1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    數(shù)學(xué)初二教案

    時(shí)間:2022-11-24 18:34:22 八年級數(shù)學(xué)教案 我要投稿

    數(shù)學(xué)初二教案

      在教學(xué)工作者實(shí)際的教學(xué)活動中,可能需要進(jìn)行教案編寫工作,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么教案應(yīng)該怎么寫才合適呢?以下是小編收集整理的數(shù)學(xué)初二教案,希望能夠幫助到大家。

    數(shù)學(xué)初二教案

    數(shù)學(xué)初二教案1

      一、知識回顧

      1.命題與證明

      2.平行線性質(zhì)定理與判定定理

      3.三角形內(nèi)角和定理及推論

      4.等腰三角形的性質(zhì)定理和判定定理

      5.等邊三角形的性質(zhì)定理和判定定理

      6.直角三角形的性質(zhì)定理和判定定理

      二、例題講解

      例1.如圖,直線AB,CD分別與直線AC相交于點(diǎn)A,C,與直線BD相交于點(diǎn)B,D.若∠1=∠2,∠3=75°,求∠4的度數(shù).

      例2.如圖,△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,D在AB上。

      (1)求證:△AOC≌△BOD;

      (2)若AD=1,BD=2,求CD的長。

      例3.如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點(diǎn),以CD為一邊且在CD下方作等邊△CDE,連結(jié)BE.

      (1) 求證:△ACD≌△BCE;

      (2) 延長BE至Q, P為BQ上一點(diǎn),連結(jié)CP、CQ使CP=CQ=5, 若BC=8時(shí),求PQ的長.

      例4.如圖,點(diǎn)D,E在△ABC的邊BC上,連接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,構(gòu)成三個(gè)命題:①② ③;①③ ②;②③ ①.

      (1)以上三個(gè)命題是真命題的為(直接作答)

      (2)請選擇一個(gè)真命題進(jìn)行證明(先寫出所選命題,然后證明).

      例5.如圖,△ABC中,AB=AC,AD、AE分別是∠BAC和∠BAC和外角的平分線,BE⊥AE.

      (1)求證:DA⊥AE;

      (2)試判斷AB與DE是否相等?并證明你的結(jié)論.

      三、隨堂練習(xí)

      1.如圖,直線l1∥l2, ∠1=40°,∠2=75°,則∠3等于 ( )

      A.55° B .60° C.65° D .70°

      2.如果一個(gè)等腰三角形的兩邊長分別是5cm和6cm,那么此三角形的周長是 ( )

      A.15cm B.16cm C.17cm D.16cm或17cm

      3.如圖,邊長為4的等邊△ABC中,DE為中位線,則四邊形BCED的面積為 ( )

      A. B. C. D.

      4.矩形的一內(nèi)角平分線把矩形的一條邊分成3和5兩部分,則該矩形的周長是 ( )

      A. 16 B. 22 C. 26 D. 22或26

      5.平行四邊形內(nèi)角平分線能夠圍成的四邊形是 ( )

      A.梯形 B.矩形 C.正方形 D.不是平行四邊形

      6.正方形具有而菱形不具有的性質(zhì)是 ( )

      A.對角線互相平分;B.對角線相等;C.對角線互相垂直;D.對角線平分對角。

      7.寫出命題“同角的余角相等”的條件: ,結(jié)論: .

      8.寫出命題“直角三角形斜邊上的中線等于斜邊的一半”的逆命題: ,它是 命題(填“真”或“假”).

      9.邊長為6cm的`等邊三角形中,其一邊上高的長度為________,面積是________.

      10.在等腰Rt△ABC中,∠C=90°,AC=1,過點(diǎn)C作直線l∥AB,F(xiàn)是l上的一點(diǎn),且AB=AF,則點(diǎn)F到直線BC的距離為 .

      11.在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(2,2),點(diǎn)Q在y軸上,△PQO是等腰三角形,則滿足條件的點(diǎn)Q的坐標(biāo)為________________________.

      12.若等腰梯形的周長為80cm, 高為12cm,中位線長與腰長相等, 則它的面積為____________cm2.

      13.已知等邊△ABC中,點(diǎn)D,E分別在邊AB,BC上,把△BDE沿直線DE翻折,使點(diǎn)B落在點(diǎn)B?處,DB?,EB?分別交邊AC于點(diǎn)F,G,若∠ADF=80 ,則∠EGC的度數(shù)為 .

      14.將邊長為8cm的正方形紙片ABCD折疊,使點(diǎn)D落在BC邊中點(diǎn)E處,點(diǎn)A落在點(diǎn)F處,折痕為MN,則線段CN的長是 .

      15.已知三條不同的直線a,b,c在同一平面內(nèi),下列四個(gè)命題:

      ①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;

      ③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么b∥c.

      其中真命題的是 .(填寫所有真命題的序號)

      16.在菱形 中,對角線 與 相交于點(diǎn) , .過點(diǎn) 作 交 的延長線于點(diǎn) .

      (1)求 的周長;

      (2)點(diǎn) 為線段 上的點(diǎn),連接 并延長交 于點(diǎn) .

      求證: .

      17. 如圖,在正方形ABCD中,△PBC、△QCD是兩個(gè)等邊三角形,PB與DQ交于M,BP與CQ交于E,CP與DQ交于F.求證:PM = QM.

      四、課后作業(yè)

      1.如圖,平行四邊形ABCD中,EF為邊AD、BC上的點(diǎn),且AE=CF,連結(jié)AF、EC、BE、DF交于M、N,試判斷MF與NE的關(guān)系并證明你的結(jié)論.

      2.如圖,在△ABC中,D是BC邊的中點(diǎn),E、F分別在AD及其延長線上, CE∥BF,連接BE、CF.

      (1)求證:△BDF≌△CDE;

      (2)若AB=AC,求證:四邊形BFCE是菱形.

      3.如圖,等腰梯形ABCD中,AD∥BC,點(diǎn)M,N分別是AD、BC邊的中點(diǎn),點(diǎn)E、F分別是BM、CM的中點(diǎn),若要使四邊形EMFN是正方形,MN與BC需滿足怎樣的關(guān)系?寫出這一關(guān)系并證明。

      4.如圖1,在等腰梯形 中, , 是 的中點(diǎn),過點(diǎn) 作 交 于點(diǎn) . , .

      (1)求點(diǎn) 到 的距離;

      (2)點(diǎn) 為線段 上的一個(gè)動點(diǎn),過 作 交 于點(diǎn) ,過 作 交折線 于點(diǎn) ,連結(jié) ,設(shè) .

      ①當(dāng)點(diǎn) 在線段 上時(shí)(如圖2), 的形狀是否發(fā)生改變?若不變,求出 的周長;若改變,請說明理由;

      ②當(dāng)點(diǎn) 在線段 上時(shí)(如圖3),是否存在點(diǎn) ,使 為等腰三角形?若存在,請求出所有滿足要求的 的值;若不存在,請說明理由.

