1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>

    八年級數(shù)學(xué)教案

    時間:2022-04-18 23:10:37 八年級數(shù)學(xué)教案 我要投稿

    八年級數(shù)學(xué)教案模板匯編八篇

      作為一名教師,就難以避免地要準(zhǔn)備教案,借助教案可以更好地組織教學(xué)活動。教案應(yīng)該怎么寫呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案8篇,希望能夠幫助到大家。

    八年級數(shù)學(xué)教案模板匯編八篇

    八年級數(shù)學(xué)教案 篇1

      教學(xué)任務(wù)分析

      教學(xué)目標(biāo)

      知識技能

      探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

      數(shù)學(xué)思考

      能夠運用梯形的有關(guān)概念和性質(zhì)進行有關(guān)問題的論證和計算,進一步培養(yǎng)學(xué)生的分析問題能力和計算能力.

      解決問題

      通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想.

      情感態(tài)度

      在應(yīng)用等腰梯形的性質(zhì)的過程養(yǎng)成獨立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗.

      重點

      等腰梯形的性質(zhì)及其應(yīng)用.

      難點

      解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線),及梯形有關(guān)知識的應(yīng)用.

      教學(xué)流程安排

      活動流程圖

      活動的內(nèi)容和目的

      活動1想一想

      活動2說一說

      活動3畫一畫

      活動4做—做

      活動5練一練

      活動6理一理

      觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.

      了解梯形定義、各部分名稱及分類.

      通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.

      探究得到等腰梯形的性質(zhì).

      通過解決具體問題,尋找解決梯形問題的方法.

      通過整理回顧,鞏固知識、提高能力、滲透思想.

      教學(xué)過程設(shè)計

      問題與情景

      師生行為

      設(shè)計意圖

      [活動1]

      觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

      演示圖片,學(xué)生欣賞.

      結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

      由現(xiàn)實中實際問題入手,設(shè)置問題情境,引出本課主題.通過學(xué)生觀察圖片和歸納圖形的特點,培養(yǎng)學(xué)生的觀察、概括能力.

      [活動2]

      梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

      學(xué)生根據(jù)梯形概念畫出圖形,教師可以進一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

      通過類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.

      問題與情景

      師生行為

      設(shè)計意圖

      一些基本概念

      (1)(如圖):底、腰、高.

      (2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

      (3)直角梯形:有一個角是直角的梯形叫做直角梯形.

      學(xué)生在小學(xué)已經(jīng)對梯形有一定的感性認(rèn)識,因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后, 教師可以強調(diào):①梯形與四邊形的關(guān)系;

      ②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.

      熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.

      [活動3]

      畫一畫

      在下列所給圖中的每個三角形中畫一條線段,

      (1)怎樣畫才能得到一個梯形?

      (2)在哪些三角形中,能夠得到一個等腰梯形?

      在學(xué)生獨立探究的基礎(chǔ)上,學(xué)生分組交流.

      教師參與小組活動,指導(dǎo)、傾聽學(xué)生交流.針對不同認(rèn)識水平的學(xué)生,引導(dǎo)其正確作圖.

      本次活動教師應(yīng)重點關(guān)注:

      (1)學(xué)生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.

      (2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.

      (3)學(xué)生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質(zhì)疑,從中獲益.

      等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動3中設(shè)計了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質(zhì),為活動4種開展探究奠定了基礎(chǔ).

      問題與情景

      師生行為

      設(shè)計意圖

      [活動4]

      做—做

      探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想).

      在一張方格紙上作一個等腰梯形,連接兩條對角線.

      (1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過觀察猜想;

      (2)這個等腰梯形的兩條對角線的長度有什么關(guān)系?

      學(xué)生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結(jié)論.

      針對不同認(rèn)識水平的學(xué)生,教師指導(dǎo)學(xué)生活動.

      師生共同歸納:

      ①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.

      ②等腰梯形兩腰相等.

