1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    高二數學教案

    時間:2022-12-17 15:07:42 高二數學教案 我要投稿

    高二數學教案(通用15篇)

      作為一位不辭辛勞的人民教師,就不得不需要編寫教案,借助教案可以有效提升自己的教學能力。那么你有了解過教案嗎?下面是小編幫大家整理的高二數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

    高二數學教案(通用15篇)

    高二數學教案1

      平面向量共線的坐標表示

      前提條件a=(x1,y1),b=(x2,y2),其中b≠0

      結論當且僅當x1y2-x2y1=0時,向量a、b(b≠0)共線

      [點睛](1)平面向量共線的坐標表示還可以寫成x1x2=y1y2(x2≠0,y2≠0),即兩個不平行于坐標軸的共線向量的對應坐標成比例;

      (2)當a≠0,b=0時,a∥b,此時x1y2-x2y1=0也成立,即對任意向量a,b都有:x1y2-x2y1=0?a∥b.

      [小試身手]

      1.判斷下列命題是否正確.(正確的打“√”,錯誤的.打“×”)

      (1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()

      (2)向量(2,3)與向量(-4,-6)反向.()

      答案:(1)√(2)√

      2.若向量a=(1,2),b=(2,3),則與a+b共線的向量可以是()

      A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

      答案:C

      3.已知a=(1,2),b=(x,4),若a∥b,則x等于()

      A.-12B.12C.-2D.2

      答案:D

      4.已知向量a=(-2,3),b∥a,向量b的起點為A(1,2),終點B在x軸上,則點B的坐標為________.

      答案:73,0

      向量共線的判定

      [典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()

      A.12B.13C.1D.2

      (2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判斷與是否共線?如果共線,它們的方向相同還是相反?

      [解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

      法二:假設a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設不成立,故應有a,b共線,所以1λ=21,即λ=12.

      [答案]A

      (2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

      ∵(-2)×(-6)-3×4=0,∴,共線.

      又=-2,∴,方向相反.

      綜上,與共線且方向相反.

      向量共線的判定方法

      (1)利用向量共線定理,由a=λb(b≠0)推出a∥b.

      (2)利用向量共線的坐標表達式x1y2-x2y1=0直接求解.

      [活學活用]

      已知a=(1,2),b=(-3,2),當k為何值時,ka+b與a-3b平行,平行時它們的方向相同還是相反?

      解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

      a-3b=(1,2)-3(-3,2)=(10,-4),

      若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,

      解得k=-13,此時ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向.

      ∴k=-13時,ka+b與a-3b平行且方向相反.

      三點共線問題

      [典例](1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點共線;

      (2)設向量=(k,12),=(4,5),=(10,k),當k為何值時,A,B,C三點

      共線?

      [解](1)證明:∵=-=(4,8),

      =-=(6,12),

      ∴=32,即與共線.

      又∵與有公共點A,∴A,B,C三點共線.

      (2)若A,B,C三點共線,則,共線,

      ∵=-=(4-k,-7),

      =-=(10-k,k-12),

      ∴(4-k)(k-12)+7(10-k)=0.

      解得k=-2或k=11.

      有關三點共線問題的解題策略

      (1)要判斷A,B,C三點是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點共線;

      (2)使用A,B,C三點共線這一條件建立方程求參數時,利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數的表達式.

    高二數學教案2

      教學準備

      教學目標

      熟練掌握三角函數式的求值

      教學重難點

      熟練掌握三角函數式的求值

      教學過程

      【知識點精講】

      三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

      三角函數式的求值的類型一般可分為:

      (1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

      (2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的.某種關系求解

      (3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

      (4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

      三角函數式常用化簡方法:切割化弦、高次化低次

      注意點:靈活角的變形和公式的變形

      重視角的范圍對三角函數值的影響,對角的范圍要討論

      【例題選講】

      課堂小結】

      三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

      三角函數式的求值的類型一般可分為:

      (1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

      (2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解

      (3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

      (4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

      三角函數式常用化簡方法:切割化弦、高次化低次

      注意點:靈活角的變形和公式的變形

      重視角的范圍對三角函數值的影響,對角的范圍要討論

    高二數學教案3

      課題:2。1曲線與方程

      課時:01

      課型:新授課

      一、教學目標

      (一)知識教學點

      使學生掌握常用動點的軌跡以及求動點軌跡方程的常用技巧與方法。

      (二)能力訓練點

      通過對求軌跡方程的常用技巧與方法的歸納和介紹,培養學生綜合運用各方面知識的能力。

      (三)學科滲透點

      通過對求軌跡方程的常用技巧與方法的介紹,使學生掌握常用動點的軌跡,為學習物理等學科打下扎實的基礎。

      二、教材分析

      1、重點:求動點的軌跡方程的常用技巧與方法。

      (解決辦法:對每種方法用例題加以說明,使學生掌握這種方法。)

      2、難點:作相關點法求動點的軌跡方法。

      (解決辦法:先使學生了解相關點法的思路,再用例題進行講解。)

      教具準備:與教材內容相關的資料。

      教學設想:激發學生的學習熱情,激發學生的求知欲,培養嚴謹的學習態度,培養積極進取的精神。

      三、教學過程

      (一)復習引入

      大家知道,平面解析幾何研究的主要問題是:

      (1)根據已知條件,求出表示平面曲線的方程;

      (2)通過方程,研究平面曲線的性質。

      我們已經對常見曲線圓、橢圓、雙曲線以及拋物線進行過這兩個方面的研究,今天在上面已經研究的基礎上來對根據已知條件求曲線的軌跡方程的常見技巧與方法進行系統分析。

      (二)幾種常見求軌跡方程的方法

      1、直接法

      由題設所給(或通過分析圖形的幾何性質而得出)的動點所滿足的幾何條件列出等式,再用坐標代替這等式,化簡得曲線的方程,這種方法叫直接法。

      例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動點P的軌跡方程;

