1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    初一數學教案

    時間:2022-06-11 08:37:00 七年級數學教案 我要投稿

    初一數學教案集合15篇

      作為一位無私奉獻的人民教師,總不可避免地需要編寫教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。那么大家知道正規的教案是怎么寫的嗎?下面是小編收集整理的初一數學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

    初一數學教案集合15篇

    初一數學教案1

      教學目標

      1.了解公式的意義,使學生能用公式解決簡單的實際問題;

      2.初步培養學生觀察、分析及概括的能力;

      3.通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

      教學建議

      一、教學重點、難點

      重點:通過具體例子了解公式、應用公式.

      難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

      二、重點、難點分析

      人們從一些實際問題中抽象出許多常用的'、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

      三、知識結構

      本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

      四、教法建議

      1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

      2.在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

      3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

    初一數學教案2

      相交線

      課型:新授課 備課人:徐新齊 審核人:霍紅超

      學習目標

      1.通過動手觀察、操作、推斷、交流等數學活動,進一步發展空間觀念毛

      2.在具體情境中了解鄰補角、對頂角, 能找出圖形中的一個角的鄰補角和對頂角

      重點、難點

      重點:鄰補角、對頂角的概念,對頂角性質與應用.

      難點:理解對頂角相等的性質的探索.

      教學過程

      一、復習導入

      教師在輕松歡快的音樂中演示第五章章首圖片為主體的課件.

      學生欣賞圖片,閱讀其中的文字.

      師生共同總結:我們生活的世界中,蘊涵著大量的相交線和平行線. 本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質, 研究平行線的性質和平行的判定以及圖形的平移問題.

      二、自學指導

      觀察剪刀剪布的過程,引入兩條相交直線所成的角

      握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刃之間的`角邊相應變小. 如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刃之間的角也相應變大.

      三、 問題導學

      認識鄰補角和對頂角,探索對頂角性質

      (1).學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配共能組成幾對角? 各對角的位置關系如何?根據不同的位置怎么將它們分類?

      學生思考并在小組內交流,全班交流.

      ∠AOC和∠BOC有一條公共邊OC,它們的另一邊互為反向延長線.

      ∠AOC和∠BOD有公共的頂點O,而是∠AOC的兩邊分別是∠BOD兩邊的反向延長線.

      ( 2).學生用量角器分別量一量各個角的度數,以發現各類角的度數有什么關系,學生得出有"相鄰"關系的兩角互補,"對頂"關系的兩角相等.

      (3).概括形成鄰補角、對頂角概念.

      有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.

      如果兩個角有一個公共頂點, 而且一個角的兩邊分別是另一角兩邊的反向延長線,那么這兩個角叫對頂角.

      四、典題訓練

      1.例:如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數.

      2.:判斷下列圖中是否存在對頂角.

      小結

    初一數學教案3

      初一上冊數學教案,歡迎各位老師和學生參考!

      學習目標:1、理解有理數的絕對值和相反數的意義。

      2、會求已知數的相反數和絕對值。

      3、會用絕對值比較兩個負數的大小。

      4、經歷將實際問題數學化的過程,感受數學與生活的聯系。

      學習重點:1.會用絕對值比較兩個負數的大小。

      2.會求已知數的相反數和絕對值。

      學習難點:理解有理數的絕對值和相反數的意義。

      學習過程:

      一、創設情境

      根據絕對值與相反數的意義填空:

      1、

      2、

      -5的相反數是______,-10.5的相反數是______, 的相反數是______;

      3、|0|=______,0的相反數是______。

      二、探索感悟

      1、議一議

      (1)任意說出一個數,說出它的絕對值、它的相反數。

      (2)一個數的絕對值與這個數本身或它的相反數有什么關系?

      2、想一想

      (1)2與3哪個大?這兩個數的絕對值哪個大?

      (2)-1與-4哪個大?這兩個數的絕對值哪個大?

      (3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?

      (4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?

      三.例題精講

      例1. 求下列各數的絕對值:

      +9,-16,-0.2,0.

