1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>高中數學教案

    高中數學教案

    時間:2023-01-25 14:06:13 數學教案 我要投稿

    高中數學教案(匯編15篇)

      作為一位優秀的人民教師,有必要進行細致的教案準備工作,編寫教案有利于我們科學、合理地支配課堂時間。寫教案需要注意哪些格式呢?下面是小編為大家收集的高中數學教案,歡迎大家分享。

    高中數學教案(匯編15篇)

    高中數學教案1

      1.教學目標

      (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

      2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.

      (2)能力目標: 1.進一步培養學生用解析法研究幾何問題的能力;

      2.使學生加深對數形結合思想和待定系數法的理解;

      3.增強學生用數學的意識.

      (3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.

      2.教學重點.難點

      (1)教學重點:圓的標準方程的求法及其應用.

      (2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

      當的坐標系解決與圓有關的實際問題.

      3.教學過程

      (一)創設情境(啟迪思維)

      問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

      [引導] 畫圖建系

      [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

      解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

      將x=2.7代入,得 .

      即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

      (二)深入探究(獲得新知)

      問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

      答:x2 y2=r2

      2.如果圓心在 ,半徑為 時又如何呢?

      [學生活動] 探究圓的方程。

      [教師預設] 方法一:坐標法

      如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

      由兩點間的距離公式,點m適合的條件可表示為 ①

      把①式兩邊平方,得(x―a)2 (y―b)2=r2

      方法二:圖形變換法

      方法三:向量平移法

      (三)應用舉例(鞏固提高)

      i.直接應用(內化新知)

      問題三:1.寫出下列各圓的方程(課本p77練習1)

      (1)圓心在原點,半徑為3;

      (2)圓心在 ,半徑為 ;

      (3)經過點 ,圓心在點 .

      2.根據圓的方程寫出圓心和半徑

      (1) ; (2) .

      ii.靈活應用(提升能力)

      問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

      [教師引導]由問題三知:圓心與半徑可以確定圓.

      2.已知圓的方程為 ,求過圓上一點 的切線方程.

      [學生活動]探究方法

      [教師預設]

      方法一:待定系數法(利用幾何關系求斜率-垂直)

      方法二:待定系數法(利用代數關系求斜率-聯立方程)

      方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]

      方法四:軌跡法(利用向量垂直列關系式)

      3.你能歸納出具有一般性的'結論嗎?

      已知圓的方程是 ,經過圓上一點 的切線的方程是: .

      iii.實際應用(回歸自然)

      問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

      [多媒體課件演示創設實際問題情境]

      (四)反饋訓練(形成方法)

      問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

      2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

      3.求圓x2 y2=13過點(-2,3)的切線方程.

      4.已知圓的方程為 ,求過點 的切線方程.

    高中數學教案2

      一、課程性質與任務

      數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。二、課程教學目標

      1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的`數學基礎知識。2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。

      3.引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。三、教學內容結構

      本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。

      1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。

      3.拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。四、教學內容與要求

      (一)本大綱教學要求用語的表述1.認知要求(分為三個層次)

      了解:初步知道知識的含義及其簡單應用。

      理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)

      計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。

      空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。

      分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。

      數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。

      (二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)

      第2單元不等式(8學時)

      第3單元函數(12學時)

      第4單元指數函數與對數函數(12學時)

      第5單元三角函數(18學時)

      第6單元數列(10學時)

      第7單元平面向量(矢量)(10學時)

      第8單元直線和圓的方程(18學時)

      第9單元立體幾何(14學時)

      第10單元概率與統計初步(16學時)

      2.職業模塊

      第1單元三角計算及其應用(16學時)

      第2單元坐標變換與參數方程(12學時)

      第3單元復數及其應用(10學時)

    高中數學教案3

      三維目標:

      1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;

      2、過程與方法:

      (1)能夠從現實生活或其他學科中提出具有一定價值的統計問題;

      (2)在解決統計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。

      3、情感態度與價值觀:通過對現實生活和其他學科中統計問題的提出,體會數學知識與現實世界及各學科知識之間的聯系,認識數學的重要性。

      4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數法的步驟,并能靈活應用相關知識從總體中抽取樣本。

      教學方法:

      講練結合法

      教學用具:

      多媒體

      課時安排:

      1課時

      教學過程:

      一、問題情境

      假設你作為一名食品衛生工作人員,要對某食品店內的一批小包裝餅干進行衛生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?

      二、探究新知

      1、統計的有關概念:總體:在統計學中,所有考察對象的全體叫做總體、個體:每一個考察的對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數目叫做樣本的容量、統計的基本思想:用樣本去估計總體、

      2、簡單隨機抽樣的概念一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。

      下列抽樣的方式是否屬于簡單隨機抽樣?為什么?

      (1)從無限多個個體中抽取50個個體作為樣本。

      (2)箱子里共有100個零件,從中選出10個零件進行質量檢驗,在抽樣操作中,從中任意取出一個零件進行質量檢驗后,再把它放回箱子。

      (3)從8臺電腦中,不放回地隨機抽取2臺進行質量檢查(假設8臺電腦已編好號,對編號隨機抽取)

      3、常用的簡單隨機抽樣方法有:

      (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。

      思考?你認為抽簽法有什么優點和缺點:當總體中的個體數很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現要抽取8位同學出來做游戲,請設計一個抽取的方法,要使得每位同學被抽到的機會相等。

      分析:可以把57位同學的學號分別寫在大小,質地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個抽出8張紙片,再選出紙片上的學號對應的同學即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續取n次;第三步:將取出的'n個號簽上的號碼所對應的n個個體作為樣本。

