七年級數學教案15篇
作為一位優秀的人民教師,常常需要準備教案,教案是備課向課堂教學轉化的關節點。那么你有了解過教案嗎?下面是小編為大家收集的七年級數學教案,希望對大家有所幫助。
七年級數學教案1
教學目標:
1.理解有理數的意義.
2.能把給出的有理數按要求分類.
3.了解0在有理數分類中的作用.
教學重點:
會把所給的各數填入它所在的數集圖里.
教學難點:
掌握有理數的兩種分類.
教與學互動設計:
(一)創設情境,導入新課
討論交流現在,同學們都已經知道除了我們小學里所學的數之外,還有另一種形式的數,即負數.大家討論一下,到目前為止,你已經認識了哪些類型的數.
(二)合作交流,解讀探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
議一議你能說說這些數的`特點嗎?
學生回答,并相互補充:有小學學過的正整數、0、分數,也有負整數、負分數.
說明我們把所有的這些數統稱為有理數.
試一試你能對以上各種類型的數作出一張分類表嗎?
有理數
做一做以上按整數和分數來分,那可不可以按性質(正數、負數)來分呢,試一試.
有理數
數的集合
把所有正數組成的集合,叫做正數集合.
試一試試著歸納總結,什么是負數集合、整數集合、分數集合、有理數集合.
(三)應用遷移,鞏固提高
【例1】把下列各數填入相應的集合內:
,3.1416,0,20xx,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是兩位同學的分類方法,你認為他們分類的結果正確嗎?為什么?
有理數有理數
(四)總結反思,拓展升華
提問:今天你獲得了哪些知識?
由學生自己小結,然后教師總結:今天我們學習了有理數的定義和兩種分類的方法.我們要能正確地判斷一個數屬于哪一類,要特別注意“0”的正確說法.
下面兩個圈分別表示負數集合和分數集合,你能說出兩個圖的重疊部分表示什么數的集合嗎?
(五)課堂跟蹤反饋
夯實基礎
1.把下列各數填入相應的大括號內:
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整數集合{};
(2)分數集合{};
(3)負分數集合{ };
(4)非負數集合{ };
(5)有理數集合{ }.
2.下列說法中正確的是( )
A.整數就是自然數
B. 0不是自然數
C.正數和負數統稱為有理數
D. 0是整數,而不是正數
提升能力
3.字母a可以表示數,在我們現在所學的范圍內,你能否試著說明a可以表示什么樣的數?
2
七年級數學教案2
學習目標:
1、學會用計算器進行有理數的除法運算。
2、掌握有理數的混合運算順序。
3、通過探究、練習,養成良好的學習習慣
學習重點:有理數的混合運算
學習難點:運算順序的確定與性質符號的`處理
教學方法:觀察、類比、對比、歸納
教學過程
一、學前準備
1、計算
1)(—0.0318)÷(—1.4)2)2+(—8)÷2
二、探究新知
1、由上面的問題1,計算方便嗎?想過別的方法嗎?
2、由上面的問題2,你的計算方法是先算法,再算法。
3、結合問題1,閱讀課本P36—P37頁內容(帶計算器的同學跟著操作、練習)
4、結合問題2,你先猜想,有理數的混合運算順序應該是?
5、閱讀P36,并動手做做
三、新知應用
1、計算
1)、18—6÷(—2)×2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、師生小結
四、回顧與反思
請你回顧本節課所學習的主要內容
3頁
五、自我檢測
1、選擇題
1)若兩個有理數的和與它們的積都是正數,則這兩個數()
A.都是正數B.是符號相同的非零數C.都是負數D.都是非負數
2)下列說法正確的是()
A.負數沒有倒數B.正數的倒數比自身小
C.任何有理數都有倒數D.-1的倒數是-1
3)關于0,下列說法不正確的是()
A.0有相反數B.0有絕對值
C.0有倒數D.0是絕對值和相反數都相等的數
4)下列運算結果不一定為負數的是()
A.異號兩數相乘B.異號兩數相除
C.異號兩數相加D.奇數個負因數的乘積
5)下列運算有錯誤的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列運算正確的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、計算
1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6)4)
六、作業
1、P39第7題(4、5、7、8)、第8題
2、選做題:P39第10、11、12、1314、15題
七年級數學教案3
教學目標:
1、知識與技能
(1)通過實例,感受引入負數的必要性和合理性,能應用正負數表示生活中具有相反意義的量。
(2)理解有理數的意義,體會有理數應用的廣泛性。
2、過程與方法
通過實例的引入,認識到負數的產生是來源于生產和生活,會用正、負數表示具有相反意義的量,能按要求對有理數進行分類。
重點、難點:
1、重點:正數、負數有意義,有理數的意義,能正確對有理數進行分類。
2、難點:對負數的理解以及正確地對有理數進行分類。
教學過程:
一、創設情景,導入新課
大家知道,數學與數是分不開的,現在我們一起來回憶一下,小學里已經學過哪些類型的數?
學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的
為了表示一個人、兩只手、……,我們用到整數1,2,……
為了表示“沒有人”、“沒有羊”、……,我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數、零或分數、小數表示。
二、合作交流,解讀探究
1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數,都記作5℃,就不能把它們區別清楚。它們是具有相反意義的兩個量。
現實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的。“運進”和“運出”,其意義是相反的`。
同學們能舉例子嗎?
學生回答后,教師提出:怎樣區別相反意義的量才好呢?
待學生思考后,請學生回答、評議、補充。
教師小結:同學們成了發明家。甲同學說,用不同顏色來區分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學說,在數字前面加不同符號來區分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數學家就曾經采用不同的顏色來區分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。
現在,數學中采用符號來區分,規定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。
讓學生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
教師講解:什么叫做正數?什么叫做負數?強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號。
2、給出新的整數、分數概念
引進負數后,數的范圍擴大了。過去我們說整數只包括自然數和零,引進負數后,我們把自然數叫做正整數,自然數前加上負號的數叫做負整數,因而整數包括正整數(自然數)、負整數和零,同樣分數包括正分數、負分數。
3、給出有理數概念
整數和分數統稱為有理數。
4、有理數的分類
為了便于研究某些問題,常常需要將有理數進行分類,需要不同,分類的方法也常常不同根據有理數的定義可將有理數分成兩類:整數和分數。有理數還有沒有其他的分類方法?
待學生思考后,請學生回答、評議、補充。
教師小結:按有理數的符號分為三類:正有理數、負有理數和零。在有理數范圍內,正數和零統稱為非負數。向學生強調:分類可以根據不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類。
三、總結反思
引導學生回答如下問題:本節課學習了哪些基本內容?學習了什么數學思想方法?應注意什么問題?