      求一個數的'絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。

      議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?

      (2)數軸上的點的大小是如何排列的?

      例2比較-10.12與-5.2的大小。

      例3.求6、-6、14 、-14 的絕對值。

      小節與思考:

      這節課你有何收獲?

      四.練習

      1. 填空:

      ⑴ 的符號是 ,絕對值是 ;

      ⑵10.5的符號是 ,絕對值是

      ⑶符號是+號,絕對值是 的數是

      ⑷符號是-號,絕對值是9的數是 ;

      ⑸符號是-號,絕對值是0.37的數是 .

      2. 正式足球比賽時所用足球的質量有嚴格的規定,下表是6個足球的質量檢測結果(用正數記超過規定質量的克數,用負數記不足規定質量的克數).

      請指出哪個足球質量最好,為什么?

      第1個第2個第3個第4個第5個第6個

      -25-10+20+30+15-40

      3.比較下面有理數的大小

      (1)-0.7與-1.7 (2) (3) (4)-5與0

      五、布置作業:

      P25 習題2.3 5

      家庭作業:《評價手冊》 《補充習題》

      六、學后記/教后記

      這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!

    初一數學教案4

      教學目標:了解總體、個體、樣本及樣本容的概念以及抽樣調查的意義,明確在什么情況下采用抽樣調查或全面調查,進一步熟悉對數據的收集、整理、描述和分析。

      教學重點:對概念的理解及對數據收集整理。

      教學難點:總體概念的理解和隨機抽樣的合理性。

      教學過程:

      一、情景創設,引入新課

      上節課我們對全班同學對自己所喜愛的學科進行了調查,那么如果要對某校20xx名學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,怎樣進行調查?

      二、新課

      1.抽樣調查的意義

      在上述問題中,由于學生人數比較多,全面調查花費的時間長,消耗的人力、物力大,因此需要尋求既省時又省力又能解決問題的方法,這就是抽樣調查。

      抽樣調查:抽取一部分對象進行調查的方法,叫抽樣調查。

      2.總體、個體、樣本、樣本容量的意義

      總體:所要考察對象的全體。

      個體:總體的每一個考察對象叫個體。

      樣本:抽取的部分個體叫做一個樣本。

      樣本容量:樣本中個體的數目。

      3.抽樣的注意事項

      ①抽樣調查要具有廣泛性和代表性,即樣本容量要恰當.樣本容量過少,那么不能很好地反映總體的情況,比如要調查20xx名學生對電視節目的喜愛情況,若抽取的樣本容量為幾名學生就不能反映20xx名學生的喜愛情況;如果抽取的學生人數過多,必然花費大量的時間、精力,達不到省時省力的目的.再如要調查60歲以上的老人的生病情況,在醫院去抽取一些60歲以上的住院病人,它又不具有代表性,則應從60歲以上的老人冊中任意抽取部分老人的生病情況來反映總體的60歲老人的生病情況,才能達到目的.

      ②抽取的樣本要有隨機性.為了使樣本能較好地反映總體的'情況,除了有合適的樣本容量外,抽取時還要盡量使每一個個體都有相等的機會被抽到,所謂隨機就是機會相等.例如在20xx名學生的注冊學號中,隨意抽取100個學號,調查這些學號對應的100名學生.當然還可以在上學或放學時,在學校門口隨機進行調查;或則每隔10個人調查一個,直到調查滿確定的樣本容量.

      總體說來抽樣調查最大的優點就是在抽樣過程中避免了人為的干擾和偏差,因此隨機抽樣是最科學、應用最廣泛的抽樣方法,一般情況下,樣本容量越大,估計精確度就越高.