      (2)過點A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點的軌跡。

      對(1)分析:

      動點P的軌跡是不知道的,不能考查其幾何特征,但是給出了動點P的運動規律:|OP|=2R或|OP|=0。

      解:設動點P(x,y),則有|OP|=2R或|OP|=0。

      即x2+y2=4R2或x2+y2=0。

      故所求動點P的軌跡方程為x2+y2=4R2或x2+y2=0。

      對(2)分析:

      題設中沒有具體給出動點所滿足的幾何條件,但可以通過分析圖形的幾何性質而得出,即圓心與弦的中點連線垂直于弦,它們的斜率互為負倒數。由學生演板完成,解答為:

      設弦的中點為M(x,y),連結OM,則OM⊥AM。∵kOM·kAM=—1,

      其軌跡是以OA為直徑的圓在圓O內的一段弧(不含端點)。

      2、定義法

      利用所學過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點的軌跡方程,這種方法叫做定義法。這種方法要求題設中有定點與定直線及兩定點距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件。

      直平分線l交半徑OQ于點P(見圖2-45),當Q點在圓周上運動時,求點P的軌跡方程。

      分析:

      ∵點P在AQ的垂直平分線上,∴|PQ|=|PA|。

      又P在半徑OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。

      故P點到兩定點距離之和是定值,可用橢圓定義

      寫出P點的軌跡方程。

      解:連接PA ∵l⊥PQ,∴|PA|=|PQ|。

      又P在半徑OQ上。∴|PO|+|PQ|=2。

      由橢圓定義可知:P點軌跡是以O、A為焦點的`橢圓。

      3、相關點法

      若動點P(x,y)隨已知曲線上的點Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則將Q點坐標表達式代入已知曲線方程,即得點P的軌跡方程。這種方法稱為相關點法(或代換法)。

      例3 已知拋物線y2=x+1,定點A(3,1)、B為拋物線上任意一點,點P在線段AB上,且有BP∶PA=1∶2,當B點在拋物線上變動時,求點P的軌跡方程。

      分析:

      P點運動的原因是B點在拋物線上運動,因此B可作為相關點,應先找出點P與點B的聯系。

      解:設點P(x,y),且設點B(x0,y0)

      ∵BP∶PA=1∶2,且P為線段AB的內分點。

      4、待定系數法

      求圓、橢圓、雙曲線以及拋物線的方程常用待定系數法求。

      例4 已知拋物線y2=4x和以坐標軸為對稱軸、實軸在y軸上的雙曲

      曲線方程。

      分析:

      因為雙曲線以坐標軸為對稱軸,實軸在y軸上,所以可設雙曲線方

      ax2—4b2x+a2b2=0

      ∵拋物線和雙曲線僅有兩個公共點,根據它們的對稱性,這兩個點的橫坐標應相等,因此方程ax2—4b2x+a2b2=0應有等根。

      ∴△=16b4—4a4b2=0,即a2=2b。

      (以下由學生完成)

      由弦長公式得:

      即a2b2=4b2—a2。

      (三)鞏固練習

      用十多分鐘時間作一個小測驗,檢查一下教學效果。練習題用一小黑板給出。

      1、△ABC一邊的兩個端點是B(0,6)和C(0,—6),另兩邊斜率的

      2、點P與一定點F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點P的軌跡方程,并說明軌跡是什么圖形?

      3、求拋物線y2=2px(p>0)上各點與焦點連線的中點的軌跡方程。

      答案:

      義法)

      由中點坐標公式得:

      (四)、教學反思

      求曲線的軌跡方程一般地有直接法、定義法、相關點法、待定系數法,還有參數法、復數法也是求曲線的軌跡方程的常見方法,這等到講了參數方程、復數以后再作介紹。

      四、布置作業

      1、兩定點的距離為6,點M到這兩個定點的距離的平方和為26,求點M的軌跡方程。

      2、動點P到點F1(1,0)的距離比它到F2(3,0)的距離少2,求P點的軌跡。

      3、已知圓x2+y2=4上有定點A(2,0),過定點A作弦AB,并延長到點P,使3|AB|=2|AB|,求動點P的軌跡方程。

      作業答案:

      1、以兩定點A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標系,得點M的軌跡方程x2+y2=4。

      2、∵|PF2|—|PF|=2,且|F1F2|∴P點只能在x軸上且x<1,軌跡是一條射線。

    高二數學教案4

      一、教材分析

      推理是高考的重要的內容,推理包括合情推理與演繹推理,由于解答高考題的過程就是推理的過程,因此本部分內容的考察將會滲透到每一個高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現,也可能在解答題中出現。

      二、教學目標

      (1)知識與能力:了解演繹推理的含義及特點,會將推理寫成三段論的形式

      (2)過程與方法:了解合情推理和演繹推理的區別與聯系

      (3)情感態度價值觀:了解演繹推理在數學證明中的重要地位和日常生活中的作用,養成言之有理論證有據的習慣。

      三、教學重點難點

      教學重點:演繹推理的含義與三段論推理及合情推理和演繹推理的區別與聯系

      教學難點:演繹推理的應用

      四、教學方法:探究法

      五、課時安排:1課時

      六、教學過程

      1. 填一填:

      ① 所有的金屬都能夠導電,銅是金屬,所以 ;

      ② 太陽系的大行星都以橢圓形軌道繞太陽運行,冥王星是太陽系的大行星,因此 ;

      ③ 奇數都不能被2整除,20xx是奇數,所以 .

      2.討論:上述例子的推理形式與我們學過的合情推理一樣嗎?