由于實際生活中存在著許多具有相反意義的量,因此產生了正數與負數。正數是大于0的數,負數就是在正數前面加上“—”號的數,負數小于0。0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃。
四、課后作業:課本P5習題1。1A第1、2、4題。
七年級數學教案4
第一章 有理數
單元教學內容
1.本單元結合學生的生活經驗,列舉了學生熟悉的用正、負數表示的實例,?從擴充運算的角度引入負數,然后再指出可以用正、負數表示現實生活中具有相反意義的量,使學生感受到負數的引入是來自實際生活的需要,體會數學知識與現實世界的聯系.
引入正、負數概念之后,接著給出正整數、負整數、正分數、負分數集合及整數、分數和有理數的概念.
2.通過怎樣用數簡明地表示一條東西走向的馬路旁的樹、?電線桿與汽車站的相對位置關系引入數軸.數軸是非常重要的數學工具,它可以把所有的有理數用數軸上的點形象地表示出來,使數與形結合為一體,揭示了數形之間的內在聯系,從而體現出以下4個方面的作用:
(1)數軸能反映出數形之間的對應關系.
(2)數軸能反映數的性質.
(3)數軸能解釋數的某些概念,如相反數、絕對值、近似數.
(4)數軸可使有理數大小的比較形象化.
3.對于相反數的概念,?從“數軸上表示互為相反數的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數的幾何意義,同時補充“零的相反數是零”作為相反數意義的一部分.
4.正確理解絕對值的概念是難點.
根據有理數的絕對值的兩種意義,可以歸納出有理數的絕對值有如下性質:
(1)任何有理數都有唯一的絕對值.
(2)有理數的絕對值是一個非負數,即最小的絕對值是零.
(3)兩個互為相反數的絕對值相等,即│a│=│-a│.
(4)任何有理數都不大于它的絕對值,即│a│≥a,│a│≥-a.
(5)若│a│=│b│,則a=b,或a=-b或a=b=0.
三維目標
1.知識與技能
(1)了解正數、負數的實際意義,會判斷一個數是正數還是負數.
(2)掌握數軸的畫法,能將已知數在數軸上表示出來,?能說出數軸上已知點所表示的解.
(3)理解相反數、絕對值的幾何意義和代數意義,?會求一個數的相反數和絕對值.
(4)會利用數軸和絕對值比較有理數的大小.
2.過程與方法
經過探索有理數運算法則和運算律的過程,體會“類比”、“轉化”、“數形結合”等數學方法.
3.情感態度與價值觀
使學生感受數學知識與現實世界的聯系,鼓勵學生探索規律,并在合作交流中完善規范語言.
重、難點與關鍵
1.重點:正確理解有理數、相反數、絕對值等概念;會用正、?負數表示具有相反意義的量,會求一個數的相反數和絕對值.
2.難點:準確理解負數、絕對值等概念.
3.關鍵:正確理解負數的意義和絕對值的意義.
課時劃分
1.1 正數和負數 2課時
1.2 有理數 5課時
1.3 有理數的加減法4課時
1.4 有理數的乘除法5課時
1.5 有理數的乘方 4課時
第一章有理數(復習) 2課時
1.1正數和負數
第一課時
三維目標
一.知識與技能
能判斷一個數是正數還是負數,能用正數或負數表示生活中具有相反意義的量.
二.過程與方法
借助生活中的實例理解有理數的意義,體會負數引入的必要性和有理數應用的廣泛性.
三.情感態度與價值觀
培養學生積極思考,合作交流的意識和能力.
教學重、難點與關鍵
1.重點:正確理解負數的意義,掌握判斷一個數是正數還是負數的方法.
2.難點:正確理解負數的概念.
3.關鍵:創設情境,充分利用學生身邊熟悉的事物,?加深對負數意義的理解. 教具準備
投影儀.
教學過程
四、課堂引入
我們知道,數是人們在實際生活和生活需要中產生,并不斷擴充的.人們由記數、排序、產生數1,2,3,?;為了表示“沒有物體”、“空位”引進了數“0”,?測量和分配有時不能得到整數的結果,為此產生了分數和小數.
在生活、生產、科研中經常遇到數的表示與數的運算的問題,例如課本第2?頁至第3頁中提到的四個問題,這里出現的新數:-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%.
五、講授新課
(1)、像-3,-2,-2.7%這樣的數(即在以前學過的0以外的數前面加上負號“-”的數)叫做負數.而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負數具有相反的意義,我們把這樣的數(即以前學過的0?以外的數)叫做正數,有時在正數前
11面也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數前面33
的“+”、“-”號叫做它的符號,這種符號叫做性質符號.
(2)、中國古代用算籌(表示數的工具)進行計算,紅色算籌表示正數,黑色算籌表示負數.
(3)、數0既不是正數,也不是負數,但0是正數與負數的分界數.
(4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度.
用正負數表示具有相反意義的量
(5)、 把0以外的數分為正數和負數,起源于表示兩種相反意義的量.?正數和負數在許多方面被廣泛地應用.在地形圖上表示某地高度時,需要以海平面為基準,通常用正數表示高于海平面的某地的海拔高度,負數表示低于海平面的某地的海拔高度.例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m.記錄賬目時,通常用正數表示收入款額,負數表示支出款額.
(6)、 請學生解釋課本中圖1.1-2,圖1.1-3中的'正數和負數的含義.
(7)、 你能再舉一些用正負數表示數量的實際例子嗎?
(8)、例如,通常用正數表示汽車向東行駛的路程,用負數表示汽車向西行駛的路程;用正數表示水位升高的高度,用負數表示水位下降的高度;用正數表示買進東西的數量,用負數表示賣出東西的數量.
六、鞏固練習
課本第3頁,練習1、2、3、4題.
七、課堂小結
為了表示現實生活中的具有相反意義的量,我們引進了負數.正數就是我們過去學過的數(除0外),在正數前放上“-”號,就是負數,?但不能說:“帶正號的數是正數,帶負號的數是負數”,在一個數前面添上負號,它表示的是原數意義相反的數.如果原數是一個負數,那么前面放上“-”號后所表示的數反而是正數了,另外應注意“0”既不是正數,也不是負數.
八、作業布置
1.課本第5頁習題1.1復習鞏固第1、2、3題.
九、板書設計
1.1正數和負數
第一課時
1、像-3,-2,-2.7%這樣的數(即在以前學過的0以外的數前面加上負號“-”的數)叫做負數.而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負數具有相反的意義,我們把這樣的數(即以前學過的0?以外的數)叫做正數,有時在正數前面
11也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數前面的33
“+”、“-”號叫做它的符號,這種符號叫做性質符號.