      (2)隨機數法的定義:利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣,叫隨機數表法,這里僅介紹隨機數表法。怎樣利用隨機數表產生樣本呢?下面通過例子來說明,假設我們要考察某公司生產的500克袋裝牛奶的質量是否達標,現從800袋牛奶中抽取60袋進行檢驗,利用隨機數表抽取樣本時,可以按照下面的步驟進行。第一步,先將800袋牛奶編號,可以編為000,001,799。

      第二步,在隨機數表中任選一個數,例如選出第8行第7列的數7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數7開始向右讀(讀數的方向也可以是向左、向上、向下等),得到一個三位數785,由于785<799,說明號碼785在總體內,將它取出;

      繼續向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。

      三、課堂練習

      四、課堂小結

      1、簡單隨機抽樣的概念一般地,設一個總體的個體數為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。

      2、簡單隨機抽樣的方法:抽簽法隨機數表法

      五、課后作業

      P57練習1、2

      六、板書設計

      1、統計的有關概念

      2、簡單隨機抽樣的概念

      3、常用的簡單隨機抽樣方法有:(1)抽簽法(2)隨機數表法

      4、課堂練習

    高中數學教案4

      一、自我介紹

      我姓x,是你們的數學老師,因為是數學老師所以在自我介紹的時候喜歡給出自己的數字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。

      二、相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節課我們不急于上新課,我想和大家聊一聊數學,一起來思考為什么要學習數學及如何學好數學這兩個問題。

      (一)為什么要學習數學

      相信高一的第一節課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數學老師我表達上不如文科老師迂回婉轉和風趣幽默,我們更喜歡用數字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數學系為北大第一系,這種傳統一直保持到現在。為什么數學系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數學是有用的,數學有助于提高能力。

      數學家華羅庚在《人民日報》精彩描述了數學在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻。

      問題1:大家知道海王星是怎么發現的,冥王星又是怎么被請出十大行星行列的?

      海王星的發現是在數學計算過程中發現的,天文望遠鏡的觀測只是驗證了人們的推論。

      1812年,法國人布瓦德在計算天王星的運動軌道時,發現理論計算值同觀測資料發生了一系列誤差。這使許多天文學家紛紛致力這個問題的研究,進而發現天王星的脫軌與一個未知的引力的存在相關。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的一封快信。發信人就是勒威耶。信中,勒威耶預告了一顆以往沒有發現的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發現了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學慣例,用神話里的名字把這顆星命名為"海王星"。

      1930年美國天文學家湯博發現冥王星,當時錯估了冥王星的質量,以為冥王星比地球還大,所以命名為大行星。然而,經過近30年的進一步觀測和計算,發現它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經過多年的爭論,國際天文學聯合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據國際天文學聯合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發現之日起地位就備受爭議。

      馬克思說:"一種科學只有在成功運用數學時,才算達到了真正完善的地步。"正因為數學是日常生活和進一步學習必不可少的基礎和工具,一切科學到了最后都歸結為數學問題。

      其實在我們的周圍有很多事情都是可以用數學可以來解決的,無非很多人都沒有用數學的眼光來看待。

      問題2:徒認為上帝是萬能的。你們認為呢?如何來證明你的結論呢?(讓同學發言)

      我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。

      證明:(反證法)假如上帝是萬能的

      那么他能夠制作出一塊無論什么力量都搬不動的石頭

      根據假設,既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭

      這與"無論什么力量都搬不動的石頭"相矛盾

      所以假設不成立

      所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?

      當然,我們學習的數學只是數學學科體系中很基礎,很小的一部分。現在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:"讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數學使人聰明…",也有人形象地稱數學是思維的體操。下面我們通過具體的例子來體驗一下某些數學思想方法和思維方式。

      故事一:據說國際象棋是古印度的一位宰相發明的。國王很欣賞他的這項發明,問他的宰相要什么賞賜。聰明的宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發現即使把全國所有的谷子抬來也遠遠不夠。

      人們通常憑借自己掌握的數學知識耍些小聰明,使問題妙不可言。

      數學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。

      數學思想:退到最簡單、最特殊的地方。

      故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現象中受到啟發,很好地解決了這一問題,你認為他會怎么做呢?

      渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現了數學學習中經常用到的發散式思維。在數學學習中,既要有集中式思維又要有發散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯系思維方式,表現為對解題方法的模仿和繼承;而發散式思維即對問題開拓、創新,表現為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。

      學數學有利于培養人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優化意識、反思意識,盡管數學在培養學生的`這些思維品質方面和其他學科存在著交集,但數學在其中的地位是無法被代替的。總之,學習數學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創造……

      (二)如何學好數學

      高中數學的內容多,抽象性、理論性強,高中很注重自學能力的培養的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學能力的培養,誰的自學能力強,那么在一定的程度上影響著你的成績以及你將來你發展的前途。同時要注意以下幾點:

      第一:對數學學科特點有清楚的認識

      主編寄語里是這樣描述數學的特征的:數學是自然的。數學的概念、方法、思想都是人類長期實踐中自然發展形成的,以數域的發展為例,從自然數到有理數到實數再到復數,都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產生的背景,它的形成過程以及它的應用,讓數學顯得合情合理,渾然天成。數學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數學規則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當然"的話,那就學不下去了。

      第二:要改變一個觀念。

      有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。過去的幾年里我分別帶過五十一中和一中的學生,兩邊學生的課堂感覺差不多,應該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學外課自主時間的投入太少,學習習慣不太好。

      第三:學數學要摸索自己的學習方法

      學習、掌握并能靈活應用數學的途徑有千萬條,每個人都可以有與眾不同的數學學習方法。做習題、用數學解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。此外,還要發揮問題的作用,學會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學習。同時,注意前后知識的銜接,類比地學、聯系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。