      3.小結:

      ① 概念:從一般性的原理出發,推出某個特殊情況下的.結論,我們把這種推理稱為____________.

      要點:由_____到_____的推理.

      ② 討論:演繹推理與合情推理有什么區別?

      ③ 思考:所有的金屬都能夠導電,銅是金屬,所以銅能導電,它由幾部分組成,各部分有什么特點?

      小結:三段論是演繹推理的一般模式:

      第一段:_________________________________________;

      第二段:_________________________________________;

      第三段:____________________________________________.

      ④ 舉例:舉出一些用三段論推理的例子.

      例1:證明函數 在 上是增函數.

      例2:在銳角三角形ABC中, ,D,E是垂足. 求證:AB的中點M到D,E的距離相等.

      當堂檢測:

      討論:因為指數函數 是增函數, 是指數函數,則結論是什么?

      討論:演繹推理怎樣才能使得結論正確?

      比較:合情推理與演繹推理的區別與聯系?

      課堂小結

      課后練習與提高

      1.演繹推理是以下列哪個為前提,推出某個特殊情況下的結論的推理方法( )

      A.一般的原理原則; B.特定的命題;

      C.一般的命題; D.定理、公式.

      2.因為對數函數 是增函數(大前提),而 是對數函數(小前提),所以 是增函數(結論).上面的推理的錯誤是( )

      A.大前提錯導致結論錯; B.小前提錯導致結論錯;

      C.推理形式錯導致結論錯; D.大前提和小前提都錯導致結論錯.

      3.下面幾種推理過程是演繹推理的是( )

      A.兩條直線平行,同旁內角互補,如果A和B是兩條平行直線的同旁內角,則B =180B.由平面三角形的性質,推測空間四面體的性質;.

      4.補充下列推理的三段論:

      (1)因為互為相反數的兩個數的和為0,又因為 與 互為相反數且________________________,所以 =8.

      (2)因為_____________________________________,又因為 是無限不循環小數,所以 是無理數.

      七、板書設計

      八、教學反思

    高二數學教案5

      第06課時

      2、2、3 直線的參數方程

      學習目標

      1.了解直線參數方程的條件及參數的意義;

      2. 初步掌握運用參數方程解決問題,體會用參數方程解題的簡便性。

      學習過程

      一、學前準備

      復習:

      1、若由 共線,則存在實數 ,使得 ,

      2、設 為 方向上的 ,則 =︱ ︱ ;

      3、經過點 ,傾斜角為 的直線的普通方程為 。

      二、新課導學

      探究新知(預習教材P35~P39,找出疑惑之處)

      1、選擇怎樣的參數,才能使直線上任一點M的坐標 與點 的坐標 和傾斜角 聯系起來呢?由于傾斜角可以與方向聯系, 與 可以用距離或線段 數量的大小聯系,這種方向有向線段數量大小啟發我們想到利用向量工具建立直線的參數方程。

      如圖,在直線上任取一點 ,則 = ,

      而直線

      的單位方向

      向量

      =( , )

      因為 ,所以存在實數 ,使得 = ,即有 ,因此,經過點

      ,傾斜角為 的直線的參數方程為:

      2.方程中參數的幾何意義是什么?

      應用示例

      例1.已知直線 與拋物線 交于A、B兩點,求線段AB的長和點 到A ,B兩點的距離之積。(教材P36例1)

      解:

      例2.經過點 作直線 ,交橢圓 于 兩點,如果點 恰好為線段 的中點,求直線 的方程.(教材P37例2)

      解:

      反饋練習

      1.直線 上兩點A ,B對應的參數值為 ,則 =( )

      A、0 B、

      C、4 D、2

      2.設直線 經過點 ,傾斜角為 ,

      (1)求直線 的參數方程;

      (2)求直線 和直線 的交點到點 的距離;

      (3)求直線 和圓 的兩個交點到點 的距離的和與積。

      三、總結提升

      本節小結

      1.本節學習了哪些內容?

      答:1.了解直線參數方程的條件及參數的意義;

      2. 初步掌握運用參數方程解決問題,體會用參數方程解題的簡便性。

      學習評價

      一、自我評價

      你完成本節導學案的情況為( )

      A.很好 B.較好 C. 一般 D.較差

      課后作業

      1. 已知過點 ,斜率為 的直線和拋物線 相交于 兩點,設線段 的`中點為 ,求點 的坐標。

      2.經過點 作直線交雙曲線 于 兩點,如果點 為線段 的中點,求直線 的方程

      3.過拋物線 的焦點作傾斜角為 的弦AB,求弦AB的長及弦的中點M到焦點F的距離。

    高二數學教案6

      教學目的:

      1、使學生理解線段的垂直平分線的性質定理及逆定理,掌握這兩個定理的關系并會用這兩個定理解決有關幾何問題。

      2、了解線段垂直平分線的軌跡問題。

      3、結合教學內容培養學生的動作思維、形象思維和抽象思維能力。

      教學重點:

      線段的垂直平分線性質定理及逆定理的引入證明及運用。

      教學難點:

      線段的垂直平分線性質定理及逆定理的關系。

      教學關鍵:

      1、垂直平分線上所有的點和線段兩端點的距離相等。

      2、到線段兩端點的距離相等的所有點都在這條線段的垂直平分線上。

      教具:投影儀及投影膠片。

      教學過程:

      一、提問

      1、角平分線的性質定理及逆定理是什么?

      2、怎樣做一條線段的垂直平分線?

      二、新課

      1、請同學們在課堂練習本上做線段AB的垂直平分線EF(請一名同學在黑板上做)。

      2、在EF上任取一點P,連結PA、PB量出PA=?,PB=?引導學生觀察這兩個值有什么關系?