    數(shù)學(xué)初二教案2

      教學(xué)目標(biāo):

      1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

      2、了解刻畫數(shù)據(jù)離散程度的三個(gè)量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。

      教學(xué)重點(diǎn):

      會計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。

      教學(xué)難點(diǎn):

      理解數(shù)據(jù)離散程度與三個(gè)差之間的關(guān)系。

      教學(xué)準(zhǔn)備:

      計(jì)算器,投影片等

      教學(xué)過程:

      一、創(chuàng)設(shè)情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時(shí)讓學(xué)生初步體會平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個(gè)量度極差)

      2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

      2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。

      3、在甲、丙兩廠中,你認(rèn)為哪個(gè)廠雞腿質(zhì)量更符合要求?為什么?

      (在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個(gè)丙廠,其平均質(zhì)量和極差與甲廠相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識上的矛盾,為引出另兩個(gè)刻畫數(shù)據(jù)離散程度的.量度標(biāo)準(zhǔn)差和方差作鋪墊。

      三、講解概念:

      方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

      設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

      則s2= ,

      而s=稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)

      從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

      四、做一做

      你能用計(jì)算器計(jì)算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個(gè)廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)

      五、鞏固練習(xí):課本第172頁隨堂練習(xí)

      六、課堂小結(jié):

      1、怎樣刻畫一組數(shù)據(jù)的離散程度?

      2、怎樣求方差和標(biāo)準(zhǔn)差?

      七、布置作業(yè):習(xí)題5.5第1、2題。

    數(shù)學(xué)初二教案3

      一、教學(xué)目標(biāo):

      1.通過探究教學(xué),使學(xué)生掌握同一底上兩底角相等的梯形是等腰梯形這個(gè)判定方法,及其此判定方法的證明.

      2.能夠運(yùn)用等腰梯形的性質(zhì)和判定方法進(jìn)行有關(guān)的論證和計(jì)算,體會轉(zhuǎn)化的思想,數(shù)學(xué)建模的思想,會用分析法尋求證明題思路,從而進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.

      3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想.

      二、重點(diǎn)、難點(diǎn)

      1.重點(diǎn):掌握等腰梯形的判定方法并能運(yùn)用.

      2.難點(diǎn):等腰梯形判定方法的運(yùn)用.

      三、例題的意圖分析

      本節(jié)課安排的例題與練習(xí)較多,可供老師們選用.

      例1是教材P119的例2,這是一道計(jì)算題,講解時(shí)要讓學(xué)生注意,已知中并沒有給出等腰梯形的條件,它需要先判定梯形ABCD為等腰梯形,然后再用其性質(zhì)得出結(jié)論.

      例2、例3、例4都是補(bǔ)充的題目.其中例2是一道文字題,這道題在進(jìn)行證明時(shí),可采用平移對角線或作高兩種不同的方法,通過講解例2,可以再次給學(xué)生介紹解決梯形問題時(shí)輔助線的添加方法.

      例3是一道證明等腰梯形的題,它需要先證明其四邊形是梯形,即先證出EG∥AB,此時(shí)還要由AE,BG延長交于O,說明EGAB,才能得出四邊形ABGE是梯形.然后再利用同底上的兩角相等得出這個(gè)梯形是等腰梯形.選講此題的目的是為了讓學(xué)生了解和掌握證明一個(gè)四邊形是等腰梯形的步驟與方法.

      例4是一道作圖題,新教材P119的練習(xí)4就是一道畫梯形圖的題,此例4與練習(xí)4相同.通過此題的講解與練習(xí),就是要加強(qiáng)學(xué)生對梯形概念的理解,并了解梯形作圖的一般方法.讓學(xué)生知道梯形的畫圖題,也常常是通過分析,找出需要添加的輔助線,先畫出三角形或四邊形,再根據(jù)它們之間的聯(lián)系畫出所要求的梯形.

      四、課堂引入

      1.復(fù)習(xí)提問:(1)什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

      (2)等腰梯形有哪些性質(zhì)?它的`性質(zhì)定理是怎樣證明的?

      (3)在研究解決梯形問題時(shí)的基本思想和方法是什么?常用的輔助線有哪幾種?

      我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個(gè)梯形是否是等腰梯形呢?今天我們就共同來研究這個(gè)問題.

      2.【提出問題】:前面所學(xué)的特殊四邊形的判定基本上是性質(zhì)的逆命題.等腰梯形同一底上兩個(gè)角相等的逆命題是什么?

      命題:同一底上的兩個(gè)角相等的梯形是等腰梯形

      問:這個(gè)命題是否成立?能否加以證明,引導(dǎo)學(xué)生寫出已知、求證.

      啟發(fā):能否轉(zhuǎn)化為特殊四邊形或三角形,鼓勵(lì)學(xué)生大膽猜想,和求證.

      已知:如圖,在梯形ABCD中,AD∥BC,C.

      求證:AB=CD.

      分析:我們學(xué)過如果一個(gè)三角形中有兩個(gè)角相等,那么它們所對的邊相等.因此,我們只要能將等腰梯形同一底上的兩個(gè)角轉(zhuǎn)化為等腰三角形的兩個(gè)底角,命題就容易證明了.

      證明方法1:過點(diǎn)D作DE∥AB交BC于點(diǎn)F,得到△DEC.

      ∵AB∥DE, 1,

      ∵C, C. DE=DC.

      又∵AD∥BC, DE=AB=DC.

      證明時(shí),可以仿照性質(zhì)證明時(shí)的分析,來啟發(fā)學(xué)生添加輔助線DE.

      證明方法二:用常見的梯形輔助線方法:過點(diǎn)A作AEBC, 過D作DFBC,垂足分別為E、F(見圖一).

      證明方法三: 延長BA、CD相交于點(diǎn)E(見圖二). 圖一 圖二

      通過證明:驗(yàn)證了命題的正確性,從而得到:等腰梯形判定方法

      等腰梯形判定方法 在同一底上的兩個(gè)角相等的梯形是等腰梯形.

      幾何表達(dá)式:梯形ABCD中,若C,則AB=DC.

      【注意】等腰梯形的判定方法:①先判定它是梯形,②再用兩腰相等或同一底上的兩個(gè)角相等來判定它是等腰梯形.

    數(shù)學(xué)初二教案4

      教學(xué)目標(biāo)

      1、理解用配方法解一元二次方程的基本步驟。

      2、會用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。

      3、進(jìn)一步體會化歸的思想方法。

      重點(diǎn)難點(diǎn)

      重點(diǎn):會用配方法解一元二次方程.

      難點(diǎn):使一元二次方程中含未知數(shù)的項(xiàng)在一個(gè)完全平方式里。

      教學(xué)過程

      (一)復(fù)習(xí)引入

      1、用配方法解方程x2+x-1=0,學(xué)生練習(xí)后再完成課本P.13的“做一做”.

      2、用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的基本步驟是什么?

      (二)創(chuàng)設(shè)情境

      現(xiàn)在我們已經(jīng)會用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,而對于二次項(xiàng)系數(shù)不為1的一元二次方程能不能用配方法解?