      下面是某同學抽取樣本數量為100的調查節目統計表:

      表中的數據信息也可以用條形統計圖或扇形統計圖來描述。

    初一數學教案5

      教學目標

      使學生進一步理解立方根的概念,并能熟練地進行求一個數的立方根的運算;

      能用有理數估計一個無理數的大致范圍,使學生形成估算的'意識,培養學生的估算能力;

      經歷運用計算器探求數學規律的過程,發展合情推理能力。

      教學難點

      用有理數估計一個無理的大致范圍。

      知識重點

      用有理數估計一個無理的大致范圍。

      對于計算器的使用,在教學中采用學生自己閱讀計算器的說明書、自己操作練習來掌握用計算器進行開立方運算的方法,并讓學生互相交流,讓學生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數量間的關系與變化帶來方便。在教學過程中,教師要關注學生能否通過閱讀,掌握用計算器進行開立方運算的簡單操作;能否利用計算器探究數量間的關系,從而尋找出數量的變化關系。

      使用計算器進行復雜運算,可以使學生學習的重點更好地集中到理解數學的本質上來,而估算也是一種具有實際應用價值的運算能力,在本節課的課堂教學中綜合運用筆算、計算器和估算等培養學生的運算能力。

    初一數學教案6

      7.3.1多邊形

      [教學目標]

      1.了解多邊形及有關概念,理解正多邊形及其有關概念.

      2.區別凸多邊形與凹多邊形.

      [教學重點、難點]

      1.重點:

      (1)了解多邊形及其有關概念,理解正多邊形及其有關概念.

      (2)區別凸多邊形和凹多邊形.

      2.難點:

      多邊形定義的準確理解.

      [教學過程]

      一、新課講授

      投影:圖形見課本P84圖7.3一l.

      你能從投影里找出幾個由一些線段圍成的圖形嗎?

      上面三圖中讓同學邊看、邊議.

      在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?

      (1)它們在同一平面內.

      (2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.

      這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?

      提問:三角形的定義.

      你能仿照三角形的定義給多邊形定義嗎?

      1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.

      如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)

      2.多邊形的邊、頂點、內角和外角.

      多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.

      3.多邊形的對角線

      連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.

      讓學生畫出五邊形的所有對角線.

      4.凸多邊形與凹多邊形

      看投影:圖形見課本P85.7.3—6.

      在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.

      5.正多邊形

      由正方形的特征出發,得出正多邊形的概念.

      各個角都相等,各條邊都相等的多邊形叫做正多邊形.

      二、課堂練習

      課本P86練習1.2.

      三、課堂小結

      引導學生總結本節課的相關概念.

      四、課后作業

      課本P90第1題.

      備用題:

      一、判斷題.

      1.由四條線段首尾順次相接組成的圖形叫四邊形.()

      2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()

      3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的.同一側,叫做四邊形.()

      4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()

      二、填空題.

      1.連接多邊形的線段,叫做多邊形的對角線.

      2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.

      3.各個角,各條邊的多邊形,叫正多邊形.

      三、解答題.

      1.畫出圖(1)中的六邊形ABCDEF的所有對角線.

      2.如圖(2),O為四邊形ABCD內一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數有何關系?

      3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數有何關系?

      4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數有何關系?

    初一數學教案7

      一、教學目標

      (一)知識教學點

      1.了解;方程算術解法與代數解法的區別。

      2.掌握:代數解法解簡易方程。

      (二)能力訓練點

      1.通過代數解法解簡易方程的學習使學生認識問題頭腦不僵化,培養其創造性思維的能力。

      2.通過代數法解簡易方程進一步培養學生運算能力和邏輯思維能力。

      (三)德育滲透點

      1.培養學生實事求是的科學態度,用發展的眼光看問題的辯證唯物主義思想。

      2.滲透化“未知”為“已知”的化歸思想。

      (四)美育滲透點

      通過用新的方法解簡易方程,使學生初步領略數學中的方法美。

      二、學法引導

      1.教學方法:引導發現法。注意教學中民主意識和學生的主體作用的體現。

      2.學生學法:識記→練習反饋

      三、重點、難點、疑點及解決辦法

      1.重點:代數解法解簡易方程。

      2.難點:解方程時準確把握兩邊都加上(或減去)、乘以(或除以)同一適當的數。

      3.疑點:代數解法解簡易方程的依據。

      四、課時安排

      1課時

      五、教具學具準備

      投影儀或電腦、自制膠片。

      六、師生互動活動設計

      教師創設情境,學生解決問題。教師介紹新的方法,學生反復練習。

      七、教學步驟

      (一)創設情境,復習導入

      (出示投影1)

      引例:班上有37名同學,分成人數相等的兩隊進行拔河比賽,恰好余3人當裁判員,每個隊有多少人?