      通過學生的觀察、分析得出結果PA=PB,再取一點P'試一試仍然有P'A=P'B,引導學生猜想EF上的所有點和點A、點B的距離都相等,再請同學把這一結論敘述成命題(用幻燈展示)。

      定理:線段的垂直平分線上的點和這條線段的兩個端點的距離相等。

      這個命題,是我們通過作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。

      例題:

      已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點P在EF上

      求證:PA=PB

      如何證明PA=PB學生分析得出只要證RTΔPCA≌RTΔPCB

      :證明:∵PC⊥AB(已知)

      ∴∠PCA=∠PCB(垂直的定義)

      在ΔPCA和ΔPCB中

      ∴ΔPCA≌ΔPCB(SAS)

      即:PA=PB(全等三角形的對應邊相等)。

      反過來,如果PA=PB,P1A=P1B,點P,P1在什么線上?

      過P,P1做直線EF交AB于C,可證明ΔPAP1≌PBP1(SSS)

      ∴EF是等腰三角型ΔPAB的頂角平分線

      ∴EF是AB的垂直平分線(等腰三角形三線合一性質)

      ∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發學生敘述)(用幻燈展示)。

      逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

      根據上述定理和逆定理可以知道:直線MN可以看作和兩點A、B的距離相等的所有點的集合。

      線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。

      三、舉例(用幻燈展示)

      例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點P,求證:PA=PB=PC。

      證明:∵點P在線段AB的垂直平分線上

      ∴PA=PB

      同理PB=PC

      ∴PA=PB=PC

      由例題PA=PC知點P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點P,這點到三個頂點的距離相等。

      四、小結

      正確的運用這兩個定理的關鍵是區別它們的條件與結論,加強證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點在線段的垂直平分線上。

      《教案設計說明》

      線段的垂直平分線的性質定理及逆定理,都是幾何中的`重要定理,也是一條重要軌跡。在幾何證明、計算、作圖中都有重要應用。我講授這節課是線段垂直平分線的第一節課,主要完成定理的引出、證明和初步的運用。

      在設計教案時,我結合教材內容,對如何導入新課,引出定理以及證明進行了探索。在導入新課這一環節上我先讓學生做一條線段AB的垂直平分線EF,在EF上取一點P,讓學生量出PA、PB的長度,引導學生觀察、討論每個人量得的這兩個長度之間有什么關系:得到什么結論?學生回答:PA=PB。然后再讓學生取一點試一試,這兩個長度也相等,由此引導學生猜想到線段垂直平分線的性質定理。在這一過程中讓學生主動積極的參與到教學中來,使學生通過作圖、觀察、量一量再得出結論。從而把知識的形成過程轉化為學生親自參與、發現、探索的過程。在教學時,引導學生分析性質定理的題設與結論,畫圖寫出已知、求證,通過分析由學生得出證明性質定理的方法,這個過程既是探索過程也是調動學生動腦思考的過程,只有學生動腦思考了,才能真正理解線段垂直平分線的性質定理,以及證明方法。在此基礎上再提出如果有兩點到線段的兩端點的距離相等,這樣的點應在什么樣的直線上?由條件得出這樣的點在線段的垂直平分線上,從而引出性質定理的逆定理,由上述兩個定理使學生再進一步知道線段的垂直平分線可以看作是到線段兩端點距離的所有點的集合。這樣可以幫助學生認識理論來源于實踐又服務于實踐的道理,也能提高他們學習的積極性,加深對所學知識的理解。在講解例題時引導學生用所學的線段垂直平分線的性質定理以及逆定理來證,避免用三角形全等來證。最后總結點P是三角形三邊垂直平分線的交點,這個點到三個頂點的距離相等。為了使學生當堂掌握兩個定理的靈活運用,讓學生做87頁的兩個練習,以達到鞏固知識的目的。

    高二數學教案7

      教學目標

      1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;

      2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;

      3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;

      4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;

      5.通過讓中國學習聯盟膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識.

      教學建議

      教材分析

      1. 知識結構

      2.重點難點分析

      重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法.

      橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.

      (1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.

      另外要注意到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種特殊情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.

      (2)根據橢圓的定義求標準方程,應注意下面幾點:

      ①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

      ②設橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會.

      ③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.

      ④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證明,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.

      (3)兩種標準方程的橢圓異同點

      中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:形狀相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.

      橢圓的焦點在 軸上 標準方程中 項的分母較大;

      橢圓的焦點在 軸上 標準方程中 項的分母較大.

      另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

      (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

      教法建議

      (1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習興趣.

      為激發學生學習圓錐曲線的興趣,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。

      例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.如果這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.

      (2)安排學生課下切割圓錐形的事物,使學生了解圓錐曲線名稱的來歷

      為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認識.

      (3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學生從感性認識入手,逐步上升到理性認識,形成正確的概念。

      教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。

      教師可事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的'要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。

      (4)將提出的問題分解為若干個子問題,借助多媒體課件來體現橢圓的定義的實質

      在教學時,可以設置幾個問題,讓學生動手動腦,獨立思考,自主探索,使學生根據提出的問題,利用多媒體,通過觀察、實驗、分析去尋找解決問題的途徑。在橢圓的定義的教學過程()中,可以提出“到兩定點的距離的和為定值的點的軌跡一定是橢圓嗎”,讓學生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內涵,這樣就使得學生對橢圓的定義留下了深刻的印象。

      (5)注意橢圓的定義與橢圓的標準方程的聯系

      在講解橢圓的定義時,就要啟發學生注意橢圓的圖形特征,一般學生比較容易發現橢圓的對稱性,這樣在建立坐標系時,學生就比較容易選擇適當的坐標系了,即使焦點在坐標軸上,對稱中心是原點(此時不要過多的研究幾何性質).雖然這時學生并不一定能說明白為什么這樣選擇坐標系,但在有了一定感性認識的基礎上再講解選擇適當坐標系的一般原則,學生就較為容易接受,也向學生逐步滲透了坐標法.

