- 相關推薦
初中數學平行線的性質教案
作為一名默默奉獻的教育工作者,往往需要進行教案編寫工作,借助教案可以提高教學質量,收到預期的教學效果。那么問題來了,教案應該怎么寫?下面是小編收集整理的初中數學平行線的性質教案,歡迎閱讀與收藏。
初中數學平行線的性質教案1
一、主題分析與設計
本節課是蘇科版義務教育課程標準實驗教科書七年級數學(下冊)第七章第2節內容——探索平行線的性質,它是直線平行的繼續,是后面研究平移等內容的基礎,是"空間與圖形"的重要組成部分。
《數學課程標準》強調:數學教學是數學活動的教學,是師生之間、生生之間交往互動與共同發展的過程;動手實踐,自主探索,合作交流是孩子學習數學的重要方式;合作交流的學習形式是培養孩子積極參與、自主學習的有效途徑。本節課將以"生活·數學"、"活動·思考"、"表達·應用"為主線開展課堂教學,以學生看得到、感受得到的基本素材創設問題情境,引導學生活動,并在活動中激發學生認真思考、積極探索,主動獲取數學知識,從而促進學生研究性學習方式的形成,同時通過小組內學生相互協作研究,培養學生合作性學習精神。
二、教學目標
1、知識與技能:掌握平行線的性質,能應用性質解決相關問題。
2、數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程。初中數學教育敘事
3、解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神。
4、情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和團結合作、勇于探索、鍥而不舍的精神。
三、教學重、難點
1、重點:對平行線性質的掌握與應用
2、難點:對平行線性質1的探究
四、教學用具
1、教具:多媒體平臺及多媒體課件
2、學具:三角尺、量角器、剪刀
五、教學過程
(一)創設情境,設疑激思
1、播放一組幻燈片。
內容:
①供火車行駛的鐵軌上;
②游泳池中的泳道隔欄;
③橫格紙中的線。
2、提問溫故:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
3、學生活動:針對問題,學生思考后回答——①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
4、教師肯定學生的回答并提出新問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?從而引出課題:7。2探索平行線的性質(板書)
(二)數形結合,探究性質
1、畫圖探究,歸納猜想
教師提要求,學生實踐操作:任意畫出兩條平行線(a ∥ b),畫一條截線c與這兩條平行線相交,標出8個角。(統一采用阿拉伯數字標角)
教師提出研究性問題一:
指出圖中的同位角,并度量這些角,把結果填入下表:
教師提出研究性問題二:
將畫出圖中的同位角任先一組剪下后疊合。
學生活動一:畫圖————度量————填表————猜想
學生活動二:畫圖————剪圖————疊合
讓學生根據活動得出的數據與操作得出的結果歸納猜想:兩直線平行,同位角相等。
教師提出研究性問題三:
再畫出一條截線d,看你的猜想結論是否仍然成立?
學生活動:探究、按小組討論,最后得出結論:仍然成立。
2、教師用《幾何畫板》課件驗證猜想,讓學生直觀感受猜想
3、教師展示平行線性質1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
(三)引申思考,培養創新
教師提出研究性問題四:
請判斷兩條平行線被第三條直線所截,內錯角、同旁內角各有什么關系?
學生活動:獨立探究————小組討論————成果展示。
教師活動:評價學生的研究成果,并引導學生說理
因為a ∥ b(已知)
所以∠ 1= ∠ 2(兩直線平行,同位角相等)
又∠ 1= ∠ 3(對頂角相等)
∠ 1+ ∠ 4=180°(鄰補角的定義)
所以∠ 2= ∠ 3(等量代換)
∠ 2+ ∠ 4=180°(等量代換)
教師展示:
平行線性質2:兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)
平行線性質2:兩條平行線被第三條直線所截,同旁內角互補。(兩直線平行,同旁內角互補)
(四)實際應用,優勢互補
1、(搶答)課本P13練一練1、2及習題7。2 1、5
2、(討論解答)課本P13習題7。2 2、3、4
(五)課堂總結:這節課你有哪些收獲?