      ③等腰梯形同一底上的兩個角相等.

      ④等腰梯形的兩條對角線相等.

      教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的`性質(zhì),尤其在證明“等腰梯形同一底上的兩個角相等”這條性質(zhì)時,“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機會,給學(xué)生介紹這兩種輔助線的添加方法.

      [活動5]

      練—練

      例1 (教材P118的例1)略.

      例2 如圖,梯形ABCD中,AD∥BC,

      ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

      求CD的長.

      師生共同分析,尋找解決問題的方法和策略.

      例1是等腰梯形性質(zhì)的直接運用,請學(xué)生分析、解答,教師聆聽,同時注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

      分析:設(shè)法把已知中所給的條件都移到一個三角形中,便可以解決問題.

      其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

      解:(略)

      通過題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問題的基本思想和方法就是通過添加適當(dāng)?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學(xué)時應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對于學(xué)好梯形內(nèi)容很有幫助.

      問題與情景

      師生行為

      設(shè)計意圖

      例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

      BE⊥AC于E.

      求證:BE=CD.

      分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

      證明(略)

      例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學(xué)或練習(xí)中可以根據(jù)學(xué)生的實際情況,再引導(dǎo)、補充其他輔助線的添加方法,讓學(xué)生多了解、多見識.

      [活動6]

      1.小結(jié)

      2.布置作業(yè)

      (1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

      (2)已知:如圖,

      梯形ABCD中,CD//AB,,.

      求證:AD=AB—DC.

      (3)已知,如圖,

      梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結(jié)論)

      師生歸納總結(jié):

      解決梯形問題常用的方法:

      (1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

      (2)“作高”:使兩腰在兩個直角三角形中(圖2);

      (3)“延腰”:構(gòu)造具有公共角的兩個等腰三角形(圖3);

      (4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

      (5)“等積變形”,連結(jié)梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構(gòu)成三角形(圖5).

      盡量多地讓學(xué)生參與發(fā)言是一個交流的過程.

      梳理本節(jié)課應(yīng)用過的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.

      學(xué)生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.

    八年級數(shù)學(xué)教案 篇2

      教學(xué)目標(biāo):完全平方公式的推導(dǎo)及其應(yīng)用;完全平方公式的幾何解釋;視學(xué)生對算理的理解,有意識地培養(yǎng)學(xué)生的.思維條理性和表達能力.

      教學(xué)重點與難點:完全平方公式的推導(dǎo)過程、結(jié)構(gòu)特點、幾何解釋,靈活應(yīng)用.

      教學(xué)過程:

      一、提出問題,學(xué)生自學(xué)

      問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫成什么樣的形式呢?(a+b)2的運算結(jié)果有什么規(guī)律?計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

      (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

      (2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

      學(xué)生討論,教師歸納,得出結(jié)果:

      (1)(p+1)2=(p+1)(p+1)=p2+2p+1

      (m+2)2=(m+2)(m+2)=m2+4m+4

      (2)(p1)2=(p1)(p1)=p22p+1

      (m2)2=(m2)(m2)=m24m+4

      分析推廣:結(jié)果中有兩個數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個數(shù)乘積的二倍(1)(2)之間只差一個符號.

      推廣:計算(a+b)2=__________;(ab)2=__________.

      得到公式,分析公式

      結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

      即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.

      二、幾何分析

      你能根據(jù)圖(1)和圖(2)的面積說明完全平方公式嗎?

      圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數(shù)學(xué)上冊《完全平方公式》教案教案《新人教版八年級數(shù)學(xué)上冊《完全平方公式》教案》,來自網(wǎng)!

    八年級數(shù)學(xué)教案 篇3

      一、課堂引入

      1.什么叫做平行四邊形?什么叫做矩形?

      2.矩形有哪些性質(zhì)?

      3.矩形與平行四邊形有什么共同之處?有什么不同之處?

      4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

      通過討論得到矩形的判定方法.