      怎樣解這類方程:2x2-4x-6=0

      (三)探究新知

      讓學(xué)生議一議解方程2x2-4x-6=0的方法,然后總結(jié)得出:對于二次項(xiàng)系數(shù)不為1的`一元二次方程,可將方程兩邊同除以二次項(xiàng)的系數(shù),把二次項(xiàng)系數(shù)化為1,然后按上一節(jié)課所學(xué)的方法來解。讓學(xué)生進(jìn)一步體會化歸的思想。

      (四)講解例題

      1、展示課本P.14例8,按課本方式講解。

      2、引導(dǎo)學(xué)生完成課本P.14例9的填空。

      3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項(xiàng)系數(shù)是1的一般形式;其次加上一次項(xiàng)系數(shù)的一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里;最后將配方后的一元二次方程用因式分解法或直接開平方法來解。

      (五)應(yīng)用新知

      課本P.15,練習(xí)。

      (六)課堂小結(jié)

      1、用配方法解一元二次方程的基本步驟是什么?

      2、配方法是一種重要的數(shù)學(xué)方法,它的重要性不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),高中學(xué)習(xí)二次曲線時(shí)都要經(jīng)常用到。

      3、配方法是解一元二次方程的通法,但是由于配方的過程要進(jìn)行較繁瑣的運(yùn)算,在解一元二次方程時(shí),實(shí)際運(yùn)用較少。

      4、按圖1—l的框圖小結(jié)前面所學(xué)解

      一元二次方程的算法。

      (七)思考與拓展

      不解方程,只通過配方判定下列方程解的

      情況。

      (1)4x2+4x+1=0;(2)x2-2x-5=0;

      (3)–x2+2x-5=0;

      [解]把各方程分別配方得

      (1)(x+)2=0;

      (2)(x-1)2=6;

      (3)(x-1)2=-4

      由此可得方程(1)有兩個(gè)相等的實(shí)數(shù)根,方程(2)有兩個(gè)不相等的實(shí)數(shù)根,方程(3)沒有實(shí)數(shù)根。

      點(diǎn)評:通過解答這三個(gè)問題,使學(xué)生能靈活運(yùn)用“配方法”,并強(qiáng)化學(xué)生對一元二次方程解的三種情況的認(rèn)識。

    數(shù)學(xué)初二教案5

      教學(xué)目標(biāo)

      1、等腰三角形的概念、

      2、等腰三角形的性質(zhì)、

      3、等腰三角形的概念及性質(zhì)的應(yīng)用、

      教學(xué)重點(diǎn):

      1、等腰三角形的概念及性質(zhì)、

      2、等腰三角形性質(zhì)的應(yīng)用、

      教學(xué)難點(diǎn):

      等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用、

      教學(xué)過程

      Ⅰ、提出問題,創(chuàng)設(shè)情境

      在前面的學(xué)習(xí)中,我們認(rèn)識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個(gè)簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計(jì)一些美麗的圖案、這節(jié)課我們就是從軸對稱的角度來認(rèn)識一些我們熟悉的幾何圖形、來研究:

      ①三角形是軸對稱圖形嗎?

      ②什么樣的三角形是軸對稱圖形?

      有的三角形是軸對稱圖形,有的三角形不是、

      問題:那什么樣的三角形是軸對稱圖形?

      滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形、

      我們這節(jié)課就來認(rèn)識一種成軸對稱圖形的三角形──等腰三角形、

      Ⅱ、導(dǎo)入新課:要求學(xué)生通過自己的思考來做一個(gè)等腰三角形、

      作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形、

      等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角、

      思考:

      1、等腰三角形是軸對稱圖形嗎?請找出它的對稱軸、

      2、等腰三角形的兩底角有什么關(guān)系?

      3、頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

      4、底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

      結(jié)論:等腰三角形是軸對稱圖形、它的對稱軸是頂角的平分線所在的直線、因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線、

      要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對稱軸,并看它的兩個(gè)底角有什么關(guān)系、

      沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高、

      由此可以得到等腰三角形的'性質(zhì):

      1、等腰三角形的兩個(gè)底角相等(簡寫成“等邊對等角”)、

      2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、

      由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì)、同學(xué)們現(xiàn)在就動手來寫出這些證明過程)、

      如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

      所以△BAD≌△CAD(SSS)、

      所以∠B=∠C、

      ]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

      所以△BAD≌△CAD、

      所以BD=CD,∠BDA=∠CDA= ∠BDC=90°、

      [例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

      求:△ABC各角的度數(shù)、

      分析:根據(jù)等邊對等角的性質(zhì),我們可以得到

      ∠A=∠ABD,∠ABC=∠C=∠BDC,

      再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A、

      再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角、

      把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷、

      解:因?yàn)锳B=AC,BD=BC=AD,

      所以∠ABC=∠C=∠BDC、

      ∠A=∠ABD(等邊對等角)、

      設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

      從而∠ABC=∠C=∠BDC=2x、

      于是在△ABC中,有

      ∠A+∠ABC+∠C=x+2x+2x=180°,

      解得x=36°、在△ABC中,∠A=35°,∠ABC=∠C=72°、

      [師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識、

      Ⅲ、隨堂練習(xí):

      1、課本P51練習(xí)1、2、3、 2、閱讀課本P49~P51,然后小結(jié)、

      Ⅳ、課時(shí)小結(jié)

      這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用、等腰三角形是軸對稱圖形,它的兩個(gè)底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、

      我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、

      Ⅴ、作業(yè):課本P56習(xí)題12、3第1、2、3、4題、

      板書設(shè)計(jì)

      12、3、1、1等腰三角形

      一、設(shè)計(jì)方案作出一個(gè)等腰三角形

      二、等腰三角形性質(zhì):

      1、等邊對等角

      2、三線合一

    數(shù)學(xué)初二教案6

      一、教學(xué)目標(biāo)

      1.了解二次根式的意義;

      2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

      3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

      4.通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

      5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

      二、教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍.

      難點(diǎn):確定二次根式中字母的取值范圍.

      三、教學(xué)方法

      啟發(fā)式、講練結(jié)合.

      四、教學(xué)過程

      (一)復(fù)習(xí)提問

      1.什么叫平方根、算術(shù)平方根?

      2.說出下列各式的意義,并計(jì)算:

      通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

      觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

      表示的是算術(shù)平方根.

      (二)引入新課

      我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

      新課:二次根式

      定義: 式子 叫做二次根式.

      對于 請同學(xué)們討論論應(yīng)注意的`問題,引導(dǎo)學(xué)生總結(jié):

      (1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎? 呢?

      若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

      (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

      根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

      例1 當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

      分析: , , , 、 、 、 四個(gè)是二次根式. 因?yàn)閍是實(shí)數(shù)時(shí),a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時(shí),a+10又如當(dāng)0

      例2 x是怎樣的實(shí)數(shù)時(shí),式子 在實(shí)數(shù)范圍有意義?

      解:略.

      說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子 有意義.

      例3 當(dāng)字母取何值時(shí),下列各式為二次根式:

      (1) (2) (3) (4)

      分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.

