。→變題:求弦長
④出示例:當b為何值時,直線=x+b與曲線x + =4 分別 相交?相切? 相離?
⑤分析:三種位置關系與兩曲線的交點情況有何關系?
⑥學生試求→訂正→小結思路。
⑦討論其它解法?
解二:用圓心到直線的距離求解;
解三:用數形結合法進行分析。
⑧討論:兩條曲線F (x,)=0與F (x,)=0相交的充要條件是什么?
如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關系?
( 聯立方程組后,一解時:相切或相交; 二解時:相交; 無解時:相離)
2、練習:
求過點(-2,- )且與拋物線= x 相切的直線方程。
三、鞏固練習:
1、若兩直線x+=3a,x-=a的交點在圓x + =5上,求a的值。
(答案:a=±1)
2、求直線=2x+3被曲線=x 截得的線段長。
3、課堂作業:書P72 3、4、10題。
高二數學教案8
[教學目標]
1.知識與技能目標:掌握等差數列的概念;理解等差數列的通項公式的推導過程;了解等差數列的函數特征;能用等差數列的通項公式解決相應的一些問題。
2.過程與方法目標:讓學生親身經歷“從特殊入手,研究對象的性質,再逐步擴大到一般”這一研究過程,培養他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養學生分析問題解決問題的能力。
3.情感態度與價值觀目標:通過對等差數列的研究,培養學生主動探索、勇于發現的求索精神;使學生逐步養成細心觀察、認真分析、及時總結的好習慣。
[教學重難點]感
1.教學重點:等差數列的概念的理解,通項公式的推導及應用。
2.教學難點:
(1)對等差數列中“等差”兩字的把握;
(2)等差數列通項公式的推導。
[教學過程]
一、課題引入
創設情境引入課題:(這節課我們將學習一類特殊的數列,下面我們看這樣一些例子)
(1)、在過去的三百多年里,人們分別在下列時間里觀測到了哈雷慧星:
1682,1758,1834,1910,1986,()
你能預測出下次觀測到哈雷慧星的大致時間嗎?判斷的依據是什么呢?
(2)、通常情況下,從地面到11km的高空,氣溫隨高度的變化而變化符合一定的規律,請你根據下表估計一下珠穆朗瑪峰峰頂的溫度。
(3)1,4,7,10,(),16,…
(4)2,0,-2,-4,-6,(),…
它們共同的規律是?
從第二項起,每一項與前一項的差等于同一個常數。
我們把有這一特點的數列叫做等差數列。
二、新課探究
(一)等差數列的定義
1、等差數列的定義
如果一個數列從第二項起,每一項與前一項的差等于同一個常數,那么這個數列就叫等差數列。這個常數叫做等差數列的公差,通常用字母d來表示。
(1)定義中的關健詞有哪些?
(2)公差d是哪兩個數的差?
2、等差數列定義的數學表達式:
試一試:它們是等差數列嗎?
(1)1,3,5,7,9,2,4,6,8,10…
(2)5,5,5,5,5,5,…
(3)-1,-3,-5,-7,-9,…
(4)數列{an},若an+1-an=3
3、等差中頂定義
在如下的兩個數之間,插入一個什么數后這三個數就會成為一個等差數列:
(1)、2,(),4(2)、-12,(),0(3)a,(),b
如果在a與b中間插入一個數A,使a,A,b成等差數列,那么A叫做a與b的等差中項。
(二)等差數列的通項公式
探究1:等差數列的通項公式(求法一)
如果等差數列首項是,公差是,那么這個等差數列如何表示?呢?
根據等差數列的定義可得:
所以:
由此得,因此等差數列的通項公式就是:,三、應用與探索
例1、(1)求等差數列8,5,2,…,的.第20項。
(2)等差數列-5,-9,-13,…,的第幾項是–401?
(2)、分析:要判斷-401是不是數列的項,關鍵是求出通項公式,并判斷是否存在正整數n,使得成立,實質上是要求方程的正整數解。
例2、在等差數列中,已知=10,=31,求首項與公差d.