      師:該問題如何解決呢?請同學們考慮好后寫在練習本上.

      學生活動:解答問題,一個學生板演.

      師生共同訂正,對照板演學生的做法,師問:有無不同解法?

      學生活動:回答問題,一個學生板演,其他學生比較兩種解法.

      問;這兩種解法有什么不同呢?

      學生活動:積極思索,回答問題.(一是列算式的解法,二是列方程的解法).

      師:很好.為了敘述問題方便,我們分別把這兩種解法叫做算術解法和代數解法.小學學過的應用題可用算術方法也可用代數方法解.有時算術方法簡便,有時代數方法簡便,但是隨著學習的逐步展開,遇到的問題越來越復雜,使用代數解法的優越性將會體現的越來越充分,因此,在初中代數課上,將把方程的知識作為一個重要的內容來學習.當然,在開始學習方程時,還是要從簡單的方程入手,即簡易方程.引出課題.

      [板書]1.5簡易方程

      (二)探索新知,講授新課

      師:談到方程,同學們并不陌生,你能說明什么叫方程嗎?

      學生活動:踴躍舉手,回答問題。

      [板書] 含有未知數的等式叫方程

      接問:你還知道關于方程的其他概念嗎?

      學生活動:積極思考并回答。

      [板書] 方程的'解;解方程

      追問:能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說明.學生活動:互相討論后回答.(使方程左右兩邊相等的未知數的值叫做方程的解;求方程的解的過程叫解方程,

      師:好!這是小學學的解方程的方法。在初中代數課上,我們要從另一角度來解,還以上邊這個方程為例。

      [板書]

      學生活動:相互討論達成共識(合理。因把x=5 代入方程3x+9=24 ,左邊=右邊,所以x=5是方程的解)

      【教法說明】先復習小學有關方程的幾個概念和解法,再提代數解法,形成對比,使學生認識到同一問題可從不同角度去考慮,即培養了發散思維。正是因為認識問題的不同側面,導致學生感到疑惑,這時讓學生自己去檢驗新方法的合理性,不但可消除疑慮,而且還有助于發展學生的創造能力。

      師:以前的方法只能解很簡單的方程,而后者則可以解較復雜的方程,因此更為重要。為了更好的理解和熟悉這種解法,我們共同做例1。

      (三)嘗試反饋,鞏固練習

      例1 解方程(x/2)-5=11

      問:你認為第一步方程兩邊應加上(或減去)什么數最合適?為什么?

      學生活動:思考并回答.(師板書)

      問:你認為第二步方程兩邊應乘以(或除以)什么數最合適?為什么?

      學生活動:思考并回答(師板書)

      解:方程兩邊都加上5,得

      (x/2)-5+5=11+5

      x/2=16

      (x/2)*2=16*2

      x=32

      問:這個結果正確嗎?請同學們自己檢驗.

      學生活動:練習本上檢驗并回答問題.(正確)

      師:這種新方法解方程時,第一步目的是什么?第二步目的是什么?從而確定出該加上(或減去)怎樣的數,該乘以(或除以)怎樣的數更合適.

      學生活動:回答這兩個問題.

    初一數學教案8

      一、教學目標

      1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。

      2.能用適當的圖形和語言表示自己的思考結果。

      二、教學重點和難點

      本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。

      三、教學手段

      引導活動討論

      引導:意在教師講解七巧板的歷史,七巧板制作的方法。

      活動:人人參與制作七巧板,拼擺七巧板的圖案。

      討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。

      四、教學方法

      啟發式教學

      五、教學過程

      1 創設情景,引入新課

      先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。

      2 合作交流,探索新知

      利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。

      (1) 你的拼圖用了什么形狀的板?你想表現什么?