      第四:養成良好的學習習慣(與一中學生相比較)

      ㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。

      ㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。

      ㈢關于作業。絕對不允許有抄作業的情況發生。如果我發現有誰抄作業,那么既然他這樣喜歡抄,我就要你把當天的作業多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流

      ㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數學成績提高。

      好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。

    高中數學教案5

      教學目標:

      1。理解并掌握瞬時速度的定義;

      2。會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;

      3。理解瞬時速度的實際背景,培養學生解決實際問題的能力。

      教學重點:

      會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。

      教學難點:

      理解瞬時速度和瞬時加速度的定義。

      教學過程:

      一、問題情境

      1。問題情境。

      平均速度:物體的運動位移與所用時間的比稱為平均速度。

      問題一平均速度反映物體在某一段時間段內運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?

      問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的速度.

      2。探究活動:

      (1)計算運動員在2s到2.1s(t∈)內的平均速度。

      (2)計算運動員在2s到(2+?t)s(t∈)內的平均速度。

      (3)如何計算運動員在更短時間內的平均速度。

      探究結論:

      時間區間

      t

      平均速度

      0.1

      -13.59

      0.01

      -13.149

      0.001

      -13.1049

      0.0001

      -13.10049

      0.00001

      -13.100049

      0.000001

      -13.1000049

      當?t?0時,?-13.1,

      該常數可作為運動員在2s時的瞬時速度。

      即t=2s時,高度對于時間的瞬時變化率。

      二、建構數學

      1。平均速度。

      設物體作直線運動所經過的路程為,以為起始時刻,物體在?t時間內的平均速度為。

      可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當?t?0時,極限就是物體在時刻的瞬時速度。

      三、數學運用

      例1物體作自由落體運動,運動方程為,其中位移單位是m,時

      間單位是s,,求:

      (1)物體在時間區間s上的平均速度;

      (2)物體在時間區間上的平均速度;

      (3)物體在t=2s時的`瞬時速度。

      分析

      解

      (1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

      (2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

      (3)當?t?0,2+?t?2,從而平均速度的極限為:

      例2設一輛轎車在公路上作直線運動,假設時的速度為,

      求當時轎車的瞬時加速度。

      解

      ∴當?t無限趨于0時,無限趨于,即=。

      練習

      課本P12—1,2。

      四、回顧小結

      問題1本節課你學到了什么?

      1理解瞬時速度和瞬時加速度的定義;

      2實際應用問題中瞬時速度和瞬時加速度的求解;

      問題2解決瞬時速度和瞬時加速度問題需要注意什么?

      注意當?t?0時,瞬時速度和瞬時加速度的極限值。

      問題3本節課體現了哪些數學思想方法?

      2極限的思想方法。

      3特殊到一般、從具體到抽象的推理方法。

      五、課外作業

    高中數學教案6

      一、單元教學內容

      (1)算法的基本概念

      (2)算法的基本結構:順序、條件、循環結構

      (3)算法的基本語句:輸入、輸出、賦值、條件、循環語句

      二、單元教學內容分析

      算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的'思考與表達的能力,提高邏輯思維能力

      三、單元教學課時安排:

      1、算法的基本概念3課時

      2、程序框圖與算法的基本結構5課時

      3、算法的基本語句2課時

      四、單元教學目標分析

      1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

      2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

      3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

      4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

      五、單元教學重點與難點分析

      1、重點

      (1)理解算法的含義(2)掌握算法的基本結構(3)會用算法語句解決簡單的實際問題

      2、難點

      (1)程序框圖(2)變量與賦值(3)循環結構(4)算法設計

      六、單元總體教學方法

      本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

      七、單元展開方式與特點

      1、展開方式

      自然語言→程序框圖→算法語句

      2、特點

      (1)螺旋上升分層遞進(2)整合滲透前呼后應(3)三線合一橫向貫通(4)彈性處理多樣選擇

      八、單元教學過程分析

      1.算法基本概念教學過程分析

      對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

      2.算法的流程圖教學過程分析

      對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

      3.基本算法語句教學過程分析

      經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

      4.通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

      九、單元評價設想

      1.重視對學生數學學習過程的評價

      關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

      2.正確評價學生的數學基礎知識和基本技能

      關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

    高中數學教案7

      教學目標

      (1)了解算法的含義,體會算法思想。

      (2)會用自然語言和數學語言描述簡單具體問題的算法;

      (3)學習有條理地、清晰地表達解決問題的步驟,培養邏輯思維能力與表達能力。

      教學重難點

      重點:算法的含義、解二元一次方程組的算法設計。

      難點:把自然語言轉化為算法語言。

      情境導入

      電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:

      第一步:觀察、等待目標出現(用望遠鏡或瞄準鏡);

      第二步:瞄準目標;

      第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;

      第四步:根據第三步的結果修正彈著點;

      第五步:開槍;

      第六步:迅速轉移(或隱蔽)

      以上這種完成狙擊任務的方法、步驟在數學上我們叫算法。

      課堂探究

      預習提升

      1、定義:算法可以理解為由基本運算及規定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。

      2、描述方式

      自然語言、數學語言、形式語言(算法語言)、框圖。

      3、算法的要求

      (1)寫出的算法,必須能解決一類問題,且能重復使用;

      (2)算法過程要能一步一步執行,每一步執行的操作,必須確切,不能含混不清,而且經過有限步后能得出結果。

      4、算法的特征

      (1)有限性:一個算法應包括有限的操作步驟,能在執行有窮的操作步驟之后結束。

      (2)確定性:算法的計算規則及相應的計算步驟必須是唯一確定的。

      (3)可行性:算法中的每一個步驟都是可以在有限的時間內完成的基本操作,并能得到確定的結果。

      (4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續,且除了最后一步外,每一個步驟只有一個確定的后續。