2、隨堂練習。
3、小結。
4、課后作業。
十、課后反思
1.1正數和負數
第二課時
三維目標
一.知識與技能
進一步鞏固正數、負數的概念;理解在同一個問題中,用正數與負數表示的量具有相同的意義.
二.過程與方法
經歷舉一反三用正、負數表示身邊具有相反意義的量,進而發現它們的共同特征.
三.情感態度與價值觀
鼓勵學生積極思考,激發學生學習的興趣.
教學重、難點與關鍵
1.重點:正確理解正、負數的概念,能應用正數、?負數表示生活中具有相反意義的量.
2.難點:正數、負數概念的綜合運用.
3.關鍵:通過對實例的進一步分析,?使學生認識到正負數可以用來表示現實生活中具有相反意義的量.
教具準備
投影儀.
教學過程
四、復習提問課堂引入
1.什么叫正數?什么叫負數?舉例說明,?有沒有既不是正數也不是負數的數?
2.如果用正數表示盈利5萬元,那么-8千元表示什么?
五、新授
例1.一個月內,小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值.
2.20xx年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,英國減少3.5%,意大利增長0.2%,?中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
分析:在一個數前面添上負號,它表示的是與原數具有意義相反的數.?“負”與“正”是相對的,增長-1,就是減少1;增長-6.4%就是減少6.4%,那么什么情況下增長率是0?當與上年持平,既不增又不減時增長率是0.
七年級數學教案5
教學目標
1、熟練掌握加減消元法;
2、能根據方程組的特點選擇合適的方法解方程組,
3、通過分析實際問題中的數量關系,建立方程解決問題,進一步認識方程模型的重要性.
教學難點
教材中例4的數量關系較復雜,是本課的難點。
知識重點能根據方程組的特點選擇合適的方法解方程組。
教學過程
(師生活動)設計理念
創設情境
1、復2、習提問
解二元一次方程組有哪幾種方法?它們的實質是什么?
2、播放動畫《西游記》場景,配數學詩.
悟空順風探妖蹤,千里只行四分鐘.
歸時四分行六百,風速多少才稱雄?
請一名學生解釋詩歌大意:孫悟空順風去查妖精的行蹤,僅用4分鐘就飛躍千里.逆風返回時4分鐘走了600里,問風速是多少?
學生思考,根據題中等量關系,列出方程.
設悟空行走速度為x里/分,風速為y里/分,則
你會解這個方程組嗎?引例生動活波,激發學生的探究欲望,讓學生在看、聽、想的過程中愉悅地獲得數學知識.
探究新知學生獨立完成后.在班級里交流解法.
解法一:①+②,消去y,得8x=1600
∴x=200,代人①,得y=50
原方程組的解為
解法二:①-②,消去x。以下略.
解法三:整體代入.由①得:4x=1000-4y,代入②,消去x.
同理,也可消去y.
解法四:化簡原方程組為,再利用加減消元,或代入消元均可.
反思:試著從各個角度比較“代入法”與“加減法”的共同點與不同點.(同學間相互交流)它們各適用于什么情況?
在學生回答的基礎上,教師指出:當方程組中某一個未知數的系數絕對值是1或一個方程的常數項為零時,用代入法較方便;當兩個方程中,同一個未知數的系數絕對值相等或成整倍數時,用加減法較方便.
練習1:根據方程組的特點選擇更適合它的解法.你會怎樣解呢?(第1,2小題完成后再出示第3小題.)
(1)
(2)
(3)
第1小題用代入法,第2小題用加減法,都很明確,第3小題有爭議.全班分成兩部分.1、2大組用代入法做,3、4大組用加減法做.比較兩解法的簡便程度.
反思:當方程組中任一個未知數的系數絕對值不是1,且不成倍數關系時,一般經過變形利用加減法會使解法更簡單.嘗試不同的解法,培養學生的`發散性思維和擇優意識。
解二元一次方程組不管采用哪種方法,都可以獲得它的解,但根據題目形式的特點,選擇不同的方法可以減少彎路,加快速度使解題過程簡潔提高正確率.
實際應用教材第109頁例4.
2臺大收割機和5臺小收割機工作2小時收割小麥
3.6公頃,3臺大收割機和2臺小收割機工作5小時收割小麥8公頃,問:1臺大收割機和1臺小收割機1小時各收割小麥多少公頃?
分析:
問題1.列二元一次方程組解應用題的關鍵是什么?
(找出兩個等量關系)
問題2.你能找出本題的等量關系嗎?
2臺大收割機2小時的工作量+5臺小收割機2小時的工作量=3.6
3臺大收割機5小時的工作量+2臺小收割機5小時的工作量=8
問題3.怎么表示2臺大收割機2小時的工作量呢?
設1臺大收割機1小時收割小麥x公頃,則
2臺大收割機1小時收割小麥_公頃,
2臺大收割機2小時收割小麥_公頃.
現在你能列出方程了嗎?
解后反思:應用題中,如何化解較復雜數量關系?
練習2:教科書第111頁練習第3題應用題.體會方程是刻畫現實世界的有效數學模型。
小結與作業
小結提高在學生暢所欲言話收獲的基礎上,通過老師進行補充的方式進行。
本節課學習了哪些內容?你有哪些收獲?
布置作業
8、做題:教科書112頁習題8.2第5、7題。
9、選做題:教科書112頁習題8.2第8題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1、能根據教材編寫思路,遵循學生的心理特點,創造性使用新教材中的問題情境(引入與111頁練習3屬同種數學模型),把教材中不動的問題情境轉化為動的問題情境.
2、真正把課堂還給了學生,使學生真正地變為課堂學習的主人,老師只是學生學習的引導者和組織者.由于學生的個體差異,思維方式的不同,為了給學生創造個性化的學習空間,鼓勵學生們用自己的方式去學習,把學習的主動權還給他們,讓他們自己去探究不同的解題方法.通過例題分析、啟發提問、集體討論等形式,使學生能準確而迅速地確定解題方法從而突出了本課的重點、難點—選擇適當方法求解二元一次方程組.