      解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時(shí), 是二次根式.

      (2)-3x0,x0,即x0時(shí), 是二次根式.

      (3) ,且x0,x0,當(dāng)x0時(shí), 是二次根式.

      (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時(shí), 是二次根式.

      例4 下列各式是二次根式,求式子中的字母所滿足的條件:

      (1) ; (2) ; (3) ; (4)

      分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

      解:(1)由2a+30,得 .

      (2)由 ,得3a-10,解得 .

      (3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).

      (4)由-b20得b20,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.

      (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

      1.式子 叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.

      2.式子中,被開方數(shù)(式)必須大于等于零.

      (四)練習(xí)和作業(yè)

      練習(xí):

      1.判斷下列各式是否是二次根式

      分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無意義.

      2.a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

      五、作業(yè)

      教材P.172習(xí)題11.1;A組1;B組1.

      六、板書設(shè)計(jì)

    數(shù)學(xué)初二教案7

      一、學(xué)生情況分析及改進(jìn)提高措施:

      學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨(dú)立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實(shí),對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實(shí)踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計(jì)一些活動,引導(dǎo)學(xué)生進(jìn)行獨(dú)立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗(yàn)。

      在數(shù)學(xué)知識上已經(jīng)掌握了兩步計(jì)算式題和有余數(shù)的除法,還有統(tǒng)計(jì)知識,并學(xué)會了辨認(rèn)八個(gè)方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實(shí)際長度和簡單的`換算以及實(shí)際測量,并能用以上這些相應(yīng)的知識解決實(shí)際生活中的問題。總之,這些技能和知識點(diǎn)都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識打下了堅(jiān)實(shí)的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進(jìn)一步得到發(fā)揚(yáng)光大,他們的情感、態(tài)度、價(jià)值觀會沿著良性軌道螺旋式上升。

      具體提高措施是:

      1.從學(xué)生的年齡特點(diǎn)出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。

      2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實(shí)際,便于對問題的理解。結(jié)合學(xué)生的生活實(shí)際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。

      3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實(shí)踐練習(xí),加強(qiáng)各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實(shí)踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計(jì)圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。

      4.加強(qiáng)學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時(shí)學(xué)習(xí)情況,與學(xué)生家長多溝通交流。

      二、本冊教材分析

      本冊教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動實(shí)踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實(shí)問題的過程中獲得對數(shù)學(xué)知識的理解和體驗(yàn)。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個(gè)社會實(shí)踐活動,還有兩個(gè)整理復(fù)習(xí),一個(gè)總復(fù)習(xí)。具體特點(diǎn)是:

      1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗(yàn)乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。

      2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗(yàn)出發(fā),注重通過操作活動發(fā)展空間觀念。

      3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計(jì)。

      三、總體教學(xué)目標(biāo):

      (一)、知識與技能

      1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。

      2.學(xué)平面圖形的周長,會進(jìn)行周長的計(jì)算。

      (二)、實(shí)踐能力培養(yǎng)

      1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗(yàn)從不同的位置觀察,所看到的物體可能是不一樣的。

      2.結(jié)合生活情境,感受并認(rèn)識質(zhì)量單位。

      3.經(jīng)歷對生活中某些現(xiàn)象進(jìn)行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。

      (三)、情感與態(tài)度

      1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。

      2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價(jià),讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

      教研專題:

      創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。

      個(gè)人專題:

      在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。

    數(shù)學(xué)初二教案8

      學(xué)習(xí)目標(biāo):

      1、了解平行線性質(zhì)定理和判定定理在條件和結(jié)論上的區(qū)別,體會互逆的思維過程;

      2、能熟練應(yīng)用平行線的`性質(zhì)公理及定理。

      一、試一試

      自學(xué)指導(dǎo):平行線性質(zhì)公理:兩直線平行,同位角相等

      1、 思考下列各題,你能利用平行線性質(zhì)公理解決它們嗎?

      2、 充分思考后自學(xué)教材P229-231,學(xué)完后合上課本完成下列各題,注意邏輯和書寫。

      (1)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的內(nèi)錯(cuò)角。請根據(jù)平行線性質(zhì)公理證明∠1=∠2

      由此得平行線性質(zhì)定理1:

      (2) 已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的同旁內(nèi)角。請根據(jù)平行線性質(zhì)公理或上題已證的定理證明∠1+∠2=180°

      由此得平行線性質(zhì)定理2:

      二、練一練

      1、已知:如圖,直線a,b,c被直線d所截,且a∥b,c∥b

      (1)求證:a∥c

      (2)請將(1)題證得的結(jié)論用一句話總結(jié)出來

      2、利用“兩直線平行,同旁內(nèi)角互補(bǔ)”證明“平行四邊形對角線相等”。

      四、記一記

      1、兩直線平行的性質(zhì)公理及兩個(gè)性質(zhì)定理;

      2、平行線的性質(zhì)補(bǔ)充結(jié)論

      (1)垂直于兩平行線之一的直線必垂直于另一條直線

      (2)夾在兩平行線之間的平行線段相等;

      (3)兩條平行線間的距離處處相等;

      (4)經(jīng)過直線外一點(diǎn),有且只有一條直線和已知直線平行;

      (5)如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等或者互補(bǔ)

      B組:請?jiān)谘a(bǔ)充結(jié)論中選擇你感興趣的進(jìn)行證明:

    數(shù)學(xué)初二教案9

      一、基本知識和需說明的問題:

      (一)圓的有關(guān)性質(zhì),本節(jié)中最重要的定理有4個(gè)。

      1、垂徑定理:

      本定理和它的三個(gè)推論說明: 在(垂直于弦(不是直徑的弦);(2)平分弦;(3)平分弦所對的弧;(4)過圓心(是半徑或是直徑)這四個(gè)語句中,滿足兩個(gè)就可得到其它兩個(gè)的結(jié)論。如垂直于弦(不是直徑的弦)的直徑,平分弦且平分弦所對的兩條弧。條件是垂直于弦(不是直徑的弦)的直徑,結(jié)論是平分弦、平分弧。再如弦的垂直平分線,經(jīng)過圓心且平分弦所對的弧。條件是垂直弦,、分弦,結(jié)論是過圓心、平分弦。

      應(yīng)用:在圓中,弦的一半、半徑、弦心距組成一個(gè)直角三角形,利用勾股定理解直角三角形的知識,可計(jì)算弦長、半徑、弦心距和弓形的高。

      2、圓心角、弧、弦、弦心距四者之間的關(guān)系定理:

      在同圓和等圓中, 圓心角、弧、弦、弦心距這四組量中有一組量相等,則其它各組量均相等。這個(gè)定理證弧相等、弦相等、圓心角相等、弦心距相等是經(jīng)常用的。

      3、圓周角定理:

      此定理在證題中不大用,但它的推論,即弧相等所對的圓周角相等;在同圓或等圓中,圓周角相等,弧相等。直徑所對的圓周角是直角,90°的圓周角所對的弦是直徑,都是很重要的。條件中若有直徑,通常添加輔助線形成直角。