      矩形判定方法1:對角錢相等的平行四邊形是矩形.

      矩形判定方法2:有三個角是直角的四邊形是矩形.

      (指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

      二、例習(xí)題分析

      例1(補充)下列各句判定矩形的說法是否正確?為什么?

      (1)有一個角是直角的四邊形是矩形;(×)

      (2)有四個角是直角的四邊形是矩形;(√)

      (3)四個角都相等的四邊形是矩形;(√)

      (4)對角線相等的四邊形是矩形;(×)

      (5)對角線相等且互相垂直的.四邊形是矩形;(×)

      (6)對角線互相平分且相等的四邊形是矩形;(√)

      (7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

      (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

      (9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

      指出:

      (l)所給四邊形添加的條件不滿足三個的肯定不是矩形;

      (2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

      例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

      分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

      解:∵ 四邊形ABCD是平行四邊形,

      ∴AO=AC,BO=BD.

      ∵ AO=BO,

      ∴ AC=BD.

      ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

      在Rt△ABC中,

      ∵ AB=4cm,AC=2AO=8cm,

      ∴BC=(cm).

      例3(補充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

      分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

    八年級數(shù)學(xué)教案 篇4

      【教學(xué)目標(biāo)】

      一、教學(xué)知識點

      1.命題的組成.

      2.命題真假的判斷。

      二、能力訓(xùn)練要求:

      1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

      2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法

      三、情感與價值觀要求:

      1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一

      2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

      3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值

      【教學(xué)重點】準(zhǔn)確的找出命題的條件和結(jié)論

      【教學(xué)難點】理解判斷一個真命題需要證明

      【教學(xué)方】探討、合作交流

      【教具準(zhǔn)備】投影片

      【教學(xué)過程】

      一、情景創(chuàng)設(shè)、引入新課

      師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?

      新課:

      (1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

      1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。

      2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

      3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

      4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

      5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

      師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

      二、例題講解:

      例1:師:下列命題的條件是什么?結(jié)論是什么?

      1.如果兩個角相等,那么他們是對頂角;

      2.如果a>b,b>c,那么a=c;

      3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;

      4.菱形的四條邊都相等;

      5.全等三角形的面積相等。

      例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。

      2:有的`命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結(jié)論。

      例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

      師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

      教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

      三、思維拓展:

      拓展1.師:如何證實一個命題是真命題呢?請同學(xué)們分小組交流一下。

      教學(xué)建議:不急于解決學(xué)生怎么證實真命題的問題,可按以下程序設(shè)計教學(xué)過程

      (1)首先給學(xué)生介紹歐幾里得的《原本》

      (2)引出概念:公理、定理,證明

      (3)啟發(fā)學(xué)生,現(xiàn)在如何證實一個命題的正確性

      (4)給出本套教材所選用如下6個命題作為公理

      (5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

      拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

      建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

      練習(xí)書p197習(xí)題6.31

      四、問題式總結(jié)

      師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?

      建議:可對學(xué)生進行提示性引導(dǎo),如:命題的構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

      作業(yè):書p197習(xí)題6.32、3

      板書設(shè)計:

      定義與命題

      課時2

      條件

      1.命題的結(jié)構(gòu)特征

      結(jié)論

      1.假命題——可以舉反例

      2.命題真假的判別

      2.真命題——需要證明 學(xué)生活動一——

      探索命題的結(jié)構(gòu)特征

      學(xué)生觀察、分組討論,得出結(jié)論:

      (1)這五個命題都是用“如果……那么……”形式敘述的

      (2)這五個命題都是由已知得到結(jié)論

      (3)這五個命題都有條件和結(jié)論

      學(xué)生活動二——

      探索命題的條件和結(jié)論

      生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

      學(xué)生活動三

      探索命題的真假——如何判斷假命題

      生:可以舉一個例子,說明命題1是不正確的,如圖:

      已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

      生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

      生:由此說明:命題1、2是不正確的

      生:命題3、4、5是正確的

      學(xué)生活動四

      探索命題的真假——如何證實一個命題是真命題

      學(xué)生交流:

      生:用我們以前學(xué)過的觀察、實驗、驗證特例等方法

      生:這些方法往往并不可靠

      生:能夠根據(jù)已知道的真命題證實呢?