1、學生總結:平行線的`性質1、2、3
2、教師補充總結:
⑴用"運動"的觀點觀察數學問題;(如我們前面將同位角剪下疊合后分析問題)
⑵用數形結合的方法來解決問題;(如我們前面將同位角測量后分析問題)
⑶用準確的語言來表達問題;(如平行線的性質1、2、3的表述)
⑷用邏輯推理的形式來論證問題。(如我們前面對性質2和3的說理過程)
(六)作業
學習與評價P5 1、2、3(填空);4、5、6(選擇);7、8(拓展與延伸)
六、教學反思:
數學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內容的認識,因為"過程"不僅能引導學生更好地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數學知識解決問題的意識;感受生活與數學的聯系,獲得"情感、態度、價值觀"方面的體驗。這節課的教學實現了三個方面的轉變:
①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者。教師成為了學生的導師、伙伴、甚至成為了學生的學生,在課堂上除了導引學生活動外,還要認真聆聽學生"教"你他們活動的過程和通過活動所得的知識或方法。
②學的轉變:學生的角色從學會轉變為會學,跟老師學轉變為自主去學。本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地"學"數學,而是深入地"做"數學。
③課堂氛圍的轉變:整節課以"流暢、開放、合作、‘隱'導"為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以"對話"、"討論"為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。
總之,在數學教學的花園里,教師只要為學生布置好和諧的場景和明晰的路標,然后就讓他們自由地快活地去跳舞吧
初中數學平行線的性質教案2
【知識要點】
1.三角形:由不在同一條直線上的三條線段首尾順次鏈接所圍成的封閉圖形叫做三角形
這三條線段叫做這個三角形的邊;(AB、BC、CA)
相鄰兩條邊的公共端點叫做這個三角形的頂點;(A、B、C)
相鄰兩條邊所夾的角叫做這個三角形的內角,又叫做這個三角形的角(∠A、∠B、∠C)
三角形的內角的鄰補角叫做這個三角形的外角
2.三角形的表示為△ABC
3.三角形的三條重要線段:高、中線、內角平分線(三條高所在的直線都交于一點,這個點叫
做三角形的垂心;三條中線交于一點,這個點叫做三角形的重心;
三條內角平分線交于一點,這個點叫做三角形的內心)
4.三角形內角和定理以及相關的結論
(1)三角形的內角和為180°
(2)直角三角形的兩個銳角互余
(3)三角形的外角和為360°
(4)三角形的一個外角等于與它不相鄰的兩個內角的和
(5)三角形的一個外角大于與它不相鄰的任何一個內角
5.三角形的三邊關系定理
三角形的任意兩邊之和都大于第三條邊;任意兩邊之差都小于第三條邊
6.三角形具有穩定性
7.多邊形:由在同一平面內,不在同一直線上的若干條線段首尾順次連接所圍成的封閉圖形叫
做多邊形
這些線段叫做這個多邊形的邊;
相鄰兩條邊的公共端點叫做這個多邊形的頂點;
相鄰兩條邊所夾的角叫做這個多邊形的內角,又叫做這個多邊形的角
多邊形的內角的鄰補角叫做這個多邊形的外角
8.對角線:連結多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線
由一個頂點出發的對角線有( n -3)條;( n 表示邊數)
多邊形共有條對角線( n 表示邊數)
9.多邊形的內角和及外角和
(1)多邊形的內角和為(n-2).180°( n 表示邊數)
(2)多邊形的外角和為360°
階段練習
一、回答下列各問題
1.什么是三角形?它有哪些元素?通常用什么符號來表示它及三個角所對的邊?
2.為什么屋架、橋梁及電桿的支架多采用三角形的形狀?
3.如果△ABC的三條邊長分別為(12、13、14)及(10、20、30),這樣的三角形能成立嗎?
為什么?
4.設△ABC的邊長分別為a、b、c,那么這三條邊的`邊長須具有什么條件,才能將△ABC畫
出來
5.△ABC中有幾條角平分線?試畫圖說明
6.什么是三角形的高?一個三角形有幾條高?三角形的高的位置是否一定在形內?為什么?
試畫圖說明
7.三角形的一條中線把這個三角形分成兩部分,這兩個部分的面積有什么關系?為什么?
8.三角形的三個內角分別為α、β、γ,則α+β+γ的值是多少?
9.三角形的一個外角與它不相鄰的兩個內角之間有什么關系?
二、填空題
1.三角形的外角和是內角和的_____________倍
2.四邊形的外角和是內角和的____________倍
3.六邊形的外角和是內角和的_______________倍
4.一個多邊形的內角和是900°,則這個多邊形是________邊形
三、解答題
已知AC、AD是五邊形ABCDE的對角線,求證:AB+BC+CD+DE+EA>AC+CD+DA
【初中數學平行線的性質教案】相關文章:
《平行線的性質》數學教案02-15
初中數學平行線教案12-30
初中數學平行線教案5篇12-30
平行線的性質教學反思04-04
數學小數的性質教案03-04
七年級數學《平行線的性質》教學反思03-20
數學小數的性質教案15篇03-04
數學小數的性質教案(15篇)03-04
數學小數的意義和性質教案11-11