七年級數學教案6
一、教學內容分析:
在學完4.1…4.3這三小節的學習,學生意識到立體圖形是由平面圖形圍成的。因此此時學生的心中有一種意猶未盡的感覺,他們希望有對所學知識作進一步探究及討論的機會,因此平面圖形這一節課由此而產生。平面圖形是建立在學生具有一定空間觀念基礎上,對有關圖形知識的一個再知過程。它是對學生空間觀念,基本圖形知識以及動手操作能力的一種綜合培養。首先課本p140頁圖4.4.1給出了5幅形狀各異的物體照片,向學生提問是否能畫出它們的表面形狀。并讓學生舉出類似的例子,由此引起學生的好奇心,激發學生的學習興趣。其次,由學生動手得出的5個圖形,引出多邊形的定義以及多邊形的分類。然后,讓學生通過觀察7個圖形,思考當中那些是四邊形,由四邊形鞏固并加深多邊形,接著讓學生展開充分的討論與交流完成多邊形的分割。最后的試一試以實際生活中的一些優美圖案結尾,讓學生找出其中的的平面圖形,剛好與剛上課時的圖4.4.1遙向對應,再次激起學生的探究學習的興趣。
二、目標的設定與重難點的確立:
根據新課程標準的目標之一:“要使學生具有初步的創新精神和實踐能力,在情感態度和一般能力方面都能得到充分發展。”在教學設計上,通過創設的豐富背景,激發學生的學習興趣和探究欲,引導學生積極參與和主動探索,并在實踐中積累教學活動經驗,發展有條理的思考。
由于在平面圖形這節課中,除了要學習多邊形的相關內容是重點外,還要經常識別圖形或畫圖,因此觀察并分析出圖形的基本構成是平面圖形這節課的關鍵,也是本課的難點所在,也是本節課學生所要達到的能力目標。
課程目標:
1、通過平面圖形的學習,鞏固有關圖形知識,進一步建立空間觀念。
2、掌握多邊形的相關內容。
能力目標:
1、在探索和實踐的過程中,培養學生觀察圖形、分析圖形和初步的幾何語言表達能力。
2、發展學生動手實踐,自主探索的思考及想象、欣賞能力。
情感目標:培養學生勇于探索和積極參與的精神。
重點:多邊形的識別及分類,并了解多邊形分割為三角形的規律。
難點:在設計過程中,對圖形基本構成進行有條理的分析,并能用自己的語言表達出來。
三、教法選擇
1、教學結構和教學基本思路
針對七年級學生的年齡特點和心理特征,以及他們的認知水平,采用誘導式教學方法,師生互動,鼓勵學生團結協作、大膽猜想并動手操作,以觀察、實驗、整理、分析、歸納、猜想為主,形象的背景下進行教學設計。生活是多姿多彩的,數學又來源于生活,首先以各種實際生活中的精美平面圖形為背景,吸引學生的注意力,引發他們的學習熱情。通過三角形,長方形這些熟悉的圖形,向學生介紹了多邊形的定義及特征。通過四邊形的識別,進一步使學生了解空間中的圖形。而由所由多邊形可分割為三角形這一內容,了解三角形的'特殊地位,為將來以后的三角形學習埋下伏筆。最后一部分的試一試,通過學生對圖形構成的分析,再次激起學生的探究學習的興趣,培養學生的觀察能力,是引導學生探索平面圖形的一個感性認識過程。
2、重難點突破法
書中是以實物圖形的表面形狀引出多邊形的定義及分類,多邊形的有關內容是本節課的重點。教學時首先要求學生要自己動手畫出圖形。其次,在引出多邊形時,應加強多邊形的識別及分類,從而讓學生更容易掌握。而在多邊形的分割時,通過多個圖形的實驗,使學生獲得感性認識,再猜想分割的規律,從而突出了重點。
分析平面圖形構成是能否找出或畫出其中所包含多邊形的關鍵,也是本節課的深化。因此在突出重點的基礎上,還要鼓勵學生多觀察,多動腦,多分析,充分展開合作與交流。必要時再加以適當的引導。特別是試一試中的圖案,應給讓學生足夠的時間分析出圖案的基本構成,在明確了基本構成后,應讓學生按一定的順序(由外到內或有大到小等)說出所含的圖形,就能找出所有所含的圖形,從而使難點消化,最終突破難點!
四、學法指導
本節課以學生的觀察猜想為主,要求學生多觀察,大膽猜想。這要求學生建立在有實物圖形的基礎上了解平面圖形的相關內容。另外,在探索與實踐過程中還要體現學生分析問題的能力和良好的口頭表達能力。因此,在課堂上主要采取積極引導,主動參與,合作交流的方法來組織教學,使學生真正成為教學的主體,體會成功的喜悅,感知數學的奇妙。
五、教學輔助手段的使用
利用直觀形象的圖案模型來體現本節內容的知識性與趣味性,使得觀察、猜想、討論與分析一起進行。有利于吸引學生的注意力,激發學生學習與探索的熱情。
六、作業設計
p143課后練習相對容易操作,讓學生獨立完成。但課后練習2,要說出理由,這對學生的語言表達能力有一定的要求,可以首先分成小組討論。如果感到有難度,可以適當啟發引導。
七年級數學教案7
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數能使兩邊的值相等,這個數就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學們動手試一試,大家發現了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習
1、教科書第3頁練習1、2。
2、補充練習:檢驗下列各括號內的數是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結。本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業。教科書第3頁,習題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學目的
通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的.砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?
讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
七年級數學教案8
[教學目標]
1. 通過動手、操作、推斷、交流等活動,進一步發展空間觀念,培養識圖能力,推理能力和有條理表達能力
2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念.對頂角性質與應用
難點:理解對頂角相等的性質的探索
[教學設計]
一.創設情境 激發好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發生了什么變化?剪刀張開的'口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質
1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達;
有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線
2.學生用量角器分別量一量各角的度數,發現各類角的度數有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)
3學生根據觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關系 數量關系
教師提問:如果改變 的大小,會改變它與其它角的位置關系和數量關系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質
三.初步應用
練習:
下列說法對不對
(1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3) 對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象
四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數。
[鞏固練習](教科書5頁練習)已知,如圖, ,求: 的度數
[小結]
鄰補角、對頂角.
[作業]課本P9-1,2P10-7,8
七年級數學教案9
教學設計思路
“問題是思考的開始”,問題的提出是數學教學中重要的一環,使學生明確學習內容的必要性,才有可能調動學生解決問題的主動性,促進學生認識能力的提高與發展.而對于生產和生活中的實際問題,學生看得見,摸得著,有的還親身經歷過,所以,當教師提出這些問題時,他們一定會躍躍欲試,想學以致用,這樣能起到充分調動學習積極性的作用.
教學目標
知識與技能:
1.經歷同底數冪的除法運算性質的獲得過程,掌握同底數冪的運算性質,會用同底數冪的運算性質進行有關計算,提高學生的運算能力.
2.了解零指數冪和負整指數冪的意義,知道零指數冪和負整指數冪規定的合理性.