      (2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。

      (3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。

      通過學生的展示,教師作適時的評價,樹立榜樣,培養學生之間的競爭意識。

      3 范例教學

      介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發學生的創造欲望,提出你還有材料嗎?有信心憑自己的`智慧制作一副游戲板嗎?意在充分發揮學生的創造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。

      4 反饋練習

      由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。

      5 歸納小結

      通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。

      六、練習設計

      利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環境。

      七、板書設計

      4.7有趣的七巧板

      (一)知識回顧 (三)例題解析 (五)課堂小結

      (二)觀察發現 (四)課堂練習 練習設計

    初一數學教案9

      教學目標1,掌握相反數的概念,進一步理解數軸上的點與數的對應關系;

      2,通過歸納相反數在數軸上所表示的點的特征,培養歸納能力;

      3,體驗數形結合的思想。

      教學難點歸納相反數在數軸上表示的點的特征

      知識重點相反數的概念

      教學過程(師生活動)設計理念

      設置情境

      引入課題問題1:請將下列4個數分成兩類,并說出為什么要這樣分類

      4,-2,-5,+2

      允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。

      (引導學生觀察與原點的距離)

      思考結論:教科書第13頁的思考

      再換2個類似的數試一試。

      歸納結論:教科書第13頁的歸納。以開放的形式創設情境,以學生進行討論,并培養分類的能力

      培養學生的觀察與歸納能力,滲透數形思想

      深化主題提煉定義給出相反數的定義

      問題2:你怎樣理解相反數定義中的“只有符號不同”和“互為”一詞的含義?零的相反數是什么?為什么?

      學生思考討論交流,教師歸納總結。

      規律:一般地,數a的相反數可以表示為-a

      思考:數軸上表示相反數的兩個點和原點有什么關系?

      練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。

      深化相反數的概念;“零的相反數是零”是相反數定義的一部分。

      強化互為相反數的數在數軸上表示的點的幾何意義

      給出規律

      解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?

      學生交流。

      分別表示+5和-5的相反數是-5和+5

      練一練:教科書第14頁第二個練習利用相反數的概念得出求一個數的相反數的方法

      小結與作業

      課堂小結1,相反數的定義

      2,互為相反數的數在數軸上表示的點的特征

      3,怎樣求一個數的相反數?怎樣表示一個數的相反數?

      本課作業1,必做題教科書第18頁習題1.2第3題

      2,選做題教師自行安排

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1,相反數的概念使有理數的各個運算法則容易表述,也揭示了兩個特殊數的特征.這兩個特殊數在數量上具有相同的絕對值,它們的和為零,在數軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數量和幾何意義展開,滲透數形結合的思想.

      2,教學引人以開放式的問題人手,培養學生的分類和發散思維的能力;把數在數軸上表示出來并觀察它們的特征,在復習數軸知識的同時,滲透了數形結合的數學方法,數與形的相互轉化也能加深對相反數概念的理解;問題2能幫助學生準確把握相反數的概念;問題3實際上給出了求一個數的相反數的方法.

      3,本教學設計體現了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發揮的余地.

      課題:1.2.4絕對值

      教學目標1,掌握絕對值的概念,有理數大小比較法則.

      2,學會絕對值的計算,會比較兩個或多個有理數的大小.

      3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.

      教學難點兩個負數大小的比較

      知識重點絕對值的'概念

      教學過程(師生活動)設計理念

      設置情境

      引入課題星期天黃老師從學校出發,開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

      學生思考后,教師作如下說明:

      實際生活中有些問題只關注量的具體值,而與相反

      意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;

      觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.

      學生回答后,教師說明如下:

      數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;

      一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|

      例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負

      數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體

      驗數學知識與生活實際的聯系.