      (6)推導橢圓的標準方程時教師要注意化解難點,適時地補充根式化簡的方法.

      推導橢圓的標準方程時,由于列出的方程為兩個跟式的和等于一個非零常數,化簡時要進行兩次平方,方程中字母超過三個,且次數高、項數多,教學時要注意化解難點,盡量不要把跟式化簡的困難影響學生對橢圓的標準方程的推導過程的整體認識.通過具體的例子使學生循序漸進的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨留在方程的一邊,把其他各項移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項.(為了避免二次平方運算)

      (7)講解了焦點在x軸上的橢圓的標準方程后,教師要啟發學生自己研究焦點在y軸上的標準方程,然后鼓勵學生探索橢圓的兩種標準方程的異同點,加深對橢圓的認識.

      (8)在學習新知識的基礎上要鞏固舊知識

      橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導橢圓的標準方程中要注意進一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標準方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向學生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實際上學生在遇到一些具體的題目時,還需要具體問題具體分析.

      (9)要突出教師的主導作用,又要強調學生的主體作用,課上盡量讓全體學生參與討論,由基礎較差的學生提出猜想,由基礎較好的學生幫助證明,培養學生的團結協作的團隊精神。

    高二數學教案8

      教學目標:

      1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.

      2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.

      教學重點:

      復數的幾何意義,復數加減法的幾何意義.

      教學難點:

      復數加減法的幾何意義.

      教學過程:

      一 、問題情境

      我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?

      二、學生活動

      問題1 任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的.點來表示復數呢?

      問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?

      問題3 任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的,我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?

      問題4 復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?

      三、建構數學

      1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.

      2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.

      3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的幾何意義.

      6.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的.

      四、數學應用

      例1 在復平面內,分別用點和向量表示下列復數4,2+i,-i,-1+3i,3-2i.

      練習 課本P123練習第3,4題(口答).

      思考

      1.復平面內,表示一對共軛虛數的兩個點具有怎樣的位置關系?

      2.如果復平面內表示兩個虛數的點關于原點對稱,那么它們的實部和虛部分別滿足什么關系?

      3.“a=0”是“復數a+bi(a,b∈R)是純虛數”的__________條件.

      4.“a=0”是“復數a+bi(a,b∈R)所對應的點在虛軸上”的_____條件.

      例2 已知復數z=(m2+m-6)+(m2+m-2)i在復平面內所對應的點位于第二象限,求實數m允許的取值范圍.

      例3 已知復數z1=3+4i,z2=-1+5i,試比較它們模的大小.

      思考 任意兩個復數都可以比較大小嗎?

      例4 設z∈C,滿足下列條件的點Z的集合是什么圖形?

      (1)│z│=2;(2)2<│z│<3.

      變式:課本P124習題3.3第6題.

      五、要點歸納與方法小結

      本節課學習了以下內容:

      1.復數的幾何意義.

      2.復數加減法的幾何意義.

      3.數形結合的思想方法.

    高二數學教案9

      一、教學目標

      本課時的教學目標為:①借助直角坐標系建立復平面,掌握復數的幾何形式和向量表示;②經歷復平面上復數的“形化”過程,理解復數與復平面上的點、向量之間的一一對應關系;③感悟數學的釋義:數學是研究空間形式和數量關系的科學、筆者認為,教學目標總體設置得較為適切,符合三維框架、修改:“掌握復數的幾何形式和向量表示”改為“掌握在復平面上復數的點表示和向量表示”。

      二、教學重點

      本課時的教學重點為:復數的坐標表示:幾何形式與向量表示、教學重點設置得較為適切,部分用詞表達配合教學目標一并修改、修改:復數的坐標表示:點表示與向量表示。

      三、教學難點

      本課時的教學難點為:復數的代數形式、幾何形式及向量表示的“同一性”、首先,“同一性”說法有待商榷,這個詞有著嚴格的定義,使用時需謹慎、其次,經過思考,復數的代數表示、點表示及向量表示之間的互相轉化才是本課時的教學難點。

      四、教學過程

      (一)類比引入

      本環節通過實數在數軸上的“形化”表示,類比至復數,引出復數的“幾何形式”:復平面與點、但在設問中,有一提問值得商榷:實數的幾何形式是什么?此提問較為唐突,在試講課與正式課中學生均表示難以理解,原因如下、①學生最近發展區中未具備“實數的幾何形式”,②實數的幾何形式是教師引導學生對數的一種有高度的認識與表達,屬于理解層面、經過思考,修改:①如何“畫”實數?;②對學生直接陳述:我們知道,每一個實數都有數軸上唯一確定的一個點和它對應;反過來,數軸上的每一個點也有唯一的一個實數和它對應。

      (二)概念新授

      本環節給出復平面的定義及相關概念,并且幫助學生形成復數與復平面上點兩者間的一一對應關系、教學設計中對概念的注釋是:表示實數的點都在實軸上,表示純虛數的點都在虛軸上,表示虛數的點在四個象限或虛軸上,表示實數的點為原點、經過思考,修改:表示實數的點都在實軸上、實軸上的點表示全體實數;表示純虛數的點都在虛軸上、虛軸上的點表示全體純虛數與實數;表示虛數的點不在實軸上;實數與原點一一對應。