解:由,得。
在應用等差數列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。
鞏固練習
1.等差數列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。
A.1B.-1C.-2D.2
2.一張梯子一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。求公差d。
四、小結
1.等差數列的通項公式:
公差;
2.等差數列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;
3.判斷一個數列是否為等差數列只需看是否為常數即可;
4.利用從特殊到一般的思維去發現數學系規律或解決數學問題。
五、作業:
1、必做題:課本第40頁習題2.2第1,3,5題
高二數學教案9
教學內容:冀教版義務教育課程標準試驗教科書一年級下冊86~87頁兩位數減一位數(退位)
教材分析:本課通過"孫悟空請客"的情境引出新課34-8,激發起學生的學習興趣。再組織學生動手擺小棒試算,小組討論交流擺、試算的過程及方法,充分發揮學生的主體作用;"師徒改造花果山",培養學生自學用豎式計算的能力;"唐僧、八戒、沙僧植樹,綠化花果山",鞏固知識。
學生分析:100以內的兩位數減一位數的退位減法是在學習20以內的兩位數減一位數的退位減法后進行的,學生已經對兩位數減一位數的退位減法有一定的知識基礎,掌握了退位減法的算理。本班多數學生對兩位數減一位數的退位減法是容易接受的。
設計理念:激趣引入新課,以"孫悟空請客",為情境引入新課提高了學生的`興趣。以學生自主探究新知為主要學習方式,學生擺小棒,自學豎式計算的方法,為學生提供了積極思考、自主探究的空間。
德育目標:對學生進行環境保護教育,增強保護環境意識。
知識目標:
1、在操作、試算的過程中,學習兩位數減一位數(退位)的計算方法。
2、學會用豎式計算兩位數減一位數(退位),理解"個位不夠減從十位借1再減的道理。
能力目標:培養學生動手、動口、動腦的能力。
教學重點:掌握兩位數減一位數(退位)的計算方法。學會用豎式計算。
教學難點:理解"個位不夠減,從十位借1再減的道理。
教學方法:操作法、直觀演示法、自學法、討論法
教具:投影片、學具:小棒、卡片
板書設計(略)
教學過程:
一、情境引入
1 、情境引入"孫悟空請客""34-8"
師:今天,我給同學們講一個西游記后轉的故事:
孫悟空回到花果山,時間久了,想請師傅和師弟聚聚。于是打電話讓師傅和師弟星期天來花果山。星期天唐僧、八戒、沙僧到了。花果山一片荒涼,水簾洞也只有斷斷續續的幾滴水。一打聽,孫悟空為掙錢,開了鐵礦,破壞了環境,毀壞不少山林。
孫悟空去果園里摘桃子,他只摘了34個桃子,豬八戒吃了8個
唐僧給沙僧提出一個問題:34個桃子,八戒吃了8個,還剩幾個桃子?
師:你能幫沙僧算算嗎?怎樣列算式
生:34-8
師:同學們真聰明!同時教師板書34-8
2 、學生通過擺小棒試算出結果(學生操作,教師巡視)
全班交流自己是怎樣擺小棒的。可能有以下兩種算法㈠從34里拿出14,14減8得6,20加6得26。㈡從34里拿出10,10減8得2,24加2得26。教師板書(略)
3 、豎式計算
讓學生自學用豎式計算的方法。學生自學,教師巡回指導。
4 、學生匯報自學結果及發現的問題,教師隨學生匯報的自學結果。板書略。
重點理解十位數字上的重點符號表示退位。引出個位不夠減,從十位借一再減的計算方法。
二、嘗試練習
投影出示87頁"試一試"61-942-794-6學生獨立計算同桌討論交流。
三、八戒贈樹知識應用
孫悟空覺得很沒面子,就再次去果園,唐僧、八戒、沙僧隨后。到了果園一看,桃樹38棵,干枯了9棵,蘋果樹43棵,干枯了6棵,杏樹80棵,干枯了7棵。同學們算算,桃樹還剩幾棵?蘋果樹還剩幾棵?杏樹還活幾棵?
1、38-943-680-7
指3名學生板演,其他學生練習本上做,做完后集體訂正。
八戒直搖頭:"可惜,可惜。我雖然好吃懶做,但我把取經途中的遇到的好的果樹移植到我家,經過這幾年培育,都成了優良品種,如不嫌棄,我送你幾棵,改良一下你這里的品種。也防止沙土流失,還花果山本來面目,順便也嘗嘗我的水果" 。
2、還需植多少棵樹?
師:八戒打個電話,汽車拉著優良品種果樹和水果,來到花果山。于是,唐僧、八戒、沙僧、孫悟空帶領猴子們開始植樹。咱們幫幫孫悟空植樹,好不好?打開書看87頁第二題的圖,請你仔細觀察圖意并列式計算,重點說算法。一共55棵,已經植了8棵,還要植幾棵?