      (5)不唯一性:解決同一問題的算法可以是不唯一的

      課堂典例講練

      命題方向1對算法意義的理解

      例1、下列敘述中,

      ①植樹需要運苗、挖坑、栽苗、澆水這些步驟;

      ②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;

      ③從青島乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;

      ④3x>x+1;

      ⑤求所有能被3整除的正數,即3,6,9,12。

      能稱為算法的個數為(  )

      A、2

      B、3

      C、4

      D、5

      【解析】根據算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

      【答案】B

      [規律總結]

      1、正確理解算法的概念及其特點是解決問題的關鍵、

      2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內解決這一問題、

      【變式訓練】下列對算法的理解不正確的是________

      ①一個算法應包含有限的步驟,而不能是無限的

      ②算法可以理解為由基本運算及規定的運算順序構成的完整的解題步驟

      ③算法中的每一步都應當有效地執行,并得到確定的結果

      ④一個問題只能設計出一個算法

      【解析】由算法的有限性指包含的步驟是有限的故①正確;

      由算法的明確性是指每一步都是確定的.故②正確;

      由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;

      由對于同一個問題可以有不同的算法故④不正確。

      【答案】④

      命題方向2解方程(組)的算法

      例2、給出求解方程組的一個算法。

      [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質的差別,為了適用于解一般的線性方程組,以便于在計算機上實現,我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

      [規范解答]方法一:算法如下:

      第一步,①×(-2)+②,得(-2+5)y=-14+11

      即方程組可化為

      第二步,解方程③,可得y=-1,④

      第三步,將④代入①,可得2x-1=7,x=4

      第四步,輸出4,-1

      方法二:算法如下:

      第一步,由①式可以得到y=7-2x,⑤

      第二步,把y=7-2x代入②,得x=4

      第三步,把x=4代入⑤,得y=-1

      第四步,輸出4,-1

      [規律總結]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調對“通法、通解”的理解,又要強調對所學知識的靈活運用。

      2、設計算法時,經常遇到解方程(組)的問題,一般是按照數學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據求解步驟設計算法步驟。

      【變式訓練】

      【解】算法如下:S1,①+2×②得5x=1;③

      S2,解③得x=;

      S3,②-①×2得5y=3;④

      S4,解④得y=;

      命題方向3篩選問題的算法設計

      例3、設計一個算法,對任意3個整數a、b、c,求出其中的最小值、

      [思路分析]比較a,b比較m與c―→最小數

      [規范解答]算法步驟如下:

      1、比較a與b的大小,若a

      2、比較m與c的大小,若m

      [規律總結]求最小(大)數就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數中篩選出滿足要求的一個。

      【變式訓練】在下列數字序列中,寫出搜索89的算法:

      21,3,0,9,15,72,89,91,93

      [解析]1、先找到序列中的第一個數m,m=21;

      2、將m與89比較,是否相等,如果相等,則搜索到89;

      3、如果m與89不相等,則往下執行;

      4、繼續將序列中的其他數賦給m,重復第2步,直到搜索到89。

      命題方向4非數值性問題的算法

      例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數量不少于羚羊的數量,狼就會吃掉羚羊。

      (1)設計安全渡河的算法;

      (2)思考每一步算法所遵循的共同原則是什么?

    高中數學教案8

      一、什么是教學案例

      教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一個包含有疑難問題的實際情境的描述,是一個教學實踐過程中的故事,描述的是教學過程中“意料之外,情理之中的事”。

      這可以從以下幾個層次來理解:

      教學案例是事件:教學案例是對教學過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學故事的產生、發展的歷程,它是對教學現象的動態性的把握。

      教學案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內,并且也可能包含有解決問題的方法在內。正因為這一點,案例才成為一種獨特的研究成果的表現形式。

      案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發生的事件,是教學事件的真實再現。是對“當前”課堂中真實發生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。

      二、如何進行教學案例研究

      教學案例是教師教學行為真實、典型的記錄,也是教師教學理念和教學思想的真實體現。因此它是教育教學研究的寶貴資源,也是教師之間交流的重要媒介。進行教學案例的研究是教師不斷反思、改進自己教學的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。

      那么如何進行教學案例研究呢?一般情況下,案例研究的程序基本有以下兩個環節:案例研究的準備及實施、案例研究報告的撰寫與反思。

      (一)案例研究的準備與實施

      1.研究主題的選擇

      案例研究都要有研究的重點和主題,這個主題常與教學改革的核心理念、常見的疑難問題和困惑事件相關,一般來說可以從教學的各個方面確定研究的主題,如從教師教學行為確定主題——教學材料的選擇、教學中的提問、教學媒體的使用、教學評價語言、課堂教學調控行為等;也可以從學生的學習方式確定主題——探究性學習、問題解決學習、合作學習、實踐性活動等。另外從學科特點、教學內容等都可以確定研究的主題。

      研究者要了解當前教學的大背景,教改的大方向,要熟悉相關的《課程標準》和有針對性地作一些理論準備。還要通過有關的調查,搜集詳盡的材料(如閱讀教師的教學設計,進行訪談等),同時初步確定案例研究的方向、研究任務,即初步確定案例的內容是關于教學策略、學生行為或是教學技能的研究。

      一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發現更有潛力?選擇的事件對學生是否有較大的情感影響(心靈是否受到震撼)?關鍵事件再現了前人(或自己)過去成功的行為嗎?事件呈現的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關的問題嗎?研究的主題如果反映以上的一些內容,那么這樣的案例研究在自我學習、內省和深層次理解方面就可能更加富有成效。