過程與方法:
經歷探索同底數冪的除法的運算性質的過程,進一步體會冪的意義,發展推理能力,提高語言表達能力.
情感態度價值觀:
感受數學公式的簡潔美、和諧美.
重點難點
重點:準確、熟練地運用法則進行計算.
難點:負指數冪的條件及法則的正確運用.
教學過程
1.創設情境,復習導入
前面我們學習了同底數冪的乘法,請同學們回答如下問題,看哪位同學回答得快而且準確.
(1)敘述同底數冪的乘法性質.
(2)計算:① ② ③
學生活動:學生回答上述問題.
(m,n都是正整數)
教法說明:通過復習引起學生回憶,鞏固同底數冪的乘法性質,同時為本節的學習打下基礎.
2.提出問題,引出新知
我國研制的“銀河”巨型計算機的運算速度是108次/秒,光計算機(主要由光學運算器、光學存儲器和光學控制器組成)的運算速度是108次/秒.光計算機的運算速度是“銀河”計算機運算速度的多少倍?
怎樣計算 呢?
這就是我們這節課要學習的同底數冪的除法運算.
3.導向深入,得出性質
做一做(鼓勵學生根據冪的意義和除法意義,獨立得出結果)
按乘方的意義和除法計算:
(1)
(2)
(3)
(4)
探究:(1)若a≠0,a15÷a5等于什么?
(2)通過上面的`計算,對同底數冪的除法運算,你發現了什么規律?
學生思考,回答
師生共同總結:
教師把結論寫在黑板上.
請同學們試著用文字概括這個性質:
【公式分析與說明】提出問題:在運算過程當中,除數能否為0?
學生回答:不能.(并說明理由)
由此得出:同底數冪相除,底數 .教師指出在我們所學知識范圍內,公式中的m、n為正整數,且m>n,最后綜合得出:
一般地,這就是說,同底數冪相除,底數不變,指數相減.
嘗試證明:
4.揭示規律
由此我們規定
規律一:任何不等于0的數的0次冪都等于1.
一般我們規定
規律二:任何不等于0的數的-p(p是正整數)次冪等于這個數的p次冪的倒數.
5.嘗試反饋,理解新知
(補充)例2 自從掃描隧道電子顯微鏡發明后,便誕生了一門新技術一納米技術.納米是長度單位,1 nm (納米)等于 0.000 000 001 m .請用科學記數法表示 0.000 000 001.
分析:絕對值較小的數可以用一個有一位整數的數與 10 的負指數幕的乘積的形式來表示.
學生活動:學生在練習本上完成例l、例2,由2個學生板演完成之后,由學生判斷板演是否正確.
教師活動:統計做題正確的人數,同時給予肯定或鼓勵.
6.反饋練習,鞏固知識
練習一
(1)填空:
① ②
③ ④
(2)計算:
① ②
③ ④
學生活動:第(l)題由學生口答;第(2)題在練習本上完成,然后同桌互閱,教師抽查.
練習二
下面的計算對不對?如果不對,應怎樣改正?
(1) (2)
(3) (4)
學生活動:此練習以學生搶答方式完成,注意訓練學生的表述能力,以提高興趣.
總結、擴展
我們共同總結這節課的學習內容.
學生活動:①同底數冪相除,底數 ,指數 .
②由學生談本書內容體會.
教法說明:強調“不變”、“相減”.學生談體會,不僅是對本節知識的再現,同時也培養了學生的口頭表達能力和概括總結能力.
6.小結
本節主要學習內容:
同底數冪的除法運算性質.
零指數與負整數指數的意義.
用科學記數法表示絕對值較小的數的方法.
冪的運算與指數運算的關系: (m,n都是正整數); (a≠0,m,n都是正整數),即在底數相同的條件下:冪相乘→指數相加,冪相除→指數相減.
注意的地方:
在同底數冪的除法性質及零指數冪與負整數指數冪中,千萬不能忽略底數a≠0的條件.
7.布置作業
P78 A組3、4 B組2、3
8.板書設計
8.3同底數冪的除法
一、同底數冪的法則
二、例題 練習
例1 (補充)例2
七年級數學教案10
教學目標
(一)教學知識點
1、了解近似數的概念,并按要求取近似數
2、體會近似數的意義及在生活中的作用
(二)能力訓練要求
能根據實際問題的需要選取近似數,收集數據
(三)情感與價值觀要求
進一步體會數學的應用價值,發展“用數學”的信心和能力
教學重點
1、體會和感受生活中的近似數和精確數,明白測量的結果都是近似數
2、能按要求對一個數四舍五入取近似數
教學難點
合理地對一個數四舍五入取近似值
教學方法
實驗——講——練相結合
通過測量實驗體會生活中存在著近似數和精確數,經過講解和練習能將一個數按要求取近似值
教具準備
1、收集不同形狀的樹葉制成標本
2、最小單位是厘米的刻度尺和最小單位是毫米的刻度尺
教學過程
Ⅰ、創設情景,引入新課
[師]在我們學習和生活中,經常會遇到一些數據。例如:
(1)小明班上有45人;
(2)吐魯番盆地低于海平面155米;
(3)某次地震中,傷亡10萬人;
(4)小紅測得數學書的長度為21.0厘米
而這些數據在收集的過程中,有些是精確的,而有些由于客觀條件無法或難以得到精確數據或無需要得到精確數據而取了近似數
憑你生活的經驗,你能判斷一下,哪些是精確數?哪些是近似數嗎?
[生]我認為第(1)個中的數據是精確的,而第(2)、(3)、(4)中的數據都是近似的
[師]很好,下面我們接著來做一個實驗,進一步體驗近似數的意義和在生活中的作用、
Ⅱ、引入新課,獲得直觀的體驗
1、實驗——測得樹葉的長度
[師]同學們在下面收集了不少的樹葉,把這些樹葉制成標本的時候,要求必須在標本中注明每片樹葉的長度,下面我們就以同桌為一小組,用你準備好的最小刻度是厘米和最小刻度是毫米的刻度尺測量你收集到的樹葉的長度,并讀取數據
(教師可以讓學生交流,討論讀取數據的方法,同時給予指導,讓同學們體驗到測量讀取的數據是有誤差的)
[師]在同學們測量的過程中,同桌的小明和小穎用最小單位不同的刻度尺測量了同一片樹葉的長度,如圖3-1所示:
圖3-1
(1)根據小明的測量方法,你能知道他用的刻度尺最小刻度是什么嗎?這片樹葉的長度約為多少?根據小穎的測量呢?