3、品嘗水果
出示卡片,學生搶答。87頁3題。
四、小游戲拓展延伸
植完樹,休息一會兒,我們做個游戲。我這里有5張卡片,在黑板上貼出"2、5、7、-、=",你們桌子上也有這樣的卡片,我們用這些卡片來做一個數學游戲,你能列出幾個式子。
游戲規則:1、用這些卡片擺成兩位數減一位數的退位減法2、同桌一組,一人擺一人算。
全班交流,教師板書25-772-552-7
同學們用豎式計算出結果。
五、自主小天地
師:唐僧、八戒、沙僧告別花果山。通過"孫悟空請客",我們學習了哪些知識?
自己編題,寫在"自主小天地"中。
高二數學教案10
教學目標
(1)使學生了解并會用二元一次不等式表示平面區域以及用二元一次不等式組表示平面區域;
(2)了解線性規化的意義以及線性約束條件、線性目標函數、線性規化問題、可行解、可行域以及最優解等基本概念;
(3)了解線性規化問題的圖解法,并能應用它解決一些簡單的實際問題;
(4)培養學生觀察、聯想以及作圖的能力,滲透集合、化歸、數形結合的 數學 思想,提高學生“建模”和解決實際問題的能力;
(5)結合教學內容,培養學生 學習 數學 的興趣和“用 數學 ”的意識,激勵學生勇于創新.
教學建議
一、知識結構
教科書首先通過一個具體問題,介紹了二元一次不等式表示平面區域.再通過一個具體實例,介紹了線性規化問題及有關的幾個基本概念及一種基本解法-圖解法,并利用幾道例題說明線性規化在實際中的應用.
二、重點、難點分析
本小節的重點是二元一次不等式(組)表示平面的區域.
對學生來說,二元一次不等式(組)表示平面的區域是一個比較陌生、抽象的概念,按高二學生現有的知識和認知水平難以透徹理解,因此 學習 二元一次不等式(組)表示平面的區域分為兩個大的層次:
(1)二元一次不等式表示平面區域.首先通過建立新舊知識的聯系,自然地給出概念.明確二元一次不等式在平面直角坐標系中表示直線某一側所有點組成的平面區域不包含邊界直線(畫成虛線).其次再擴大到所表示的平面區域是包含邊界直線且要把邊界直線畫成實線.
(2)二元一次不等式組表示平面區域.在理解二元一次不等式表示平面區域含義的基礎上,畫不等式組所表示的平面區域,找出各個不等式所表示的平面區域的公共部分.這是學生對代數問題等價轉化為幾何問題以及 數學 建模方法解決實際問題的基礎.
難點是把實際問題轉化為線性規劃問題,并給出解答.
對許多學生來說,從抽象到的化歸并不比從具體到抽象遇到的問題少,學生解 數學 應用題的最常見困難是不會將實際問題提煉成 數學 問題,即不會建模.所以把實際問題轉化為線性規劃問題作為本節的難點,并緊緊圍繞如何引導學生根據實際問題中的已知條件,找出約束條件和目標函數,然后利用圖解法求出最優解作為突破這個難點的關鍵.
對學生而言解決應用問題的障礙主要有三類:
①不能正確理解題意,弄清各元素之間的關系;
②不能分清問題的主次關系,因而抓不住問題的本質,無法建立 數學 模型;
③孤立地考慮單個的問題情景,不能多方聯想,形成正遷移.針對這些障礙以及題目本身文字過長等因素,將本課設計為計算機輔助教學,從而將實際問題鮮活直觀地展現在學生面前,以利于理解;分析完題后,能夠抓住問題的本質特征,從而將實際問題抽象概括為線性規劃問題.另外,利用計算機可以較快地幫助學生掌握尋找整點最優解的方法.
三、教法建議
(1)對學生來說,二元一次不等式(組)表示平面的區域是一個比較陌生的概念,不象二元一次方程表示直線那樣已早有所知,為使學生對這一概念的引進不感到突然,應建立新舊知識的聯系,以便自然地給出概念
(2)建議將本節新課講授分為五步(思考、嘗試、猜想、證明、歸納)來進行,目的是為了分散難點,層層遞進,突出重點,只要學生對舊知識掌握較好,完全有可能由學生主動去探求新知,得出結論.
(3)要舉幾個典型例題,特別是似是而非的例子,對理解二元一次不等式(組)表示的平面區域的含義是十分必要的`.
(4)建議通過本節教學著重培養學生掌握“數形結合”的 數學 思想,盡管側重于用“數”研究“形”,但同時也用“形”去研究“數”,這對培養學生觀察、聯想、猜測、歸納等 數學 能力是大有益處的.