      4、圓內(nèi)接四邊形的性質(zhì)。

      (二)直線和圓的位置關(guān)系。

      1、性質(zhì):

      圓的切線垂直于經(jīng)過切點(diǎn)的半徑。(有了切線,將切點(diǎn)與圓心連結(jié),則半徑與切線垂直,所以連結(jié)圓心和切點(diǎn),這條輔助線是常用的。)

      2、切線的判定有兩種方法。

      ①若直線與圓有公共點(diǎn),連圓心和公共點(diǎn)成半徑,證明半徑與直線垂直即可。

      ②若直線和圓公共點(diǎn)不確定,過圓心做直線的垂線,證明它是半徑(利用定義證)。根據(jù)不同的'條件,選擇不同的添加輔助線的方法是極重要的。

      3、三角形的內(nèi)切圓:

      內(nèi)心是內(nèi)切圓圓心,具有的性質(zhì)是:到三角形的三邊距離相等,還要注意說某點(diǎn)是三角形的內(nèi)心。連結(jié)三角形的頂點(diǎn)和內(nèi)心,即是角平分線。

      4、切線長定理:自圓外一點(diǎn)引圓的切線,則切線和半徑、圓心到該點(diǎn)的連線組成直角三角形。

      (三)圓和圓的位置關(guān)系。

      1、記住5種位置關(guān)系的圓心距d與兩圓半徑之間的相等或不等關(guān)系。會利用d與R,r之間的關(guān)系確定兩圓的位置關(guān)系,會利用d,R,r之間的關(guān)系確定兩圓的位置關(guān)系。

      2、相交兩圓,添加公共弦,通過公共弦將兩圓連結(jié)起來。

      (四)正多邊形和圓。

      1、弧長公式。

      2、扇形面積公式。

      3、圓錐側(cè)面積計(jì)算公式:S= 2π=π。

      二、鞏固練習(xí)。

      (一)精心選一選,相信自己的判斷!

      1、如圖,把自行車的兩個(gè)車輪看成同一平面內(nèi)的兩個(gè)圓,則它們的位置關(guān)系是

      A、外離 B、外切 C、相交 D、內(nèi)切

      2、已知⊙O的直徑為12cm,圓心到直線L的距離為6cm,則直線L與⊙O的公共點(diǎn)的個(gè)數(shù)為( )

      A、2 B、1 C、0 D、不確定

      3、已知⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關(guān)系是( )

      A、外切 B、內(nèi)切 C、相交 D、相離

      4、已知在⊙O中,弦AB的長為8厘米,圓心O到AB的距離為3厘米,則⊙O的半徑是( )

      A、3厘米 B、4厘米 C、5厘米 D、8厘米

      5、下列命題錯(cuò)誤的是( )

      A、經(jīng)過三個(gè)點(diǎn)一定可以作圓 B、三角形的外心到三角形各頂點(diǎn)的距離相等

      C、同圓或等圓中,相等的圓心角所對的弧相等 D、經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

      6、在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓必定( )

      A、與x軸相離、與y軸相切 B、與x軸、y軸都相離

      C、與x軸相切、與y軸相離 D、與x軸、y軸都相切

      7、在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是( )

      A、25π B、65π C、90π D、130π

      (二)細(xì)心填一填,試自己的身手!

      12、各邊相等的圓內(nèi)接多邊形_____正多邊形;各角相等的圓內(nèi)接多邊形_____正多邊形。(填“是”或“不是”)

      13、△ABC的內(nèi)切圓半徑為r,△ABC的周長為l,則△ABC的面積為_______________ 。

      14、已知在⊙O中,半徑r=13,弦AB∥CD,且AB=24,CD=10,則AB與CD的距離為__________。

      15、同圓的內(nèi)接正四邊形和內(nèi)接正方邊形的連長比為____________________。

    數(shù)學(xué)初二教案10

      一、教學(xué)目標(biāo)

      1. 掌握等腰梯形的判定方法.

      2. 能夠運(yùn)用等腰梯形的性質(zhì)和判定進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.

      3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想

      二、教法設(shè)計(jì)

      小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固

      三、重點(diǎn)、難點(diǎn)

      1.教學(xué)重點(diǎn):等腰梯形判定.

      2.教學(xué)難點(diǎn):解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線).

      四、課時(shí)安排

      1課時(shí)

      五、教具學(xué)具準(zhǔn)備

      多媒體,小黑板,常用畫圖工具

      六、師生互動活動設(shè)計(jì)

      教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線

      七、教學(xué)步驟

      【復(fù)習(xí)提問】

      1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

      2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

      3.在研究解決梯形問題時(shí)的基本思想和方法是什么?常用的輔助線有哪幾種?

      我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個(gè)梯形是否是等腰梯形呢?今天我們就共同來研究這個(gè)問題.

      【引人新課】

      等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形.

      前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的`判定定理來證明等腰梯形的判定定理.

      例1已知:如圖,在梯形 中, , ,求證: .

      分析:我們學(xué)過“如果一個(gè)三角形中有兩個(gè)角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個(gè)角轉(zhuǎn)化為等腰三角形的兩個(gè)底角,定理就容易證明了.

      (引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)

      (1)如圖,過點(diǎn) 作 、 ,交 于 ,得 ,所以得 .

      又由 得 ,因此可得 .

      (2)作高 、 ,通過證 推出 .

      (3)分別延長 、 交于點(diǎn) ,則 與 都是等腰三角形,所以可得 .

      (證明過程略).

      例3 求證:對角線相等的梯形是等腰梯形.

      已知:如圖,在梯形 中, , .

      求證: .

      分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.

      在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .

      (引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)

      證明:過點(diǎn) 作 ,交 延長線于 ,得 ,

      ∴ .

      ∵ , ∴

      ∴

      ∵ , ∴

      又∵ 、 ,∴

      ∴ .

      說明:如果 、 交于點(diǎn) ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點(diǎn)為頂點(diǎn)的兩個(gè)等腰三角形,這個(gè)結(jié)論雖不能直接引用,但可以為以后解題提供思路.

      例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計(jì)算這個(gè)等腰梯形的周長和面積.

      分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

      畫法:①畫 ,使 .

      .

      ②延長 到 使 .

      ③分別過 、 作 , , 、 交于點(diǎn) .

      四邊形 就是所求的等腰梯形.

      解:梯形 周長 .

      答:梯形周長為26cm,面積為 .

      【總結(jié)、擴(kuò)展】

      小結(jié):(由學(xué)生總結(jié))

      (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個(gè)角相等”來判定它是等腰梯形.

      (2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

      八、布置作業(yè)

      l.已知:如圖,梯形 中, , 、 分別為 、 中點(diǎn),且 ,求證:梯形 為等腰梯形.