      高中數學教學案例研究的主題內容主要集中在三方面:(1)學科特點的體現:如數學思想方法的教學、數學思維品質的培養、本質屬性的抽象、數學結論的推廣等;(2)學生數學學習規律的探究:如數學學習習慣、解決問題的思維方式、獨立思考與合作學習等;(3)教師專業知識的提升:如數學板書與電子屏幕的展示對學生思維的影響、數學語言的訓練對人們思維的影響、數學知識模式化教學的優劣等。

      2.案例研究的基本方法

      (1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學活動的自然狀態下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學對象——學生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的`效果。對觀察的資料,可以逐字逐句整理成課堂教學實錄、教學程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學時間分配表等,以便以后繼續分析案例提供翔實的原始材料。

      (2)訪談與調查。對一些課堂教學不能觀察到的師生內心活動,如教師教學的目的、教學程序的意圖、教學手段的運用以及教學達標的成效等一些需要進一步了解的問題,可以通過與執教教師的交談以及和學生的座談,以豐富和充實課堂教學觀察的材料;對學生在課堂教學活動中回答問題的心理狀態、解題思路等問題,也可以在課后做一些問卷調查;對學生達標的成度、效度,也可以作一些測試調查。從這些訪談、調查的材料中,再分析課堂教學的現象,不難發現造成各種課堂現象與教師教學行為之間的因果關系,然后再具體尋找在哪個教學環節中出現問題,從中提煉出解決問題的對策。

      (3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現在的有關研究成果中受到啟發,從中找到課堂教學現象的理論依據,從而增強案例分析的說服力。當然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現象,而是通過有關教育理論文獻的查閱,去進一步解讀課堂教學的活動,挖掘案例中的教育思想。如在數學教學中,我們常常通過學生的動手操作來獲得有關的數學概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關文獻資料,從學習中提高研究者自身的理論水平。

      (二)案例研究報告的撰寫

      1.常見的案例報告格式

      撰寫教學案例,結構可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內外課堂教學案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關鍵教學事件等的分析。

      下面介紹兩種常用的案例編寫的格式:

      (1)“描述+分析”式

      此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結論。案例的描述一般是把課堂教學活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質,講述理論的解釋,明確正確的方法,最終獲得對關鍵教學事件的正確把握。

      (2)“背景+描述+問題+詮釋”式

      此格式是一種要求比較高的編寫格式,而且,它在實際教學中的作用也更大。通常它將整個案例分為四個部分:

      A.主題與背景

      主題是關鍵教學事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發生的地點、時間、人物的一些基本情況。當然,這部分的內容不宜很長,只需提綱挈領敘述清楚即可。

      B.情景描述

      與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學活動。

      C.問題討論

      這是根據主題要求與情景描述,進行的分析、歸納、總結與提煉,包括學科知識的要點、教學法和情景特點以及案例的說明與注意事項。這部分內容主要是為案例教學服務的,目的是提高教師的認識水平與學生主動學習的能力。不同的教學觀念,不同的教學手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。

      D.詮釋與研究

      這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學行為的技術資料、課堂教學實錄以及教學活動背后的故事等作理論上的分析。例如,在課堂教學中,我們常看到這樣的現象,課堂教學的效果高于預期的目標,反之教師期望的目標學生沒有達到或有所偏離,教學內容呈現的先后與學生理解的程度、教學方法運用與學生內在動機的激發等環節存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內在思想,揭示其教育規律就顯得十分的必要。

      2.案例報告撰寫的關鍵

      (1)掌握四個原則。要寫好教學案例,除了平時多積累素材,學習他人的案例作品以提高寫作技巧外,還應把握以下四點:

      A.主題性原則:要有捕捉關鍵教學事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數學教育方式、明確學生數學學習的難點和重點,尋找數學教師專業發展的途徑與規律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學活動實錄,要反映事件發生的過程,重點描述反映關鍵教學事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。

      案例鮮明的主題通常關系到教學的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現形式就是文題直接體現主題。因此,設計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發現。來源于實踐的教學案例并非都有同等價值,關鍵要看撰寫者對實踐的發展與理論的升華程度,包括對題目的推敲。如有的教學案例重點描述了有戲劇性的情節,用了“細節決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創意的題目《“導之有方”方能“導之有效”》、《跳出數學教數學》、《在數學的疑難處悟成長》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內容,在明確主題,恰當擬題后再動筆,才能寫出高質量的案例。

      B.理論性原則:解決問題的策略中應當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學生做了什么,參與程度,投入程度如何,教師如何引導點撥,師生心理、行為變化情況等,無不體現教師的教學思想和教育基本原理。

      C.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學生動的事實為主要情節,可以夾敘夾議,也可以選擇情景片段,可以是一節課中的情景,也可以是圍繞一個主題的幾節課的情景片段。

      D.學科性原則:數學案例報告一定要體現學科的特征,要有較深刻的理性思考,要反映數學的基本思想與方法,要符合課程標準,滿足教材內容的呈現方法,積極培養良好的思維習慣。就是撰寫者的教育思想和教育理念在教學實踐中具體體現。

      (2)用好四種表述。教學案例的表述方法很多,可以歸納為以下四種方法:

      A.故事式陳述法:就是教學全程或某一精彩教學片段實錄,包括教師和學生的一言一行。陳述時,根據操作程序作一點“簡評”,最后作“總評”。

      B.以案說理:對教學過程進行陳述時,舍去與文題不相關或不重要的部分,并強化與主題相關的重要情節,尤其是引發高潮的關鍵行為,然后有較長篇幅的理性思考。

      C.圖表展示法:用圖表進行統計的形式體現撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學生的參與人數,投入程度,解決問題的質量等多個問題,都可以在一張或數張圖表上用百分比或個(次)數進行統計。在每一張圖表后,應有一段“分析”或“結論”,將撰寫者的教學理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。

      D.分析討論法:在撰寫時,應汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。

      3.優秀案例的特征

      (1)時代性:一個好的案例描述的是現實生活場景——案例的敘述要把事件置于一個時空框架之中,應該以關注今天所面臨的疑難問題為著眼點,至少應該是近年發生的事情,展示的整個事實材料應該與整個時代及教學背景相照應,這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產生移情作用。

      (2)真實性:一個好的案例應該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應注明資料來源。

      (3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應該是與特定的背景材料相關最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。

      (4)反思性:一個好的案例需要有對已經做出的解決問題的決策的評價——評價是為了給新的決策提供參考點。可在案例的開頭或結尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。

      三、案例研究過程中需注意的問題

      1.選材面過窄。從內容上看,多數案例是關于課堂教學甚至局限于一節課的研究,往往不能說明問題,或者在一節課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學情境的豐富性、復雜性和聯系性認識不夠。

      2.缺乏典型性。有的案例對教學實踐沒有挖掘與反思,隨意摘取一些教學片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。

      3.主題不明確。主要體現為:

      (1)主題渙散。有的案例象記流水帳,沒有根據需要進行恰當的取舍,看不出作者要反映、探討什么問題,缺乏指導性、創新性和參考性。

      (2)定題過于隨意。有的案例直接用案例研究依據的文題為題目,如《“三角函數”教學案例》、《“拋物線”教學案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

      4.結構不合理。案例作為一種文體,有它自己的寫作結構,只有優化案例的結構,才能增強案例的可讀性和指導性。如寫成一般的教學設計,一般包括“備課思路、教學目標、教學重點、教學方法、課前準備、教學內容、教學過程”等內容;寫成教學實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創新,平淡無趣,看不出案例研究和反映的問題。

      5.描述與分析脫節。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。

    高中數學教案9

      教學目標

      (1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

      (2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

      (3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;

      (4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

      (5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。

      教學建議

      一、知識結構

      二、重點難點分析

      本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題。難點是導出排列數的公式和解有關排列的應用題。突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中。

      從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數。排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數。

      公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導。

      排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力。

      在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用。

      在教學排列應用題時,開始應要求學生寫解法要有簡要的.文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

      三、教法建議

      ①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

      ab,ac,ba,bc,ca,cb,

      其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號表示排列數。

      ②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”。

      從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

      在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別。

      在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。

      要特別注意,不加特殊說明,本章不研究重復排列問題。

      ③關于排列數公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導,,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。

      導出公式后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是,共m個因數相乘。”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘。

      公式是在引出全排列數公式后,將排列數公式變形后得到的公式。對這個公式指出兩點:

      (1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;

      (2)為使這個公式在時也能成立,規定,如同時一樣,是一種規定,因此,不能按階乘數的原意作解釋。

      ④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。

      ⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。

    高中數學教案10

      1. 幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現仍然贏得了很好的人際關系,學習上你認真刻苦,也能及時的完成作業,但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關注學習成績對你才是更有意義的事!

      2. 身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學科學習中,也一定會收獲很多的!加油吧!

      3. 你能嚴格遵守校規,上課認真聽講,作業完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結果,而且你還是一個愿意動腦筋的好學生,如果繼續保持下去定會取得驕人的成績!

      4. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態度端正,上課能夠專心聽講,課下能夠認真完成作業。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的`進步! 你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!

      5. 雖然你個頭小,但每次你領讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的你,經過不斷的努力,你會更出色的!

      6. 你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數你最有感情。中午你還主動給老師捶背,真是個會關心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

      7. 學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!

      8. 許麗君——你思想上進,踏實穩重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發揮你的聰明才智,進一步激發活力,提高學習效率,持之以恒,美好的明天屬于你!

      9. 每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!

      10. 你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優,熱愛班級,關愛同學,勤奮好學,思維敏捷,成績優秀。愿你扎實各科基礎,堅持不懈,!一定能考上重點! 優秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優秀,把這種優秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

    高中數學教案11

      教學目標:

      1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.

      2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.

      教學重點:

      復數的幾何意義,復數加減法的幾何意義.

      教學難點:

      復數加減法的幾何意義.

      教學過程:

      一 、問題情境

      我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?

      二、學生活動

      問題1 任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數呢?

      問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?

      問題3 任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的`長度,那么相應的,我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?

      問題4 復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?

      三、建構數學

      1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.

      2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.

      3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的幾何意義.

      6.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的.

      四、數學應用

      例1 在復平面內,分別用點和向量表示下列復數4,2+i,-i,-1+3i,3-2i.

      練習 課本P123練習第3,4題(口答).

      思考

      1.復平面內,表示一對共軛虛數的兩個點具有怎樣的位置關系?

      2.如果復平面內表示兩個虛數的點關于原點對稱,那么它們的實部和虛部分別滿足什么關系?

      3.“a=0”是“復數a+bi(a,b∈R)是純虛數”的__________條件.

      4.“a=0”是“復數a+bi(a,b∈R)所對應的點在虛軸上”的_____條件.

      例2 已知復數z=(m2+m-6)+(m2+m-2)i在復平面內所對應的點位于第二象限,求實數m允許的取值范圍.

      例3 已知復數z1=3+4i,z2=-1+5i,試比較它們模的大小.

      思考 任意兩個復數都可以比較大小嗎?