    初一數學教案10

      學習目標

      1.理解平行線的意義兩條直線的兩種位置關系;

      2.理解并掌握平行公理及其推論的內容;

      3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;

      學習重點

      探索和掌握平行公理及其推論.

      學習難點

      對平行線本質屬性的理解,用幾何語言描述圖形的性質

      一、學習過程:預習提問

      兩條直線相交有幾個交點?

      平面內兩條直線的位置關系除相交外,還有哪些呢?

      (一)畫平行線

      1、 工具:直尺、三角板

      2、 方法:一"落";二"靠";三"移";四"畫"。

      3、請你根據此方法練習畫平行線:

      已知:直線a,點B,點C.

      (1)過點B畫直線a的平行線,能畫幾條?

      (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

      (二)平行公理及推論

      1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

      ②過點C畫直線a的平行線,能畫 條;

      ③你畫的直線有什么位置關系? 。

      ②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

      二、自我檢測:

      (一)選擇題:

      1、下列推理正確的'是 ( )

      A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

      C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

      2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )

      A.0個 B.1個 C.2個 D.3個

      (二)填空題:

      1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。

      2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:

      (1)L1與L2 沒有公共點,則 L1與L2 ;

      (2)L1與L2有且只有一個公共點,則L1與L2 ;

      (3)L1與L2有兩個公共點,則L1與L2 。

      3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

      4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。

      三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

    初一數學教案11

      教學目標

      1,掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;

      2,了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

      3,體驗分類是數學上的常用處理問題的方法。

      教學難點正確理解分類的標準和按照一定的標準進行分類

      知識重點正確理解有理數的概念

      教學過程(師生活動)設計理念

      探索新知在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).

      問題1:觀察黑板上的9個數,并給它們進行分類.

      學生思考討論和交流分類的情況.

      學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.

      例如,

      對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數(由于小數可化為分數,以后把小數和分數都稱為分數)

      通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數。

      按照書本的說法,得出“整數”“分數”和“有理數”的概念。

      看書了解有理數名稱的由來.

      “統稱”是指“合起來總的名稱”的意思.

      試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的)分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

      學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。

      有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

      練一練1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.

      2,教科書第10頁練習.

      此練習中出現了集合的概念,可向學生作如下的說明.

      把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;

      數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.

      思考:上面練習中的四個集合合并在一起就是全體有理數的.集合嗎?

      也可以教師說出一些數,讓學生進行判斷。

      集合的概念不必深入展開。

      創新探究問題2:有理數可分為正數和負數兩大類,對嗎?為什么?

      教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。

      有理數這個分類可視學生的程度確定是否有必要教學。

      應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

      小結與作業

      課堂小結到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。

      本課作業1,必做題:教科書第18頁習題1.2第1題

      2,教師自行準備

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概

      念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進

      行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分

      類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

      2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。

      3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

      課題:1.2.2數軸

      教學目標1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;

      2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;

      3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。

      教學難點數軸的概念和用數軸上的點表示有理數

      知識重點

      教學過程(師生活動)設計理念

      設置情境

      引入課題教師通過實例、課件演示得到溫度計讀數.

      問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

      (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

      問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

      (小組討論,交流合作,動手操作)創設問題情境,激發學生的學習熱情,發現生活中的數學

      點表示數的感性認識。

      點表示數的理性認識。

      合作交流

      探究新知教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?

      讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?

      從而得出數軸的三要素:原點、正方向、單位長度體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。

      從游戲中學數學做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎?學生游戲體驗,對數軸概念的理解

      尋找規律

      歸納結論問題3:

      1,你能舉出一些在現實生活中用直線表示數的實際例子嗎?

      2,如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?

      3,哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?

      4,每個數到原點的距離是多少?由此你會發現了什么規律?