      九、板書設(shè)計(jì)

      十、隨堂練習(xí)

      教材P177中l(wèi);P179中B組2

    數(shù)學(xué)初二教案11

      一、學(xué)生起點(diǎn)分析

      八年級學(xué)生已在七年級學(xué)習(xí)了“變量之間的關(guān)系”,對利用圖象表示變量之間的關(guān)系已有所認(rèn)識,并能從圖象中獲取相關(guān)的信息,對函數(shù)與圖象的聯(lián)系還比較陌生,需要教師在教學(xué)中引導(dǎo)學(xué)生重點(diǎn)突破函數(shù)與圖象的對應(yīng)關(guān)系.

      二、教學(xué)任務(wù)分析

      《一次函數(shù)的圖象》是義務(wù)教育課程標(biāo)準(zhǔn)北師大實(shí)驗(yàn)教科書八年級(上)第六章《一次函數(shù)》的第三節(jié).本節(jié)內(nèi)容安排了2個(gè)課時(shí),第1課時(shí)是讓學(xué)生了解函數(shù)與對象的對應(yīng)關(guān)系和作函數(shù)圖象的步驟和方法,明確一次函數(shù)的圖象是一條直線,能熟練地作出一次函數(shù)的圖象。第2課時(shí)是通過對一次函數(shù)圖象的比較與歸類,探索一次函數(shù)及其圖象的簡單性質(zhì).本課時(shí)是第一課時(shí),教材注重學(xué)生在探索過程的體驗(yàn),注重對函數(shù)與圖象對應(yīng)關(guān)系的認(rèn)識.

      為此本節(jié)課的教學(xué)目標(biāo)是:

      1.了解一次函數(shù)的圖象是一條直線,能熟練作出一次函數(shù)的圖象.

      2.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.

      3.已知函數(shù)的代數(shù)表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.

      4.理解一次函數(shù)的代數(shù)表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.

      教學(xué)重點(diǎn)是:

      初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.

      教學(xué)難點(diǎn)是:

      理解一次函數(shù)的代數(shù)表達(dá)式與圖象之間的一一對應(yīng)關(guān)系.

      三、教學(xué)過程設(shè)計(jì)

      本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):

      第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題;

      第二環(huán)節(jié):畫一次函數(shù)的圖象;

      第三環(huán)節(jié):動手操作,深化探索;

      第四環(huán)節(jié):鞏固練習(xí),深化理解;

      第五環(huán)節(jié):課時(shí)小結(jié);

      第六環(huán)節(jié):拓展探究;

      第七環(huán)節(jié):作業(yè)布置.

      第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題

      內(nèi)容:

      一天,小明以80米/分的`速度去上學(xué),請問小明離家的距離S(米)與小明出發(fā)的時(shí)間t(分)之間的函數(shù)關(guān)系式是怎樣的?它是一次函數(shù)嗎?它是正比例函數(shù)嗎? S=80t(t≥0)下面的圖象能表示上面問題中的S與t的關(guān)系嗎?

      我們說,上面的圖象是函數(shù)S=80t(t≥0)的圖象,這就是我們今天要學(xué)習(xí)的主要內(nèi)容:一次函數(shù)的圖象的特殊情況正比例函數(shù)的圖象。

      目的:通過學(xué)生比較熟悉的生活情景,讓學(xué)生在寫函數(shù)關(guān)系式和認(rèn)識圖象的過程中,初步感受函數(shù)與圖象的聯(lián)系,激發(fā)其學(xué)習(xí)的欲望.

      效果:學(xué)生通過對上述情景的分析,初步感受到函數(shù)與圖象的聯(lián)系,激發(fā)了學(xué)生的學(xué)習(xí)欲望.

      第二環(huán)節(jié):畫正比例函數(shù)的圖象

      內(nèi)容:首先我們來學(xué)習(xí)什么是函數(shù)的圖象?

      把一個(gè)函數(shù)的自變量x與對應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象(graph).

      例1請作出正比例函數(shù)y=2x的圖象.

      第三環(huán)節(jié):動手操作,深化探索

      內(nèi)容:做一做

      (1)作出正比例函數(shù)y= 3x的圖象.

      (2)在所作的圖象上取幾個(gè)點(diǎn),找出它們的橫坐標(biāo)和縱坐標(biāo),并驗(yàn)證它們是否都滿足關(guān)系y= 3x.

      請同學(xué)們以小組為單位,討論下面的問題,把得出的結(jié)論寫出來.

      (1)滿足關(guān)系式y(tǒng)= 3x的x,y所對應(yīng)的點(diǎn)(x,y)都在正比例函數(shù)y= 3x的圖象上嗎?

      (2)正比例函數(shù)y= 3x的圖象上的點(diǎn)(x,y)都滿足關(guān)系式y(tǒng)= 3x嗎?

      (3)正比例函數(shù)y=kx的圖象有什么特點(diǎn)?

      明晰

      由上面的討論我們知道:正比例函數(shù)的代數(shù)表達(dá)式與圖象是一一對應(yīng)的,即滿足正比例函數(shù)的代數(shù)表達(dá)式的x,y所對應(yīng)的點(diǎn)(x,y)都在正比例函數(shù)的圖象上;正比例函數(shù)的圖象上的點(diǎn)(x,y)都滿足正比例函數(shù)的代數(shù)表達(dá)式.正比例函數(shù)y=kx的圖象是一條直線,以后可以稱正比例函數(shù)y=kx的圖象為直線y=kx.

      議一議

      既然我們得出正比例函數(shù)y=kx的圖象是一條直線.那么在畫正比例函數(shù)圖象時(shí)有沒有什么簡單的方法呢?

      因?yàn)椤皟牲c(diǎn)確定一條直線”,所以畫正比例函數(shù)y=kx的圖象時(shí)可以只描出兩個(gè)點(diǎn)就可以了.因?yàn)檎壤瘮?shù)的圖象是一條過原點(diǎn)(0,0)的直線,所以只需再確定一個(gè)點(diǎn)就可以了,通常過(0,0),(1,k)作直線.

      4.3一次函數(shù)的圖象:同步測試

      14若直線經(jīng)過第一.二.四象限,則k.b的取值范圍是( ).

      A.k>0,b>0 B.k>0,b<0

      C.k<0,b>0 D. k<0,b<0

      2.已知一次函數(shù)y=3-2x

      (1)求圖像與兩條坐標(biāo)軸的交點(diǎn)坐標(biāo),并在下面的直角坐標(biāo)系中畫出它的圖像;

      (2)從圖像看,y隨著x的增大而增大,還是隨x的增大而減小?

      (3)x取何值時(shí),y>0?

      3.已知一次函數(shù)y=-2x+4

      (1)畫出函數(shù)的圖象.

      (2)求圖象與x軸、y軸的交點(diǎn)A、B的坐標(biāo).

      (3)求A、B兩點(diǎn)間的距離.

      (4)求△AOB的面積.

      (5)利用圖象求當(dāng)x為何值時(shí),y≥0.