(5)對作業、思考題、研究性題的建議:
①作業主要訓練學生規范的解題步驟和作圖能力;
②思考題主要供學有余力的學生課后完成;
③研究性題綜合性較大,主要用于拓寬學生的思維.
(6)若實際問題要求的最優解是整數解,而我們利用圖解法得到的解為非整數解(近似解),應作適當的調整,其方法應以與線性目標函數的直線的距離為依據,在直線的附近尋求與此直線距離最近的整點,不要在用圖解法所得到的近似解附近尋找.
如果可行域中的整點數目很少,采用逐個試驗法也可.
(7)在線性規劃的實際問題中,主要掌握兩種類型:一是給定一定數量的人力、物力資源,問怎樣運用這些資源能使完成的任務量最大,收到的效益最大;二是給定一項任務問怎樣統籌安排,能使完成的這項任務耗費的人力、物力資源最小.
高二數學教案11
教學準備
教學目標
1、知識與技能:
(1)推廣角的概念、引入大于角和負角;
(2)理解并掌握正角、負角、零角的定義;
(3)理解任意角以及象限角的概念;
(4)掌握所有與角終邊相同的角(包括角)的表示方法;
(5)樹立運動變化觀點,深刻理解推廣后的角的概念;
(6)揭示知識背景,引發學生學習興趣;
(7)創設問題情景,激發學生分析、探求的學習態度,強化學生的參與意識。
2、過程與方法:
通過創設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習。
3、情態與價值:
通過本節的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關系。理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。
教學重難點
重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。
難點:終邊相同的角的表示。
教學工具
投影儀等。
教學過程
【創設情境】
思考:你的.手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1.25小時,你應當如何將它校準?當時間校準以后,分針轉了多少度?
我們發現,校正過程中分針需要正向或反向旋轉,有時轉不到一周,有時轉一周以上,這就是說角已不僅僅局限于之間,這正是我們這節課要研究的主要內容——任意角。
【探究新知】
1、初中時,我們已學習了角的概念,它是如何定義的呢?
[展示投影]角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所成的圖形。如圖1.1—1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉到終止位置OB,就形成角a。旋轉開始時的射線叫做角的始邊,OB叫終邊,射線的端點o叫做叫a的頂點。
2、如上述情境中所說的校準時鐘問題以及在體操比賽中我們經常聽到這樣的術語:“轉體”(即轉體2周),“轉體”(即轉體3周)等,都是遇到大于的角以及按不同方向旋轉而成的角。同學們思考一下:能否再舉出幾個現實生活中“大于的角或按不同方向旋轉而成的角”的例子,這些說明了什么問題?又該如何區分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區別起見,我們規定:按逆時針方向旋轉所形成的角叫正角(positiveangle),按順時針方向旋轉所形成的角叫負角(negativeangle)。如果一條射線沒有做任何旋轉,我們稱它形成了一個零角(zeroangle)。
3、學習小結:
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。
課后習題
作業:
1、習題1.1A組第1,2,3題。
2、多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,進一步理解具有相同終邊的角的特點。
高二數學教案12
【教材分析】
1、知識內容與結構分析
集合論是現代數學的一個重要的基礎。在高中數學中,集合的初步知識與其他內容有著密切的聯系,是學習、掌握和使用數學語言的基礎,集合論以及它所反映的數學思想在越來越廣泛的領域中得到應用。課本從學生熟悉的集合(自然數集合、有理數的集合等)出發,結合實例給出了元素、集合的含義,學生通過對具體實例的抽象、概括發展了邏輯思維能力。
2、知識學習意義分析
通過自主探究的學習過程,了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言描述不同的具體問題,感受集合語言的意義和作用。
3、教學建議與學法指導
由于本節新概念、新符號較多,雖然內容較為淺顯,但不應講得過快,應在講解概念的同時,讓學生多閱讀課本,互相交流,在此基礎上理解概念并熟悉新符號的使用。通過問題探究、自主探索、合作交流、自我總結等形式,調動學生的積極性。
【學情分析】