      (三)例題體驗

      本環節通過三個例題體驗,落實本課時的教學重點之一:復數的坐標表示:點表示;突破本課時的教學難點:復數的代數表示、點表示及向量表示之間的互相轉化、例題1對課本例題作了改編,此例題的設計意圖為從復平面上的點出發,去表示對應的復數,并且蘊含了計數原理中的乘法原理、值得一提的是,在課堂教學實施過程中,學生很清晰地建立起了兩者之間的轉化關系,并且使用了乘法原理、例題2的設計意圖是從復數出發去在復平面上表示對應的`點,而例題3的設計意圖是從單個復數與其在復平面上的對應點之間的轉化到兩個復數與其在復平面上對應點之間的互相轉化、例題2與例題3的設計符合學生的認知規律,但是在教學過程中沒有配以圖形來幫助學生理解,這是整個教學過程中的最大不足。

      (四)概念提升

      本環節繼復數在復平面上的點表示之后,給出復數的向量表示,呈現了完整的復數的坐標表示、學生已經建構起復數集中的復數與復平面上的點之間的一一對應關系,結合他們的最近發展區:建立了直角坐標系的平面中的任意點均與唯一的位置向量一一對應,從而較為順利地架構起復數與向量的一一對應關系、設計的例題是由筆者改編的,整合了向量與復數、點與復數以及向量與點之間的互相轉化,鞏固三者之間的一一對應關系、值得一提的是,設計的第3小問具有開放性,啟發學生去探究由向量加法的坐標表示引出復數加法法則,在課堂教學實踐中,已有學生產生這樣的思考。

      在之后的教研組研評課中,老師們給出了對這節課的認可與中肯的建議,讓筆者受益匪淺,筆者經過思考已經在上文中的各環節修改處得以體現落實、不過仍然有一點困惑,有老師提出甚至筆者備課時也有這樣的猶豫:本課時是否將下一課時“復數的模”一并給出、筆者在不斷思考教材分割成兩課時的用意,結合試講與上課的兩次實踐也說明,筆者所在學校的學生更適合這樣的分割,第一課時讓學生從不同角度感受復數,第二課時用模來鞏固深化復數的坐標表示、本課時的課題是復數的坐標表示,蘊含了點坐標表示與向量坐標表示兩塊,第一課時先打開認識的視角,第二課時通過模來深入體驗、

      當然教無定法,根據學情、因材施教,在理解教材設計意圖的基礎上對教材進行科學合理的改編也是很有必要的。

    高二數學教案10

      一、教學目標

      【知識與技能】

      能正確概述“二面角”、“二面角的平面角”的概念,會做二面角的平面角。

      【過程與方法】

      利用類比的方法推理二面角的有關概念,提升知識遷移的能力。

      【情感態度與價值觀】

      營造和諧、輕松的學習氛圍,通過學生之間,師生之間的交流、合作和評價達成共識、共享、共進,實現教學相長和共同發展。

      二、教學重、難點

      【重點】

      “二面角”和“二面角的平面角”的概念。

      【難點】

      “二面角的平面角”概念的形成過程。

      三、教學過程

      (一)創設情境,導入新課

      請學生觀察生活中的一些模型,多媒體展示以下一系列動畫如:

      1.打開書本的過程;

      2.發射人造地球衛星,要根據需要使衛星的軌道平面與地球的赤道平面成一定的角度;

      3.修筑水壩時,為了使水壩堅固耐久,須使水壩坡面與水平面成適當的角度;

      引導學生說出書本的兩個面、水壩面與底面,衛星軌道面與地球赤道面均是呈一定的角度關系,引出課題。

      (二)師生互動,探索新知

      學生閱讀教材,同桌互相討論,教師引導學生對比平面角得出二面角的概念

      平面角:平面角是從平面內一點出發的兩條射線(半直線)所組成的圖形。

      二面角定義:從一條直線出發的兩個半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個半平面叫作二面角的面。(動畫演示)

      (2)二面角的表示

      (3)二面角的畫法

      (PPT演示)

      教師提問:一般地說,量角器只能測量“平面角”(指兩條相交直線所成的角.相應地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導學生將空間角化為平面角.

      教師總結:

      (1)二面角的平面角的定義

      定義:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的`兩條射線,這兩條射線所成的角叫做二面角的平面角.

      “二面角的平面角”的定義三個主要特征:點在棱上、線在面內、與棱垂直(動畫演示)

      大小:二面角的大小可以用它的平面角的大小來表示。

      平面角是直角的二面角叫做直二面角。

      (2)二面角的平面角的作法

      ①點P在棱上—定義法

      ②點P在一個半平面上—三垂線定理法

      ③點P在二面角內—垂面法

      (三)生生互動,鞏固提高

      (四)生生互動,鞏固提高

      1.判斷下列命題的真假:

      (1)兩個相交平面組成的圖形叫做二面角。( )

      (2)角的兩邊分別在二面角的兩個面內,則這個角是二面角的平面角。( )

      (3)二面角的平面角所在平面垂直于二面角的棱。( )

      2.作出一下面PAC和面ABC的平面角。

      (五)課堂小結,布置作業

      小結:通過本節課的學習,你學到了什么?