(2)誰的測量結果更精確一些?說說你的理由
[生]小明用的刻度尺最小單位是厘米,這片樹葉的長度約為6.8厘米,其中6是精確的,8是估計的,即是近似的;小穎用的刻度尺最小單位是毫米,她測量的結果可以讀成6.78厘米,其6和7都是精確的,而8是估計的,即是近似的
[生]從剛才這位同學的分析,很容易看出小穎測量的結果要比小明的更精確一些
[師]同學們分析得很精細,同桌的小明和小穎共收集了12片樹葉,測得剛才那片樹葉的長度的值分別約為6.8厘米和6.78厘米、在這一收集數據的過程中,哪些數據是精確的,哪些數據是近似的呢?
[生]他們一共收集了12片樹葉,這個數據是精確的,而測量的樹葉的長度的值是近似的
[師]大家還可以用你的刻度尺測量一下桌子的長度、厚度,數學課本的長度、厚度,又可以讀出一些數據,它們是精確的還是近似的?
[生]我測得我的課桌的長度是80.5厘米,它是近似的
[生]我測得課桌的長度是80.45厘米,它也是近似數
[師]由此,我們可知測量得出的結果都是近似的,例如珠峰的高度是8848米,是測量得出的,它是近似數
在生活中,除了測量的結果是近似數以外,還有沒有其他數據也是近似的?
[生]有,例如方便面袋子上寫著:總凈含量110克,數據110克是近似的
[生]飲料桶標注的凈含量是350 mL也是近似數
[生]天氣預報中報到今天的最高氣溫是28℃,“28℃”這個數據也是近似數
[生]咱們這本教科書字數是202千字,“202千字”這個數據也是近似的
[師]真棒,同學們能列舉生活中這么多的近似數據,說明同學們平時很留心觀察一些事物,這一點很值得肯定
2、議一議
圖3-2
(1)上面的數據,哪些是精確的?哪些是近似的?
(2)舉例說明生活中哪些數據是精確的?哪些數據是近似的?
[生](1)2000年第五次人口普查表明,我國人口總數為12.9533億,人口總數為12.9533億這個數據是近似數
[師]為什么呢?(Why?)
[生]因為我國地域遼闊,客觀條件就決定了在人口普查的過程中是無法或難以得到精確數據的
[師]的確如此,在測量過程中,我們難以得到精確數據,盡管現在科技的`發展,有了更為精密的儀器、在人口普查中,由于客觀條件等的限制,也難以或無法取到精確值
[生]第二幅圖是精確值
[生]第三幅圖中,年級共有97人是精確值,而買門票大約需要800元是近似值、
[師]回答正確、這里的“800元”也是近似值,但這個近似值不是無法或難以得到精確數據,而是根據實際情況要估算一下大約需多少錢,無需得到精確值
你還能舉出生活中一些例子說明哪些數據是精確的?哪些數據是近似的嗎?
[生]小明的身高是1.58米,體重40公斤,年齡14歲,這些數據都是近似數
[生]小明今天上了6節課,是精確的
[生]一條草魚重2.854千克,這個數據也是近似數
[生]我們班有25個女生,這個數據是精確數
[師]我們了解了生活中存在著這么多的近似數和精確數,下面我們來看一看如何根據具體情況和要求采用四舍五入法求一個數的近似數、
3、做一做
例1小明量得課桌長為1.025米,請按下列要求取這個數的近似數:
(1)四舍五入到百分位;
(2)四舍五入到十分位;
(3)四舍五入到個位、
[分析]用四舍五入法求一個數的近似數,關鍵是看四舍五入到哪一位,看這一位后面一位的數夠五不夠五,來決定取舍,特別注意近似數1.0,末尾的0不能隨意去掉、
解:(1)四舍五入到百分位為1.03米;
(2)四舍五入到十分位為1.0米;
(3)四舍五入到個位為1米
例2小麗與小明在討論問題
小麗:如果你把7498近似到千位數,你就會得到7000
小明:不,我有另外一種解答方法,可以得到不同的答案、首先,將7498近似到百位,得到7500,接著把7500近似到千位,就得到了8000
小麗:……
你怎樣評價小麗和小明的說法呢?
[生]小麗的說法是正確的因為一個數近似到千位,要一次做完,看百位上的數決定四舍五入,而不能先近似到百位,再近似到千位
例3中國國土面積約為9596960千米2,美國和羅馬尼亞的國土面積約為9364000千米2(四舍五入到千位)和240000千米2(四舍五入到萬位)如果要將中國國土面積與它們相比較,那么中國國土面積分別四舍五入到哪一位時,比較起來的誤差可能會小些?
[分析]對數據進行比較是培養數感的一個重要方面、在對數據進行比較時,有時可以根據需要選擇各自的近似數進行比較、在選擇近似數時,一般數據要四舍五入到同一數位,這樣出現較大誤差的可能性會小一些
解:當與美國的國土面積比較時,可將中國國土面積四舍五入到千位,得到9597000千米2,因為它們同時四舍五入到了千位,這樣比較起來誤差會小一些
類似地,當與羅馬尼亞國土面積相比較時,可以將中國國土面積四舍五入到萬位,得到9600000千米2、
Ⅲ、課時小結
[師]通過這節課的學習,你有何體會和收獲呢?