在初中,學生學習過一些點的集合或軌跡,如:平面內到一個定點的距離等于定長的點的集合(圓);到一條線段的兩個端點的距離相等的點的集合(線段的垂直平分線)。這對學生學習本節課的知識有一定的幫助,只不過現在我們要把這個“集合”推廣,它不僅僅是點的集合或圖形的集合,而是“指定的某些對象的全體”。集合語言是現代數學的基本語言,使用這種語言,不僅有助于簡潔、準確地表達數學內容,還可以用來刻畫和解決生活中的許多問題。學習集合,可以發展同學們用數學語言進行交流的能力。
【教學目標】
1、知識與技能
(1)學生通過自主學習,初步理解集合的概念,理解元素與集合間的關系,了解集合元素的確定性、互異性,無序性,知道常用數集及其記法;
(2)掌握集合的.常用表示法——列舉法和描述法。
2、過程與方法
通過實例了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉換和抽象概括能力,樹立用集合語言表示數學內容的意識。
3、情態與價值
在掌握基本概念的基礎上,能夠解決相關問題,獲得數學學習的成就感,提高學生分析問題和解決問題的能力,培養學生的應用意識。
【重點難點】
1、教學重點:集合的基本概念與表示方法。
2、教學難點:選擇合適的方法正確表示集合。
【教學思路】
通過實例以及學生熟悉的數集,引入集合的概念,進而給出集合的表示方法,學生通過自我體會、自主學習、自我總結達到掌握本節課內容的目的。教學過程按照“提出問題——學生討論——歸納總結——獲得新知——自我檢測”環節安排。
【教學過程】
課前準備:
提前留給學生預習方案:a.預習初中數學中有關集合的章節;b.預習本節內容,試著找出與以往的聯系;c.搜集生活中的集合的使用實例。
導入新課:同學們,我們今天要學習的是集合的知識,在小學和初中,我們已經接觸過了一些集合,例如,自然數的集合,有理數的集合,不等式x-7<3的解得集合,到一個頂點的距離等于定長的點的集合(即圓),等等。現在呢,我要說的是:我們大家通過對初中知識的預習和對本節課的預習我相信你們能夠很大一部分已經掌握了本節知識的主要問題,對不對?(同學們會高興地說:對!)
下面我們分三個小組,做個游戲,好不好?我們互相競賽答題,互相評論優點與不足,好不好?(同學們在被調動起情緒的時候應該說:好!)
教與學的過程:
預設問題設計意圖師生活動教師活動
一組二組三組活動同學們,通過看課本2頁的(1)至(8)個例子,同學們有什么啟發嗎?提出一個模糊一點的問題,留給三組學生更寬的思考空間。啟發思考,激發興趣。教師點撥,及時糾正偏差的回答方向。(理想答案:我們學過很多集合的知識了。我們會舉出一些集合的例子。)
學生三個組分組輪流回答。你能說出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養學生的總結概括能力。引導學生共同得出正確的結論。最后給出準確的定義:我們把研究的對象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡稱集)。學生討論,分組輪流回答。你們能說出元素與集合是什么關系嗎?怎么表示呀?用什么額符號表示啊?通過學生自己總結,對元素與集合的關系記憶更深刻。教師指導學生得出準確答案。(理想答案:集合是整體,元素是個體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a.如果a是集合A的元素,就說a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說a不屬于集合A,記做A)學生討論,分組輪流回答。
可以互相挑出對方回答問題的錯誤來比賽。我們描述集合常用哪些方法呢?怎么表示?引導學生認識集合的兩種常見表示方法。教師引導指正。(理想答案:列舉法:把集合的元素一一列舉出來,并用花括號“{}”括起來表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內線寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。同學們上黑板邊回答邊演練。誰能試著說說集合中的元素有什么特點啊?拓展知識,讓學生對元素的特征有極愛哦理性的認識,并開發其探究思維。教師點撥。(理想答案:元素一旦給出是確定的,確定性,沒有相同的,互異性,是沒有順序的,無序性。
即(1)確定性:對于任意一個元素,要么它屬于某個指定集合,要么它不屬于該集合,二者必居其一。
(2)互異性:同一個集合中的元素是互不相同的。
(3)無序性:任意改變集合中元素的排列次序,它們仍然表示同一個集合。)學生探究討論,回答。什么叫兩個集合相等呢?深刻理解集合。教師給出答案。(如果構成兩個集合的元素是一樣的,我們稱這兩個集合是相等的。)學生探討回答。
高二數學教案13
教學 目標:
(1)掌握圓的一般方程及其特點.
(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.
(3)能用待定系數法,由已知條件求出圓的一般方程.
(4)通過本節課學習,進一步掌握配方法和待定系數法.
教學 重點:
(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.
(2)用待定系數法求圓的方程.
教學 難點:
圓的一般方程特點的研究.
教學 用具:
計算機.