      (小組討論,交流歸納)

      歸納出一般結論,教科書第12的歸納。這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

      鞏固練習

      教科書第12頁練習

      小結與作業

      課堂小結請學生總結:

      1,數軸的三個要素;

      2,數軸的作以及數與點的轉化方法。

      本課作業1,必做題:教科書第18頁習題1.2第2題

      2,選做題:教師自行安排

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1,數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。

      2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。

      3,注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。

    初一數學教案12

      一、 學情分析:

      在此之前,本班學生已有探索有理數加法法則的經驗,多數學生能在教師指導下探索問題。由于學生已了解利用數軸表示加法運算過程,不太熟悉水位變化,故改為用數軸表示乘法運算過程。

      二、 課前準備

      把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。

      三、 教學目標

      1、 知識與技能目標

      掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

      2、 能力與過程目標

      經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

      3、 情感與態度目標

      通過學生自己探索出法則,讓學生獲得成功的喜悅。

      四、 教學重點、難點

      重點:運用有理數乘法法則正確進行計算。

      難點:有理數乘法法則的`探索過程,符號法則及對法則的理解。

      五、 教學過程

      1、 創設問題情景,激發學生的求知欲望,導入新課。

      教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

      學生:26米。

      教師:能寫出算式嗎?

      學生:……

      教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

      2、 小組探索、歸納法則

      (1)教師出示以下問題,學生以組為單位探索。

      以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

      a. 2 ×3

      2看作向東運動2米,×3看作向原方向運動3次。

      結果:向 運動 米

      2 ×3=

      b. -2 ×3

      -2看作向西運動2米,×3看作向原方向運動3次。

      結果:向 運動 米

      -2 ×3=

      c. 2 ×(-3)

      2看作向東運動2米,×(-3)看作向反方向運動3次。

      結果:向 運動 米

      2 ×(-3)=

      d. (-2) ×(-3)

      -2看作向西運動2米,×(-3)看作向反方向運動3次。

      結果:向 運動 米

      (-2) ×(-3)=

      e.被乘數是零或乘數是零,結果是人仍在原處。

      (2)學生歸納法則

      a.符號:在上述4個式子中,我們只看符號,有什么規律?

      (+)×(+)= 同號得

      (-)×(+)= 異號得

      (+)×(-)= 異號得

      (-)×(-)= 同號得

      b.積的絕對值等于 。

      c.任何數與零相乘,積仍為 。

      (3)師生共同用文字敘述有理數乘法法則。

      3、 運用法則計算,鞏固法則。

      (1)教師按課本P75 例1板書,要求學生述說每一步理由。

      (2)引導學生觀察、分析例1中(3)(4)小題兩因數的關系,得出兩個有理數互為倒數,它們的積為 。

      (3)學生做 P76 練習1(1)(3),教師評析。

      (4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。多個因數相乘,積的符號由 決定,當負因數個數有 ,積為 ; 當負因數個數有 ,積為 ;只要有一個因數為零,積就為 。

      4、 討論對比,使學生知識系統化。


    有理數乘法有理數加法
    同號得正取相同的符號
    把絕對值相乘
    (-2)×(-3)=6
    把絕對值相加
    (-2)+(-3)=-5
    異號得負取絕對值大的加數的符號
    把絕對值相乘
    (-2)×3= -6
    (-2)+3=1
    用較大的絕對值減小的絕對值
    任何數與零得零得任何數

      5、 分層作業,鞏固提高。

    初一數學教案13

      學習目標:

      理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。

      學習重點:

      多項式乘法法則及其應用。

      學習難點:

      理解運算法則及其探索過程。

      一、課前訓練:

      (1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

      (3)3a2b2 ab3 = , (4) = ;

      (5)- = ,(6) = 。

      二、探索練習:

      (1)如圖1大長方形,其面積用四個小長方形面積

      表示為: ;

      (2)大長方形的長為 ,寬為 ,要

      計算其面積就是 ,其中包含的

      運算為 。

      由上面的問題可發現:( )( )=

      多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的積 。

      三.運用法則規范解題。

      四.鞏固練習:

      3.計算:① ,

      4.計算:

      五.提高拓展練習:

      5.若 求m,n的值.

      6.已知 的結果中不含 項和 項,求m,n的.值.