[生]我們知道了測量所得的數據都是近似數
[生]生活中既有精確的數據,也有近似的數據,因此我們的生活豐富多彩、
[生]能根據具體情況和要求求一個數的近似數
[生]用四舍五入法取近似數時,不能隨便將小數末尾的零去掉、例如2.03取近似數,四舍五入到十分位,得到近似數2.0,不能把零去掉、
板書設計
一、生活中的數據——近似數和精確數
1、實驗測量所得的結果都是近似的(測量樹葉的長度)
2、議一議
二、根據具體情況,采用四舍五入求一個數的近似數、(師生共析,由學生板演)
七年級數學教案11
【知識講解】
一、本講主要學習內容
1、代數式的意義
2、列代數式的注意點
3、代數式值的意義
其中列代數式是重點,也是難點。
下面講述一下這三點知識的主要內容。
1、代數式的意義
用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數及 表示數的字母連接而成的式子叫代數式。單個的數字或字母也叫代數式。如:5,a, 4x, ab, x+2y, , a2等
2.列代數式的注意點
⑴在代數式中出現的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。
⑵數字與數字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。
⑶數字寫在字母的前面。
⑷在代數式中出現除法運算時,一般按照分數的寫法來寫, 如s÷t寫作 。
⑸代數式中帶分數與字母相乘時,應寫成假分數與字母相乘的形式,如 應寫作 。
(6)兩個代數式相乘,應該用分數形式表示。
3.代數式值的意義
用數值代替代數式里的字母,按照代數式指明的運算,計算出的結果,就叫做代數式的值。
二、典型例題
例1 填空
①棱長是acm 的正方體的體積是___cm3。
②溫度由t°c下降2°c后是___°c。
③產量由m千克增長10%,就達到___千克。
④a和b 的倒數和是___。
⑤a和b的和的倒數是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
說明: ⑴列代數式的關鍵在于仔細審題,弄清題意,正確找出題中的數量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數量關系,可先分段考慮,要正確地使用括號。
⑵像a3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。
例2、用代數式表示
⑴被4整除得 m的數
⑵被2除商為 a余1的數
⑶兩數的平均數
⑷a和b兩數的平方差與這兩數平方和的商
⑸一項工程,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數式表示此人行完全路程的平均速度。
⑺個位數字是8,十位數字是 b 的兩位數。
解: ⑴4m ⑵2a+1 ⑶設這兩個數分別為a、b、則平均數為 。
⑷ ⑸ ⑹ ⑺10b+8
分析說明:
⑴數a除以數b,除得的商正好是整數,而沒有余數,我們稱a能被b整除。
⑵能被2整除的數叫偶數,不能被2整除的數叫奇數。兩個連續奇數,若較小的是n,則較大的是n +2 。
⑶對于題⑶中兩數沒有給出,為說明其一般性。可先設這兩個數為a, b;用字母表示數時,在同一個問題中,不同的數要用不同的字母表示。
⑷題⑷中的a,b兩數的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。
⑸題⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。
⑹平均速度=
所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。
題⑺中主要應清楚自然數的十進制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數總可以用它各個數位上的數字來表示。
例3說出下列代數式的意義。
⑴ 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:說出代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點。
①不含括號的代數式習慣從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;
②含括號的代數應該把括號里的代數式看作一個整體,按運算結果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;
③由于分數線具有除法和括號的雙重作用,應該把分子與分母看成一個整體來讀。
解:(1)a的3倍與2的和;
(2)a與2的和的3倍;
(3)a與b的差除以c的商;
(4)a與b除以c的差;
(5)a與b的差的平方;
(6)a、b的平方差。
例4、當x=7,y=4, z=0時,求代數式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
說明:⑴由比例題可以看出,求代數式值的一般步驟是:①代入 ②計算⑵在代數式中,數字與字母之間,字母與字母之間的乘號是省略不寫的。而當代入數據求值時,都變成了數字相乘,原來省略的乘號“×”應補上。
【一周一練】
1、選擇題
(1)下列各式中,屬于代數式的有( )個。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代數式,書寫正確的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代數式表示“a的` 乘以b減去c的積”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用語言敘述代數式 ,表述不正確的是( )
a、比a的倒數小2的數; b、a與2的差的倒數
c、1除以a減去2的商 d、比a小2的數的倒數
2、判斷題
⑴n除m用代數式可表示成 ( )
⑵三個連續的奇數,中間一個是n,其余兩個分別是n-2和n+2( )
⑶如果n是偶數,則緊跟在n后面的兩個連續奇數分別是n+1,n+3( )
3、填空題
⑴每本練習本是0.3元,買a本練習本需__元。
⑵小明有5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。
⑶被3整除得n 的數是__。
⑷個位上的數是a,十位上的數是個位上的數的2倍少3的兩位數是_。
⑸加工一批零件共m個,乙先加工n個零件后,甲單獨再做3天才完成任務,則甲平均每天加工零件__個。
⑹一種小麥磨成面粉后,重量減少數15%, b千克小麥磨成面粉后,面粉的重量是__千克。
⑺一個長方形的長是a,寬是長的 還多1,這個長方形的周長是__
⑻a、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。
4.求下列代數式的值。
⑴ 其中a=2
⑵當 時,求代數式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班級里男生人數比女生人數的 多16人,男生人數是a,問a的代數式表示:⑴女生人數。 ⑵該班學生總數;當a=25時,求該班學生總數。
七年級數學教案12
教學目標
1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2,能區分兩種不同意義的量,會用符號表示正數和負數;
3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點正確區分兩種不同意義的量。
知識重點兩種相反意義的量
教學過程(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1。73米,體重58。5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興趣,所以創設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1,0由于實際問題中存在著相反意義的.量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業教科書第7頁習題1。1第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選做題,體現要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子
或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
七年級數學教案13
一、素質教育目標
(一)知識教學點
1.使學生理解近似數和有效數字的意義
2.給一個近似數,能說出它精確到哪一痊,它有幾個有效數字
3.使學生了解近似數和有效數字是在實踐中產生的.
(二)能力訓練點
通過說出一個近似數的精確度和有效數字,培養學生把握關鍵字詞,準確理解概念的能力.
(三)德育滲透點
通過近似數的學習,向學生滲透具體問題具體分析的辯證唯物主義思想
(四)美育滲透點
由于實際生活中有時要把結果搞得準確是辦不到的或沒有必要,所以近似數應運而生,近似數和準確數給人以美的享受.
二、學法引導
1.教學方法:從實際問題出發,啟發引導,充分體現學生為主全,注重學生參與意識
2.學生學法,從身邊找出應用近似數,準確數的例子→近似數概念→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:理解近似數的精確度和有效數字.
2.難點:正確把握一個近似數的精確度及它的有效數字的個數.
3.疑點:用科學記數法表示的近似數的精確度和有效數字的個數.
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片
六、師生互動活動設計
教者提出生活中應用準確數和近似數的例子,學生討論回答,學生自己找出類似的例子,教者提出精確度和有效數字的概念,教者提出近似數的有關問題,學生討論解決.
七、教學步驟
(一)提出問題,創設情境
師:有10千克蘋果,平均分給3個人,應該怎樣分?
生:平均每人千克
師:給你一架天平,你能準確地稱出每人所得蘋果的千克數嗎?
生:不能
師:哪怎么分
生:取近似值
師:板書課題
【教法說明】通過提出實際問題,使學生認識到研究近似數是必須的,是自然的,從而提高學生近似數的積極性
(二)探索新知,講授新課
師出示投影1
下列實際問題中出現的數,哪些是精確數,哪些是近似數.
(1)初一(1)有55名同學
(2)地球的半徑約為6370千米
(3)中華人民共和國現在有31個省級行政單位
(4)小明的身高接近1.6米
學生活動:回答上述問題后,自己找出生活中應用準確數和近似數的例子.
師:我們在解決實際問題時,有許多時候只能用近似數你知道為什么嗎?
啟發學生得出兩方面原因:1.搞得完全準確有時是辦不到的,2.往往也沒有必要搞得完全準確.