教學 方法:
啟發引導法,討論法.
教學 過程 :
【引入】
前邊已經學過了圓的標準方程
把它展開得
任何圓的方程都可以通過展開化成形如
①
的方程
【問題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得
②
顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:
(1)當 時,②表示以 為圓心、以 為半徑的圓;
(2)當 時,②表示一個點 ;
(3)當 時,②不表示任何曲線.
總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.
圓的一般方程的定義:
當 時,①表示以 為圓心、以 為半徑的圓,
此時①稱作圓的一般方程.
即稱形如 的方程為圓的`一般方程.
【問題2】圓的一般方程的特點,與圓的標準方程的異同.
(1) 和 的系數相同,都不為0.
(2)沒有形如 的二次項.
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標準方程各有千秋:
(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.
【實例分析】
例1:下列方程各表示什么圖形.
(1) ;
(2) ;
(3) .
學生演算并回答
(1)表示點(0,0);
(2)配方得 ,表示以 為圓心,3為半徑的圓;
(3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.
例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.
分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.
解:設圓的方程為
因為 、 、 三點在圓上,則有
解得: , ,
所求圓的方程為
可化為
圓心為 ,半徑為5.
請同學們再用標準方程求解,比較兩種解法的區別.
【概括總結】通過學生討論,師生共同總結:
(1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.
(2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.
下面再看一個問題:
例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.
解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.
∵
∴
即
化簡得
點 在曲線上,并且曲線為圓 內部的一段圓弧.
【練習鞏固】
(1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)
(2)求經過三點 、 、 的圓的方程.
分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .
(3)課本第79頁練習1,2.
【小結】師生共同總結:
(1)圓的一般方程及其特點.
(2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.
(3)用待定系數法求圓的方程.
【作業】課本第82頁5,6,7,8.
【 板書 設計】
圓的一般方程
圓的一般方程
例1:
例2:
例3:
練習:
小結:
作業:
高二數學教案14
一、教學目標
1.知識與技能
(1)理解流程圖的順序結構和選擇結構。
(2)能用文字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖
2.過程與方法
學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。
3情感、態度與價值觀
學生通過動手作圖,.用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想程序化思想,在歸納概括中培養學生的邏輯思維能力。
二、教學重點、難點
重點:算法的順序結構與選擇結構。
難點:用含有選擇結構的流程圖表示算法。
三、學法與教學用具
學法:學生通過動手作圖,.用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。
教學用具:尺規作圖工具,多媒體。
四、教學思路
(一)、問題引入 揭示課題
例1 尺規作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用文字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節要學習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
(二)、觀察類比 理解課題
1、 投影介紹流程圖的符號、名稱及功能說明。
符號 符號名稱 功能說明終端框 算法開始與結束處理框 算法的各種處理操作判斷框 算法的各種轉移
輸入輸出框 輸入輸出操作指向線 指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
(1)順序結構
依照步驟依次執行的一個算法
流程圖:
(2)選擇結構
對條件進行判斷來決定后面的步驟的`結構
流程圖:
3.用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式 當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
②用公式 求s
③輸出s
流程圖
(2) 已知函數 對于每輸入一個X值都得到相應的函數值,寫出算法并畫流程圖。
算法:(語言表示)
① 輸入X值
②判斷X的范圍,若 ,用函數Y=x+1求函數值;否則用Y=2-x求函數值
③輸出Y的值
流程圖
小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作 經歷課題
1.用流程圖表示確定線段A.B的一個16等分點
2.分析講解例2;
分析:
思考:有多少個選擇結構?相應的流程圖應如何表示?
流程圖:
(四)歸納小結 鞏固課題
1.順序結構和選擇結構的模式是怎樣的?
2.怎樣用流程圖表示算法。
(五)練習P99 2
(六)作業P99 1
高二數學教案15
教學準備
教學目標
熟練掌握三角函數式的求值
教學重難點
熟練掌握三角函數式的求值
教學過程
【知識點精講】
三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形
三角函數式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數式的`值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解
(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數值的影響,對角的范圍要討論
【例題選講】
課堂小結】
三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形
三角函數式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解
(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數值的影響,對角的范圍要討論
【高二數學教案】相關文章:
高二數學教案12-04
高二數學教案01-26
高二數學教案優秀10-12
高二數學教案(合集)03-26
高二優秀數學教案11-14
關于高二數學教案12-01
高二數學教案精品01-24
高二數學教案范文01-06
關于高二數學教案12-16
中職高二數學教案11-07