      7.計算(a+b+c)(c+d+e),你有什么發現?

      六.晚間訓練:

      (7) 2a2(-a)4 + 2a45a2 (8)

      3、(1)觀察:4×6=24

      14×16=224

      24×26=624

      34×36=1224

      你發現其中的規律嗎?你能用代數式表示這一規律嗎?

      (2)利用(1)中的規律計算124×126。

      4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。

      (1)設AP= ,求兩個正方形的面積之和S;

      (2)當AP分別 時,比較S的大小。

    初一數學教案14

      教學目標

      1.使學生正確理解數軸的意義,掌握數軸的三要素;

      2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;

      3.使學生初步理解數形結合的思想方法.

      教學重點和難點

      重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.

      難點:正確理解有理數與數軸上點的對應關系.

      課堂教學過程設計

      一、從學生原有認知結構提出問題

      1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

      2.用“射線”能不能表示有理數?為什么?

      3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

      待學生回答后,教師指出,這就是我們本節課所要學習的內容——數軸.

      二、講授新課

      讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

      與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

      1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

      2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

      3.選取適當的.長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

      提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

      在此基礎上,給出數軸的定義,即規定了原點、正方向和單位長度的直線叫做數軸.

      進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

      通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.

      三、運用舉例變式練習

      例1畫一個數軸,并在數軸上畫出表示下列各數的點:

      例2指出數軸上A,B,C,D,E各點分別表示什么數.

      課堂練習

      示出來.

      2.說出下面數軸上A,B,C,D,O,M各點表示什么數?

      最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

      四、小結

      指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

      本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.

      五、作業

      1.在下面數軸上:

      (1)分別指出表示-2,3,-4,0,1各數的點.

      (2)A,H,D,E,O各點分別表示什么數?

      2.在下面數軸上,A,B,C,D各點分別表示什么數?

      3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:

      (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

    初一數學教案15

      【教學內容】

      第二章 2.1 正數與負數 2.2 數軸

      【教學目標】

      1、會判斷一個數是正數還是負數,理解負數的意義。

      2、會把已知數在數軸上表示,能說出已知點所表示的數。

      3、了解數軸的原點、正方向、單位長度,能畫出數軸。

      4、會比較數軸上數的大小。

      【知識講解】

      一、本講主要學習內容

      1、負數的意義及表示 2、零的位置和地位

      3、有理數的分類 4、數軸概念及三要素

      5、數軸上數與點的對應關系 6、數軸上數的比較大小

      其中,負數的概念,數軸的概念及其三要素以及數軸上數的'比較大小是重點。負數的意義是難點。

      下面概述一下這六點的主要內容

      1、負數的意義及表示

      把大于0的數叫正數如5,3,+3等。在正數前加上“-”號的數叫做負數如-5,-3,- 等。負數是表示相反意義的量,如:低于海平面-155米表示為-155m,虧損50元表示-50元。

      2、零的位置和地位

      零既不是正數,也不是負數,但它是自然數。它可以表示沒有,也可以在數軸上分隔正數和分數,甚至可以表示始點,表示缺位,這將在下面詳細介紹。

      3、有理數的分類

      正整數、零、負整數統稱為整數,正分數、負分數統稱為分數,整數和分數統稱為有理數。

      正整數

      整數 零 正有理數

      有理數 負整數 或 有理數 零

      分數 正分數 負有理數

      負分數

    【初一數學教案】相關文章:

    初一數學教案08-27

    初一數學教案11-04

    初一數學教案【熱】12-13

    初一數學教案【精】12-14

    【推薦】初一數學教案12-03

    【薦】初一數學教案12-04

    初一數學教案【推薦】12-11

    【熱】初一數學教案12-12

    【熱門】初一數學教案12-12

    初一數學教案【薦】12-13

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      婷婷射亚洲娱乐中文网 | 日本狂喷奶水在线播放212 | 熟女视频一区二区三区 | 思思99热综合在线观看 | 亚洲一区在线精品 | 亚洲影院午夜在线观看 |