以開始提出的'問題為例,揭示近似數的有關概念
板書:
1.精確度
2.有效數字:一般地,一個近似數,四舍五入到哪一位,就說這個數精確到哪一位,這時,從左邊第一個不是0的數字起,到精確的數位止,所有的數字,都叫做這個數的有效數字.
例如:3.3有二個有效數字
3.33有三個有效數字
討論:近似數0.038有幾個有效數字,0.03080呢?
【教法說明】通過討論學生明確近似數的有效數字需注意的兩點:一是從左邊第一個不是零的數起;二是從左邊第一個不是零的數起,到精確的位數止,所有的數字,教者在有效數字概念對應的文字底下畫上波浪線,標上①、②
例1.(出示投影2)
下列由四舍五入吸到近似數,各精確到哪一位,各有哪幾個有效數字?
(1)43.8(2).03086(3)2.4萬
學生口述解題過程,教者板書.
對于近似數2.4萬學生又能認為是精確到十分位,這時可組織學生討論近似數與5.4和近似數5.4萬中的兩個4的數位有什么不同,從而得出正確的答案.
【教法說明】對于疑點問題,通過啟發討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多.
鞏固練習見課本122頁練習2、3頁
例2(出示投影3)
下列由四舍五入得來的近似數,各精確到哪一位,各有幾個有效數字?
七年級數學教案14
一、目標
1.用它們拼成各種形狀不同的四邊形,并計算它們的周長。
(鼓勵學生把長方形和等腰三角形拼和成各種圖形,分別計算出它們的周長和面積)
2.教師揭示以上這些工作實際上是在進行整式的加減運算
3.回顧以上過程 思考:整式的加減運算要進行哪些工作?
生1:“去括號”
生2:“合并同類項”
師生小結:整式的加減實際上是“去括號”和“合并同類項”法則的綜合應用,
二、揭示如何進行整式的加減運算
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.教學例二 例2 求2a2-4a+1與-3a2+2a-5的`差.
(本題首先帶領學生根據題意列出式子,強調要把兩個代數式看成整體,列式時應加上括號)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展練習
(1)求多項式2x -3 +7與6x -5 -2的和.
提問:你有哪些計算方法?(可引導學生進行豎式計算,并在練習中注意豎式計算過程中需要注意什么?)
(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)
(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)
4.教學例3
先化簡下式,再求值:
(做此類題目應先與學生一起探討一般步驟:
(1)去括號。
(2)合并同類項。
(3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小結
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.進行化簡求值計算時
(1)去括號。
(2)合并同類項。
(3)代值
3.通過本節課的學習你還有哪些疑問?
四、布置作業
習題4.5 2. (3) ;4. (2);5.。
五、課后反思
省略
七年級數學教案15
一、教學目標
1、知識目標:掌握數軸三要素,會畫數軸。
2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;
3、情感目標:向學生滲透數形結合的思想。
二、教學重難點
教學重點:數軸的三要素和用數軸上的點表示有理數。
教學難點:有理數與數軸上點的對應關系。
三、教法
主要采用啟發式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
(一)創設情境激活思維
1。學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發學生自豪感。
2。聯系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1。馬路用什么幾何圖形代表?(直線)
2。文中相關地點用什么代表?(直線上的點)
3。學校大門起什么作用?(基準點、參照物)
4。你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1。0代表什么?
2。數的符號的實際意義是什么?
3。—75表示什么?100表示什么?
設計意圖:繼續以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。
(二)自主學習探究新知
學生活動:帶著以下問題自學課本第8頁:
1。什么樣的直線叫數軸?它具備什么條件。
2。如何畫數軸?
3。根據上述實例的經驗,“原點”起什么作用?
4。你是怎么理解“選取適當的長度為單位長度”的?
師生活動:
學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。
設計意圖:明確畫數軸的步驟,使數軸的.三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。
至此,學生已會畫數軸,師生共同歸納總結(板書)
①數軸的定義。
②數軸三要素。
練習:(媒體展示)
1。判斷下列圖形是否是數軸。
2。口答:數軸上各點表示的數。
3。在數軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。
(三)小組合作交流展示
問題:觀察數軸上的點,你有什么發現?
數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和—a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養學生的抽象概括能力。
(四)歸納總結反思提高
師生共同回顧本節課所學主要內容,回答以下問題:
1。什么是數軸?
2。數軸的“三要素”各指什么?
3。數軸的畫法。
設計意圖:梳理本節課內容,掌握本節課的核心――數軸“三要素”。
(五)目標檢測設計
1。下列命題正確的是()
A。數軸上的點都表示整數。
B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C。數軸包括原點與正方向兩個要素。
D。數軸上的點只能表示正數和零。
2。畫數軸,在數軸上標出—5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。
3。畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有_______個。4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。
五、板書
1。數軸的定義。
2。數軸的三要素(圖)。
3。數軸的畫法。
4。性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1。什么樣的直線叫數軸?
定義:規定了_________、________、_________的直線叫數軸。
數軸的三要素:_________、_________、__________。
2。畫數軸的步驟是什么?
3。“原點”起什么作用?__________
4。你是怎么理解“選取適當的長度為單位長度”的?
練習:
1。畫一條數軸
2。在你畫好的數軸上表示下列有理數:1。5,—2,—2。5,2,2。5,0,—1。5
活動三:議一議
小組討論:觀察你所畫的數軸上的點,你有什么發現?
歸納:一般地,設a是一個正數,則數軸上表示數a在原點的____邊,與原點的距離是____個單位長度;表示數—a的點在原點的____邊,與原點的距離是____個單位長度。
練習:
1。數軸上表示—3的點在原點的_______側,距原點的距離是______;表示6的點在原點的______側,距原點的距離是______;兩點之間的距離為_______個單位長度。
2。距離原點距離為5個單位的點表示的數是________。
3。在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點B,則點B表示的數是________。
附:目標檢測
1。下列命題正確的是()
A。數軸上的點都表示整數。
B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C。數軸包括原點與正方向兩個要素。
D。數軸上的點只能表示正數和零。
2。畫數軸,在數軸上標出—5和+5之間的所有整數。列舉到原點的距離小于3的所有整數。
3。畫數軸,觀察數軸,在原點左邊的點有_______個。
4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。
【七年級數學教案】相關文章:
七年級人教版數學教案11-03
七年級上數學教案02-07
七年級數學教案08-19
七年級下冊數學教案08-26
七年級數學教案【精】01-06
初中七年級數學教案12-30
【薦】七年級數學教案12-19
七年級下冊數學教案12-05
【熱門】七年級數學教案12-15
七年級上冊數學教案12-16