      例4 設z∈C,滿足下列條件的點Z的集合是什么圖形?

      (1)│z│=2;(2)2<│z│<3.

      變式:課本P124習題3.3第6題.

      五、要點歸納與方法小結

      本節課學習了以下內容:

      1.復數的幾何意義.

      2.復數加減法的幾何意義.

      3.數形結合的思想方法.

    高中數學教案12

      教學目標:

      (1)理解子集、真子集、補集、兩個集合相等概念;

      (2)了解全集、空集的意義。

      (3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養學生的符號表示的能力;

      (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

      (5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養學生的數學結合的數學思想;

      (6)培養學生用集合的觀點分析問題、解決問題的能力。

      教學重點:

      子集、補集的概念

      教學難點:

      弄清元素與子集、屬于與包含之間的區別

      教學用具:

      幻燈機

      教學過程設計

      (一)導入新課

      上節課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。

      【提出問題】(投影打出)

      已知xx,xx,xx,問:

      1、哪些集合表示方法是列舉法。

      2、哪些集合表示方法是描述法。

      3、將集M、集從集P用圖示法表示。

      4、分別說出各集合中的元素。

      5、將每個集合中的元素與該集合的關系用符號表示出來、將集N中元素3與集M的關系用符號表示出來。

      6、集M中元素與集N有何關系、集M中元素與集P有何關系。

      【找學生回答】

      1、集合M和集合N;(口答)

      2、集合P;(口答)

      3、(筆練結合板演)

      4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

      5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結合板演)

      6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

      【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節將研究有關兩個集合間關系的問題、

      (二)新授知識

      1、子集

      (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

      記作:xx讀作:A包含于B或B包含A

      當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、

      性質:①xx(任何一個集合是它本身的`子集)

      ②xx(空集是任何集合的子集)

      【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

      【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

      因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

      (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

      例:xx,可見,集合xx,是指A、B的所有元素完全相同。

      (3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

      【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集。”

      集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B。

      【提問】

      (1)xx寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。

      (2)xx判斷下列寫法是否正確

      ①xxAxx②xxAxx③xx④AxxA

      性質:

      (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

      (2)如果xx,xx,則xx。

      例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、

      解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

      【注意】(1)子集與真子集符號的方向。

      (2)易混符號

      ①“xx”與“xx”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如xxR,{1}xx{1,2,3}

      ②{0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。

      如:xx{0}。不能寫成xx={0},xx∈{0}

      例2xx見教材P8(解略)

      例3xx判斷下列說法是否正確,如果不正確,請加以改正、

      (1)xx表示空集;

      (2)空集是任何集合的真子集;

      (3)xx不是xx;

      (4)xx的所有子集是xx;

      (5)如果xx且xx,那么B必是A的真子集;

      (6)xx與xx不能同時成立、

      解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

      (2)不正確、空集是任何非空集合的真子集;

      (3)不正確、xx與xx表示同一集合;

      (4)不正確、xx的所有子集是xx;

      (5)正確

      (6)不正確、當xx時,xx與xx能同時成立、

      例4xx用適當的符號(xx,xx)填空:

      (1)xx;xx;xx;

      (2)xx;xx;

      (3)xx;

      (4)設xx,xx,xx,則AxxBxxC、

      解:(1)0xx0xx;

      (2)xx=xx,xx;

      (3)xx,xx∴xx;

      (4)A,B,C均表示所有奇數組成的集合,∴A=B=C、

      【練習】教材P9

      用適當的符號(xx,xx)填空:

      (1)xx;xx(5)xx;

      (2)xx;xx(6)xx;

      (3)xx;xx(7)xx;

      (4)xx;xx(8)xx、

      解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

      提問:見教材P9例子

      (二)xx全集與補集

      1、補集:一般地,設S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即

      、

      A在S中的補集xx可用右圖中陰影部分表示、

      性質:xxS(xxSA)=A

      如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

      (2)若A={0},則xxNA=N;

      (3)xxRQ是無理數集。

      2、全集:

      如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。

      注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。

      例如:若xx,當xx時,xx;當xx時,則xx。

      例5xx設全集xx,xx,xx,判斷xx與xx之間的關系。

      解:

      練習:見教材P10練習

      1、填空:

      xx,xx,那么xx,xx。

      解:xx,

      2、填空:

      (1)如果全集xx,那么N的補集xx;

      (2)如果全集,xx,那么xx的補集xx(xx)=xx、

      解:(1)xx;(2)xx。

      (三)小結:本節課學習了以下內容:

      1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

      2、五條性質

      (1)空集是任何集合的子集。ΦxxA

      (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

      (3)任何一個集合是它本身的子集。

      (4)如果xx,xx,則xx、

      (5)xxS(xxSA)=A

      3、兩組易混符號:(1)“xx”與“xx”:(2){0}與

      (四)課后作業:見教材P10習題1、2

    高中數學教案13

      教學目的:掌握圓的標準方程,并能解決與之有關的問題

      教學重點:圓的標準方程及有關運用

      教學難點:標準方程的靈活運用

      教學過程:

      一、導入新課,探究標準方程

      二、掌握知識,鞏固練習

      練習:⒈說出下列圓的方程

      ⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

      ⒉指出下列圓的圓心和半徑

      ⑴(x-2)2+(y+3)2=3

      ⑵x2+y2=2

      ⑶x2+y2-6x+4y+12=0

      ⒊判斷3x-4y-10=0和x2+y2=4的.位置關系

      ⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

      三、引伸提高,講解例題

      例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)

      練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

      2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

      例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

      例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

      四、小結練習P771,2,3,4

      五、作業P811,2,3,4

    高中數學教案14

      教學目標

      (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

      (2)理解直線與二元一次方程的關系及其證明

      (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

      教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

      教學用具:計算機

      教學方法:啟發引導法,討論法

      教學過程

      下面給出教學實施過程設計的簡要思路:

      教學設計思路

      (一)引入的設計

      前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

      問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

      答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

      肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

      問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

      答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

      肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

      啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

      學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

      【問題1】“任意直線的方程都是二元一次方程嗎?”