      生:那已經(jīng)知道的真命題又是如何證實的?

      生:那可怎么辦呢?

      生:可通過證明的方法

      學(xué)生分小組討論得出結(jié)論

      生:命題的結(jié)構(gòu)特征:條件和結(jié)論

      生:命題有真假之分

      生:可以通過舉反例的方法判斷假命題

      生:可通過證明的方法證實真命題

    八年級數(shù)學(xué)教案 篇5

      知識要點

      1、函數(shù)的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,

      相應(yīng)地就確定了一個y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。

      2、一次函數(shù)的概念:若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時,稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).

      3、正比例函數(shù)y=kx的性質(zhì)

      (1)、正比例函數(shù)y=kx的圖象都經(jīng)過

      原點(0,0),(1,k)兩點的一條直線;

      (2)、當(dāng)k0時,圖象都經(jīng)過一、三象限;

      當(dāng)k0時,圖象都經(jīng)過二、四象限

      (3)、當(dāng)k0時,y隨x的增大而增大;

      當(dāng)k0時,y隨x的增大而減小。

      4、一次函數(shù)y=kx+b的性質(zhì)

      (1)、經(jīng)過特殊點:與x軸的交點坐標(biāo)是 ,

      與y軸的交點坐標(biāo)是 .

      (2)、當(dāng)k0時,y隨x的增大而增大

      當(dāng)k0時,y隨x的增大而減小

      (3)、k值相同,圖象是互相平行

      (4)、b值相同,圖象相交于同一點(0,b)

      (5)、影響圖象的兩個因素是k和b

      ①k的正負決定直線的方向

      ②b的正負決定y軸交點在原點上方或下方

      5.五種類型一次函數(shù)解析式的確定

      確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。

      (1)、根據(jù)直線的解析式和圖像上一個點的坐標(biāo),確定函數(shù)的解析式

      例1、若函數(shù)y=3x+b經(jīng)過點(2,-6),求函數(shù)的解析式。

      解:把點(2,-6)代入y=3x+b,得

      -6=32+b 解得:b=-12

      函數(shù)的解析式為:y=3x-12

      (2)、根據(jù)直線經(jīng)過兩個點的坐標(biāo),確定函數(shù)的解析式

      例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點B(2,7),

      求函數(shù)的表達式。

      解:把點A(3,4)、點B(2,7)代入y=kx+b,得

      ,解得:

      函數(shù)的解析式為:y=-3x+13

      (3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式

      例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x

      (小時)之間的關(guān)系.求油箱里所剩油y(升)與行駛時間x

      (小時)之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。

      (4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式

      例4、如圖2,將直線 向上平移1個單位,得到一個一次

      函數(shù)的圖像,那么這個一次函數(shù)的解析式是 .

      解:直線 經(jīng)過點(0,0)、點(2,4),直線 向上平移1個單位

      后,這兩點變?yōu)?0,1)、(2,5),設(shè)這個一次函數(shù)的解析式為 y=kx+b,

      得 ,解得: ,函數(shù)的解析式為:y=2x+1

      (5)、根據(jù)直線的對稱性,確定函數(shù)的解析式

      例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對稱,求k、b的值。

      例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對稱,求k、b的值。

      例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點對稱,求k、b的值。

      經(jīng)典訓(xùn)練:

      訓(xùn)練1:

      1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。

      (1)梯形的面積y與上底的長x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?

      (2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。

      訓(xùn)練2:

      1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

      一次函數(shù)有___ __;正比例函數(shù)有____________(填序號).