      《函數(shù)的圖象》課后練習(xí)

      1.一根彈簧原長12cm,它所掛物體的質(zhì)量不超過10kg,并且每掛重物1kg就伸長1.5cm,掛重物后彈簧長度y(cm)與掛重物x(kg)之間的函數(shù)關(guān)系式是()

      A.y=1.5(x+12)(0≤x≤10)

      B.y= 1.5x+12(0≤x≤10)

      C.y=1.5x+10(x≥0)

      D.y=1.5(x-12)(0≤x≤10)

    數(shù)學(xué)初二教案12

      一、學(xué)情分析

      在七年級數(shù)學(xué)教學(xué)中發(fā)現(xiàn),本班學(xué)生興趣保持的還是比較好,絕大多數(shù)學(xué)生學(xué)習(xí)能夠認(rèn)真聽講,積極思考,反復(fù)練習(xí)。特別上學(xué)期,大部分學(xué)生通過自己的努力,基本掌握了學(xué)習(xí)數(shù)學(xué)的方法和思維模式,成績有較大的進(jìn)步。在上學(xué)期期末考試中,圓滿完成了我期初制定的教學(xué)任務(wù)。優(yōu)秀率突破了兩位數(shù),有12人,達(dá)到20%,合格率也上升到55%。但也有小部分學(xué)生因?yàn)榛A(chǔ)較差,正在喪失學(xué)習(xí)數(shù)學(xué)的信心。

      二、指導(dǎo)思想

      以《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》為準(zhǔn)繩,進(jìn)一步將新課程改革推向更深層次,進(jìn)一步提高學(xué)生的基礎(chǔ)知識和基本技能。結(jié)合學(xué)生的實(shí)際情況和教材內(nèi)容,制定切實(shí)可行的教學(xué)計(jì)劃,進(jìn)一步培養(yǎng)學(xué)生創(chuàng)新思維和應(yīng)用數(shù)學(xué)的能力。通過本學(xué)期的數(shù)學(xué)教學(xué),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,逐步提高學(xué)生的數(shù)學(xué)成績,完成八年級上冊數(shù)學(xué)教學(xué)任務(wù)。

      三、教學(xué)目標(biāo)

      知識技能目標(biāo):認(rèn)識實(shí)數(shù),掌握實(shí)數(shù)有關(guān)的運(yùn)算方法;學(xué)習(xí)一次函數(shù)的圖像、性質(zhì)與應(yīng)用;掌握全等三角形的性質(zhì)與判定、軸對稱及軸對稱圖形的特點(diǎn);掌握整式的乘除運(yùn)算、乘法公式和因式分解。

      過程方法目標(biāo):初步建立數(shù)形結(jié)合的表示數(shù)學(xué)關(guān)系。

      態(tài)度情感目標(biāo):從生活入手認(rèn)識數(shù)學(xué),探索數(shù)學(xué)規(guī)律,并將數(shù)學(xué)知識回歸到生活之中。班級教學(xué)目標(biāo):優(yōu)秀率:20%;合格率:60%。

      四、教材分析

      第十一章:全等三角形

      本章主要學(xué)習(xí)全等三角形的性質(zhì)與判定方法及其應(yīng)用。本章重點(diǎn)內(nèi)容是全等三角形性質(zhì)與判定方法及其應(yīng)用;掌握綜合法證明的格式。教學(xué)難點(diǎn)是領(lǐng)會證明的分析思路、學(xué)會運(yùn)用綜合法證明的格式。

      第十二章:軸對稱

      本章主要學(xué)習(xí)軸對稱及其基本性質(zhì),同時(shí)利用軸對稱變換,探究等腰三角形和正三角形的性質(zhì)。本章重點(diǎn)內(nèi)容是軸對稱性質(zhì)與應(yīng)用,等腰三角形、正三角形的性質(zhì)與判定。教學(xué)難點(diǎn)是軸對稱在生活中的應(yīng)用。

      第十三章:實(shí)數(shù)

      本章通過對平方根、立方根的探究引出無限不循環(huán)小數(shù),進(jìn)而導(dǎo)出無理數(shù)和實(shí)數(shù)。本章重點(diǎn)內(nèi)容是平方根、立方根、無理數(shù)和實(shí)數(shù)的概念與性質(zhì)。教學(xué)難點(diǎn)是平方根及其性質(zhì);有理數(shù)、無理數(shù)的區(qū)別。

      第十四章:一次函數(shù)

      本章主要學(xué)習(xí)一次函數(shù)及其三種表達(dá)方式,包括正比例函數(shù)、一次函數(shù)的'概念、圖象、性質(zhì)和應(yīng)用。學(xué)會用函數(shù)的觀點(diǎn)認(rèn)識一元一次方程、一元一次不等式及二元一次方程組。本章重點(diǎn)內(nèi)容是正比例函數(shù)、一次函數(shù)的概念、圖象和性質(zhì)。教學(xué)難點(diǎn)是培養(yǎng)學(xué)生初步形成數(shù)形結(jié)合的思維模式。

      第十五章:整式的乘除與因式分解

      本章主要學(xué)習(xí)整式的乘除運(yùn)算和乘法公式、多項(xiàng)式的因式分解。本章重點(diǎn)內(nèi)容是整式的乘除運(yùn)算與因式分解。教學(xué)難點(diǎn)是對多項(xiàng)式的因式分解及其思路。

      五、方法措施

      1、精心設(shè)置教學(xué)情境,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,從生活入手,總結(jié)數(shù)學(xué)規(guī)律,立足于用數(shù)學(xué)知識解決生活中存在的實(shí)際問題。

      2、加強(qiáng)對學(xué)生的課后輔導(dǎo),發(fā)展優(yōu)等生應(yīng)用數(shù)學(xué)知識的能力,鞏固中等學(xué)生的基礎(chǔ)知識和學(xué)習(xí)成績,促進(jìn)后進(jìn)生的進(jìn)步。

      3、成立互助學(xué)習(xí)小組,以優(yōu)帶良,以優(yōu)促后,實(shí)現(xiàn)全體學(xué)生共同進(jìn)步的目標(biāo)。

      六、課時(shí)安排

      請根據(jù)自己的教學(xué)實(shí)際情況和學(xué)生學(xué)習(xí)的實(shí)際情況制定適當(dāng)?shù)恼n時(shí)計(jì)劃。

    數(shù)學(xué)初二教案13

      教學(xué)建議

      知識結(jié)構(gòu):

      重點(diǎn)難點(diǎn)分析:

      是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.

      教學(xué)難點(diǎn)是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計(jì)算結(jié)果形式.

      教法建議:

      1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的.探索方向.

      2. 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時(shí)討論二次根式的除法法則,并運(yùn)用這一法則進(jìn)行簡單的二次根式的除法運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時(shí)運(yùn)算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.

      3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵(lì)學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.

      教學(xué)設(shè)計(jì)示例

      一、教學(xué)目標(biāo)

      1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算;

      2.會進(jìn)行簡單的二次根式的除法運(yùn)算;

      3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計(jì)算問題;

      4. 培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計(jì)算的能力;

      5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;

      6. 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.

      二、教學(xué)重點(diǎn)和難點(diǎn)

      1.重點(diǎn):會利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會進(jìn)行簡單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.

      2.難點(diǎn):二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.

      三、教學(xué)方法

      從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)

      內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.

      四、教學(xué)手段

      利用投影儀.