      (二)本節主體內容教學的設計

      這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

      學生或獨立研究,或合作研究,教師巡視指導.

      經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

      思路一:…

      思路二:…

      ……

      教師組織評價,確定最優方案(其它待課下研究)如下:

      按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

      當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

      當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

      學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

      平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

      綜合兩種情況,我們得出如下結論:

      在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

      至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

      同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

      學生們不難得出:二者可以概括為統一的形式.

      這樣上邊的結論可以表述如下:

      在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

      啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

      【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

      不難看出上邊的`結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

      師生共同討論,評價不同思路,達成共識:

      回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

      (1)當 時,方程可化為

      這是表示斜率為 、在 軸上的截距為 的直線.

      (2)當 時,由于 、 不同時為0,必有 ,方程可化為

      這表示一條與 軸垂直的直線.

      因此,得到結論:

      在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

      為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

      【動畫演示】

      演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.

      至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

      (三)練習鞏固、總結提高、板書和作業等環節的設計

      略

    高中數學教案15

      教學目標:

      1.結合實際問題情景,理解分層抽樣的必要性和重要性;

      2.學會用分層抽樣的方法從總體中抽取樣本;

      3.并對簡單隨機抽樣、系統抽樣及分層抽樣方法進行比較,揭示其相互關系.

      教學重點:

      通過實例理解分層抽樣的方法.

      教學難點:

      分層抽樣的步驟.

      教學過程:

      一、問題情境

      1.復習簡單隨機抽樣、系統抽樣的概念、特征以及適用范圍.

      2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

      二、學生活動

      能否用簡單隨機抽樣或系統抽樣進行抽樣,為什么?

      指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

      由于樣本的容量與總體的個體數的比為100∶2500=1∶25,

      所以在各年級抽取的個體數依次是,,,即40,32,28.

      三、建構數學

      1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

      說明:①分層抽樣時,由于各部分抽取的個體數與這一部分個體數的比等于樣本容量與總體的個體數的`比,每一個個體被抽到的可能性都是相等的;

      ②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.

      2.三種抽樣方法對照表:

      類別

      共同點

      各自特點

      相互聯系

      適用范圍

      簡單隨機抽樣

      抽樣過程中每個個體被抽取的概率是相同的

      從總體中逐個抽取

      總體中的個體數較少

      系統抽樣

      將總體均分成幾個部分,按事先確定的規則在各部分抽取

      在第一部分抽樣時采用簡單隨機抽樣

      總體中的個體數較多

      分層抽樣

      將總體分成幾層,分層進行抽取

      各層抽樣時采用簡單隨機抽樣或系統

      總體由差異明顯的幾部分組成

      3.分層抽樣的步驟:

      (1)分層:將總體按某種特征分成若干部分.

      (2)確定比例:計算各層的個體數與總體的個體數的比.

      (3)確定各層應抽取的樣本容量.

      (4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統抽樣的方法抽取),綜合每層抽樣,組成樣本.

      四、數學運用

      1.例題.

      例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

      (2)①教育局督學組到學校檢查工作,臨時在每個班各抽調2人參加座談;

      ②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現欲從中抽出8人研討進一步改進教和學;

      ③某班元旦聚會,要產生兩名“幸運者”.

      對這三件事,合適的抽樣方法為()

      A.分層抽樣,分層抽樣,簡單隨機抽樣

      B.系統抽樣,系統抽樣,簡單隨機抽樣

      C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

      D.系統抽樣,分層抽樣,簡單隨機抽樣

      例2某電視臺在因特網上就觀眾對某一節目的喜愛程度進行調查,參加調查的總人數為12000人,其中持各種態度的人數如表中所示:

      很喜愛

      喜愛

      一般

      不喜愛

      2435

      4567

      3926

      1072

      電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調查,應怎樣進行抽樣?

      解:抽取人數與總的比是60∶12000=1∶200,

      則各層抽取的人數依次是12.175,22.835,19.63,5.36,

      取近似值得各層人數分別是12,23,20,5.

      然后在各層用簡單隨機抽樣方法抽取.

      答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

      數分別為12,23,20,5.

      說明:各層的抽取數之和應等于樣本容量,對于不能取整數的情況,取其近似值.

      (3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.

      分析:(1)總體容量較小,用抽簽法或隨機數表法都很方便.

      (2)總體容量較大,用抽簽法或隨機數表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數相同,可用系統抽樣.

      (3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.

      五、要點歸納與方法小結

      本節課學習了以下內容:

      1.分層抽樣的概念與特征;

      2.三種抽樣方法相互之間的區別與聯系.

    【高中數學教案】相關文章:

    高中數學教案08-16

    高中數學教案12-30

    【薦】高中數學教案01-31

    高中數學教案模板02-02

    【熱門】高中數學教案02-01

    高中數學教案【精】02-01

    【推薦】高中數學教案01-25

    高中數學教案【熱門】01-25

    【熱】高中數學教案01-25

    高中數學教案【推薦】01-25

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      久热国产精品视频二区 | 亚洲国产日韩在线人高清 | 日本国产网曝视频在线观看 | 亚洲一级精品在线免费看 | 在线看片线路一入口 | 色婷婷综合缴情综合免费观看 |