      作業:以正方體為模型請找出一個所成角度為四十五度的二面角,并證明。

    高二數學教案11

      [新知初探]

      1、向量的數乘運算

      (1)定義:規定實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作:λa,它的長度和方向規定如下:

      ①|λa|=|λ||a|;

      ②當λ>0時,λa的方向與a的方向相同;

      當λ<0時,λa的方向與a的方向相反。

      (2)運算律:設λ,μ為任意實數,則有:

      ①λ(μa)=(λμ)a;

      ②(λ+μ)a=λa+μa;

      ③λ(a+b)=λa+λb;

      特別地,有(—λ)a=—(λa)=λ(—a);

      λ(a—b)=λa—λb。

      [點睛](1)實數與向量可以進行數乘運算,但不能進行加減運算,如λ+a,λ—a均無法運算。

      (2)λa的結果為向量,所以當λ=0時,得到的結果為0而不是0。

      2、向量共線的條件

      向量a(a≠0)與b共線,當且僅當有一個實數λ,使b=λa。

      [點睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時,雖有a與b共線,但不存在實數λ使b=λa成立;若a=b=0,a與b顯然共線,但實數λ不,任一實數λ都能使b=λa成立。

      (2)a是非零向量,b可以是0,這時0=λa,所以有λ=0,如果b不是0,那么λ是不為零的實數。

      3、向量的線性運算

      向量的加、減、數乘運算統稱為向量的.線性運算。對于任意向量a,b及任意實數λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。

      [小試身手]

      1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)

      (1)λa的方向與a的方向一致。()

      (2)共線向量定理中,條件a≠0可以去掉。()

      (3)對于任意實數m和向量a,b,若ma=mb,則a=b。()

      答案:(1)×(2)×(3)×

      2、若|a|=1,|b|=2,且a與b方向相同,則下列關系式正確的是()

      A、b=2aB、b=—2a

      C、a=2bD、a=—2b

      答案:A

      3、在四邊形ABCD中,若=—12,則此四邊形是()

      A、平行四邊形B、菱形

      C、梯形D、矩形

      答案:C

      4、化簡:2(3a+4b)—7a=XXXXXX。

      答案:—a+8b

      向量的線性運算

      [例1]化簡下列各式:

      (1)3(6a+b)—9a+13b;

      (2)12?3a+2b?—a+12b—212a+38b;

      (3)2(5a—4b+c)—3(a—3b+c)—7a。

      [解](1)原式=18a+3b—9a—3b=9a。

      (2)原式=122a+32b—a—34b=a+34b—a—34b=0。

      (3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。

      向量線性運算的方法

      向量的線性運算類似于代數多項式的運算,共線向量可以合并,即“合并同類項”“提取公因式”,這里的“同類項”“公因式”指的是向量。

    高二數學教案12

      (1)平面向量基本定理的內容是什么?

      (2)如何定義平面向量基底?

      (3)兩向量夾角的定義是什么?如何定義向量的垂直?

      [新知初探]

      1、平面向量基本定理

      條件e1,e2是同一平面內的兩個不共線向量

      結論這一平面內的任意向量a,有且只有一對實數λ1,λ2,使a=λ1e1+λ2e2

      基底不共線的向量e1,e2叫做表示這一平面內所有向量的一組基底

      [點睛]對平面向量基本定理的理解應注意以下三點:①e1,e2是同一平面內的兩個不共線向量;②該平面內任意向量a都可以用e1,e2線性表示,且這種表示是的;③基底不,只要是同一平面內的`兩個不共線向量都可作為基底。

      2、向量的夾角

      條件兩個非零向量a和b

      產生過程

      作向量=a,=b,則∠AOB叫做向量a與b的夾角

      范圍0°≤θ≤180°

      特殊情況θ=0°a與b同向

      θ=90°a與b垂直,記作a⊥b

      θ=180°a與b反向

      [點睛]當a與b共線同向時,夾角θ為0°,共線反向時,夾角θ為180°,所以兩個向量的夾角的范圍是0°≤θ≤180°。

      [小試身手]

      1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)

      (1)任意兩個向量都可以作為基底。()

      (2)一個平面內有無數對不共線的向量都可作為表示該平面內所有向量的基底。()

      (3)零向量不可以作為基底中的向量。()

      答案:(1)×(2)√(3)√

      2、若向量a,b的夾角為30°,則向量—a,—b的夾角為()

      A、60°B、30°

      C、120°D、150°

      答案:B

      3、設e1,e2是同一平面內兩個不共線的向量,以下各組向量中不能作為基底的是()

      A、e1,e2B、e1+e2,3e1+3e2

      C、e1,5e2D、e1,e1+e2

      答案:B

      4、在等腰Rt△ABC中,∠A=90°,則向量,的夾角為XXXXXX。

      答案:135°

      用基底表示向量

      [典例]如圖,在平行四邊形ABCD中,設對角線=a,=b,試用基底a,b表示,。

      [解]法一:由題意知,==12=12a,==12=12b。

      所以=+=—=12a—12b,

      =+=12a+12b,

      法二:設=x,=y,則==y,

      又+=,—=,則x+y=a,y—x=b,

      所以x=12a—12b,y=12a+12b,

      即=12a—12b,=12a+12b。

      用基底表示向量的方法

      將兩個不共線的向量作為基底表示其他向量,基本方法有兩種:一種是運用向量的線性運算法則對待求向量不斷進行轉化,直至用基底表示為止;另一種是通過列向量方程或方程組的形式,利用基底表示向量的性求解。

      [活學活用]

      如圖,已知梯形ABCD中,AD∥BC,E,F分別是AD,BC邊上的中點,且BC=3AD,=a,=b。試以a,b為基底表示。

      解:∵AD∥BC,且AD=13BC,

      ∴=13=13b。

      ∵E為AD的中點,

      ∴==12=16b。

      ∵=12,∴=12b,

      ∴=++

      =—16b—a+12b=13b—a,

      =+=—16b+13b—a=16b—a,

      =+=—(+)

      =—(+)=—16b—a+12b

      =a—23b。

    高二數學教案13

      目的要求:

      1.復習鞏固求曲線的方程的基本步驟;

      2.通過教學,逐步提高學生求貢線的方程的能力,靈活掌握解法步驟;

      3.滲透“等價轉化”、“數形結合”、“整體”思想,培養學生全面分析問題的能力,訓練思維的深刻性、廣闊性及嚴密性。

      教學重點、難點:

      方程的求法教學方法:講練結合、討論法

      教學過程:

      一、學點聚集:

      1.曲線C的方程是f(x,y)=0(或方程f(x,y)=0的曲線是C)實質是

      ①曲線C上任一點的坐標都是方程f(x,y)=0的解

      ②以方程f(x,y)=0的解為坐標的點都是曲線C上的點

      2.求曲線方程的基本步驟

      ①建系設點;

      ②尋等列式;

      ③代換(坐標化);

      ④化簡;

      ⑤證明(若第四步為恒等變形,則這一步驟可省略)

      二、基礎訓練題:

      221.方程x-y=0的曲線是()

      A.一條直線和一條雙曲線B.兩個點C.兩條直線D.以上都不對

      2.如圖,曲線的方程是()

      A.x?y?0 B.x?y?0 C.

      xy?1 D.

      x?1 y3.到原點距離為6的點的軌跡方程是。

      4.到x軸的`距離與其到y軸的距離之比為2的點的軌跡方程是。

      三、例題講解:

      例1:已知一條曲線在y軸右方,它上面的每一點到A?2,0?的距離減去它到y軸的距離的差都是2,求這條曲線的方程。

      例2:已知P(1,3)過P作兩條互相垂直的直線l

      1、l2,它們分別和x軸、y軸交于B、C兩點,求線段BC的中點的軌跡方程。

      2例3:已知曲線y=x+1和定點A(3,1),B為曲線上任一點,點P在線段AB上,且有BP∶PA=1∶2,當點B在曲線上運動時,求點P的軌跡方程。

      鞏固練習:

      1.長為4的線段AB的兩個端點分別在x軸和y軸上滑動,求AB中點M的軌跡方程。

      22.已知△ABC中,B(-2,0),C(2,0)頂點A在拋物線y=x+1移動,求△ABC的重心G的軌跡方程。

      思考題:

      已知B(-3,0),C(3,0)且三角形ABC中BC邊上的高為3,求三角形ABC的垂心H的軌跡方程。

      小結:

      1.用直接法求軌跡方程時,所求點滿足的條件并不一定直接給出,需要仔細分析才能找到。

      2.用坐標轉移法求軌跡方程時要注意所求點和動點之間的聯系。

      作業:

      蘇大練習第57頁例3,教材第72頁第3題、第7題。

    高二數學教案14

      一、教學內容分析

      圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象、恰當地利用xx解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

      二、學生學習情況分析

      我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

      三、設計思想

      由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率、

      四、教學目標

      1、深刻理解并熟練掌握圓錐曲線的.定義,能靈活應用xx解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

      2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

      3、借助多媒體輔助教學,激發學習數學的興趣、

      五、教學重點與難點:

      教學重點

      1、對圓錐曲線定義的理解

      2、利用圓錐曲線的定義求“最值”

      3、“定義法”求軌跡方程

      教學難點:

      巧用圓錐曲線xx解題

      六、教學過程設計

      【設計思路】

      開門見山,提出問題

      例題:

      (1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。

      (a)橢圓(b)雙曲線(c)線段(d)不存在

      (2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。

      (a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線

      【設計意圖】

      定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

      為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

      【學情預設】

      估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

      在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

    高二數學教案15

      教學目標

      鞏固二元一次不等式和二元一次不等式組所表示的平面區域,能用此來求目標函數的最值。

      重點難點

      理解二元一次不等式表示平面區域是教學重點。

      如何擾實際問題轉化為線性規劃問題,并給出解答是教學難點。

      教學步驟

      【新課引入】

      我們知道,二元一次不等式和二元一次不等式組都表示平面區域,在這里開始,教學又翻開了新的一頁,在今后的學習中,我們可以逐步看到它的運用。

      【線性規劃】

      先討論下面的問題

      設,式中變量x、y滿足下列條件

      ①求z的值和最小值。

      我們先畫出不等式組①表示的平面區域,如圖中內部且包括邊界。點(0,0)不在這個三角形區域內,當時,,點(0,0)在直線上。

      作一組和平等的直線

      可知,當l在的右上方時,直線l上的點滿足。

      即,而且l往右平移時,t隨之增大,在經過不等式組①表示的三角形區域內的`點且平行于l的直線中,以經過點A(5,2)的直線l,所對應的t,以經過點的直線,所對應的t最小,所以

      在上述問題中,不等式組①是一組對變量x、y的約束條件,這組約束條件都是關于x、y的一次不等式,所以又稱線性約束條件。

      是欲達到值或最小值所涉及的變量x、y的解析式,叫做目標函數,由于又是x、y的解析式,所以又叫線性目標函數,上述問題就是求線性目標函數在線性約束條件①下的值和最小值問題。

      線性約束條件除了用一次不等式表示外,有時也有一次方程表示。

      一般地,求線性目標函數在線性約束條件下的值或最小值的問題,統稱為線性規劃問題,滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域,在上述問題中,可行域就是陰影部分表示的三角形區域,其中可行解(5,2)和(1,1)分別使目標函數取得值和最小值,它們都叫做這個問題的解。

    【高二數學教案】相關文章:

    高二數學教案12-04

    高二數學教案08-27

    高二優秀數學教案11-14

    關于高二數學教案12-01

    中職高二數學教案11-07

    最新高二數學教案09-29

    高二數學教案(15篇)12-06

    高二數學教案15篇12-05

    高二數學教案精選15篇12-16

    高二數學教案(精選15篇)02-27

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      在线一区视频二区三区 | 亚洲国产日韩综合久久精品 | 亚洲午夜福利一级无吗 | 色色综合久久久久久久综合 | 亚洲中文AⅤ中文字幕在线 小草在线影院婷婷亚洲 | 亚洲国产高清自产拍 |