      五、教學(xué)過程

      (一) 引入新課

      學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)

      學(xué)生觀察下面的例子,并計(jì)算:

      由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

      類似地,每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

      (二)新課

      商的算術(shù)平方根.

      一般地,有 (a0,b0)

      商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.

      讓學(xué)生討論這個(gè)式子成立的條件是什么?a0,b0,對于為什么b0,要使學(xué)生通過討論明確,因?yàn)閎=0時(shí)分母為0,沒有意義.

      引導(dǎo)學(xué)生從運(yùn)算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個(gè)算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡單的二次根式的化簡與運(yùn)算.

      例1 化簡:

      (1) ; (2) ; (3) ;

      解∶(1)

      (2)

      (3)

      說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時(shí),一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù).

      例2 化簡:

      (1) ; (2) ;

      解:(1)

      (2)

      讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?

      再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.

      學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).

      (三)小結(jié)

      1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)

      2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.

      (四)練習(xí)

      1.化簡:

      (1) ; (2) ; (3) .

      2.化簡:

      (1) ; (2) ; (3)

      六、作業(yè)

      教材P.183習(xí)題11.3;A組1.

      七、板書設(shè)計(jì)

    數(shù)學(xué)初二教案14

      課型:

      復(fù)習(xí)課

      學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

      1. 針對函數(shù)及其圖象一章,查漏補(bǔ)缺,答疑解惑;

      2. 一次函數(shù)應(yīng)用的復(fù)習(xí).

      補(bǔ)充例題:

      例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系

      (1)B出發(fā)時(shí)與A相距 千米;

      (2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí);

      (3)B出發(fā)后 小時(shí)與A相遇;

      (4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式;

      (5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn), 小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn) 千米,在圖中表示出這個(gè)相遇點(diǎn)C.

      例2.在平面直角坐標(biāo)系中,過一點(diǎn)分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長與面積相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如,圖中過點(diǎn)P分別作x軸, y的垂線,與坐標(biāo)軸圍成矩形OAPB的周長與面積相等,則點(diǎn)P是和諧點(diǎn).

      (1)判斷點(diǎn)M(1,2),N(4,4)是否為和諧點(diǎn),并說明理由;

      (2)若和諧點(diǎn)P(a,3)在直線y=-x+b(b為常數(shù))上,求點(diǎn)a, b的值.

      例3.在平面直角坐標(biāo)系中,一動點(diǎn)P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點(diǎn)組成的正方形邊線(如圖①)按一定方向運(yùn)動.圖②是P點(diǎn)運(yùn)動的路程s(個(gè)單位)與運(yùn)動時(shí)間 (秒)之間的函數(shù)圖象,圖③是P點(diǎn)的縱坐標(biāo)y與P點(diǎn)運(yùn)動的路程s之間的函數(shù)圖象的一部分.

      (1)求s與t之間的函數(shù)關(guān)系式.

      (2)與圖③相對應(yīng)的P點(diǎn)的運(yùn)動路徑是: ;P點(diǎn)出發(fā) 秒首次到達(dá)點(diǎn)B;

      (3)寫出當(dāng)38時(shí),y與s之間的函數(shù)關(guān)系式,并在圖③中補(bǔ)全函數(shù)圖象.

      課后續(xù)助:

      1.某市自來水公司為限制單位用水,每月只給某單位計(jì)劃內(nèi)用水3000噸,計(jì)劃內(nèi)用水每噸收費(fèi)0.5元,超計(jì)劃部分每噸按0.8元收費(fèi).

      (1)寫出該單位水費(fèi)y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式

      ①用水量小于等于3000噸 ;②用水量大于3000噸 .

      (2)某月該單位用水3200噸,水費(fèi)是 元;若用水2800噸,水費(fèi) 元.

      (3)若某月該單位繳納水費(fèi)1540元,則該單位用水多少噸?

      2.某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無月租費(fèi),且兩種收費(fèi)方式的`通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

      (1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;

      (2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;

      (3)請你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.

      3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時(shí)風(fēng)暴平均每小時(shí)增加2千米/時(shí),4小時(shí)后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米/時(shí),一段時(shí)間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),其風(fēng)速平均每小時(shí)減小1千米/時(shí),最終停止。 結(jié)合風(fēng)速與時(shí)間的圖像,回答下列問題:

      (1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;

      (2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時(shí)?

      (3)求出當(dāng)x25時(shí),風(fēng)速y(千米/時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式.

      (4)若風(fēng)速達(dá)到或超過20千米/時(shí),稱為強(qiáng)沙塵暴,則強(qiáng)沙塵暴持續(xù)多長時(shí)間?

    數(shù)學(xué)初二教案15

      一、讀一讀

      學(xué)習(xí)目標(biāo):

      1、掌握“三角形內(nèi)角和定理”的證明及其簡單應(yīng)用;

      2、體會思維實(shí)驗(yàn)和符號化的理性作用

      二、試一試

      自學(xué)指導(dǎo):

      1、回憶三角形內(nèi)角和的`探索方式,想一想,根據(jù)前面給出的公里 和定理,你能進(jìn)行論證么?

      2、已知:如右圖所示,△ABC

      求證:∠A+∠B+∠C=180°

      思考:延長BC到D,過點(diǎn)C作射線CE∥BA,這樣就相

      當(dāng)于把∠A移到了 的位置,把∠B移到 的位置。

      注意:這里的CD,CE稱為輔助線,輔助線通常畫成虛線

      證明:作BC的延長線CD,過點(diǎn)C作射線CE∥BA,則:

      3、你還有其它方式么(可參考課本239頁“議一議”小明的想法;241頁聯(lián)系拓廣4)?方法越多越好!

      三、練一練

      1、直角三角形的兩銳角之和是多少度?正三角形的一個(gè)內(nèi)角是多少度?請證明你的結(jié)論。

      2、已知:如圖,在△ABC中,∠A=60°,∠C=70°,點(diǎn)D和點(diǎn)E分別在AB和AC上,且DE∥BC

      求證:∠ADE=50°

      3、如圖,在△ABC中,DE∥BC,∠DBE=30°, ∠EBC=25°,求∠BDE的大小。

      4、證明:四邊形的內(nèi)角和等于360°

    【數(shù)學(xué)初二教案】相關(guān)文章:

    最新數(shù)學(xué)初二教案09-28

    初二數(shù)學(xué)優(yōu)秀教案11-21

    初二數(shù)學(xué)教案11-02

    【推薦】初二數(shù)學(xué)教案12-23

    初二數(shù)學(xué)教案【熱】12-24

    【薦】初二數(shù)學(xué)教案12-19

    數(shù)學(xué)初二教案15篇11-25

    《矩形》初二的數(shù)學(xué)教案12-02

    數(shù)學(xué)初二教案(15篇)11-26

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲夜夜精品一区二区在 | 香蕉在线手观看视频 | 在线播放日本免费人成视频在线观看 | 欧洲一区二区免费视频在线观看网站 | 亚洲精品秘在线看 | 日韩欧美视频在线精品网站 |