      2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )

      A.k1 B.k-1 C.k1 D.k為任意實數(shù).

      3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.

      訓(xùn)練3:

      1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.

      2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )

      A.m0 B.m0 C.m0 D.m0

      3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點坐標(biāo)是____,與y軸的交點坐標(biāo)是____.

      4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點,則k=_____;

      若y隨x的增大而增大,則k__________.

      5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )

      訓(xùn)練4:

      1、 正比例函數(shù)的圖象經(jīng)過點A(-3,5),寫出這正比例函數(shù)的解析式.

      2、已知一次函數(shù)的圖象經(jīng)過點(2,1)和(-1,-3).求此一次函數(shù)的解析式 .

      3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。

      4、已知一次函數(shù)y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數(shù)的解析式。

      5、已知y-1與x成正比例,且 x=-2時,y=-4.

      (1)求出y與x之間的函數(shù)關(guān)系式;

      (2)當(dāng)x=3時,求y的值.

      一、填空題(每題2分,共26分)

      1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .

      2、若直線 和直線 的交點坐標(biāo)為 ,則 .

      3、一次函數(shù) 和 的圖象與 軸分別相交于 點和 點, 、 關(guān)于 軸對稱,則 .

      4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時 , 時, ,則當(dāng) 時, .

      5、函數(shù) ,如果 ,那么 的取值范圍是 .

      6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設(shè)長增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).

      7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .

      8、已知一次函數(shù) 和 的.圖象交點的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .

      9、已知一次函數(shù) 的圖象經(jīng)過點 ,且它與 軸的交點和直線 與 軸的交點關(guān)于 軸對稱,那么這個一次函數(shù)的解析式為 .

      10、一次函數(shù) 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .

      11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時, 是正比例函數(shù).

      12、 為 時,直線 與直線 的交點在 軸上.

      13、已知直線 與直線 的交點在第三象限內(nèi),則 的取值范圍是 .

      二、選擇題(每題3分,共36分)

      14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )

      15、若直線 與 的交點在 軸上,那么 等于( )

      A.4 B.-4 C. D.

      16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )

      17、直線 如圖5,則下列條件正確的是( )

      18、直線 經(jīng)過點 , ,則必有( )

      A.

      19、如果 , ,則直線 不通過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是

      A. B. C. D.都不對

      21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )

      圖6

      22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點B, ,則 的面積為( )

      A.4 B.5 C.6 D.7

      23、已知直線 與 軸的交點在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個數(shù)是( )

      A.1個 B.2個 C.3個 D.4個

      24、已知 ,那么 的圖象一定不經(jīng)過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設(shè)甲從P處出發(fā) 小時,距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )

      三、解答題(1~6題每題8分,7題10分,共58分)

      26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標(biāo)原點)的面積是10,若點A的橫坐標(biāo)是 ,求這個一次函數(shù)解析式.

      27、一次函數(shù) ,當(dāng) 時,函數(shù)圖象有何特征?請通過不同的取值得出結(jié)論?

      28、某油庫有一大型儲油罐,在開始的8分鐘內(nèi),只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進油管,只開出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.

      (1)試分別寫出這一段時間內(nèi)油的儲油量Q(噸)與進出油的時間t(分)的函數(shù)關(guān)系式.

      (2)在同一坐標(biāo)系中,畫出這三個函數(shù)的圖象.

      29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標(biāo)準(zhǔn)收費;超過部分按每度0.50元計費.

      (1)設(shè)用電 度時,應(yīng)交電費 元,當(dāng) 100和 100時,分別寫出 關(guān)于 的函數(shù)關(guān)系式.

      (2)小王家第一季度交納電費情況如下:

      月份 一月份 二月份 三月份 合計

      交費金額 76元 63元 45元6角 184元6角

      問小王家第一季度共用電多少度?

      30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時, =0.8.

      (1)求 與 之間的函數(shù)關(guān)系式;

      (2)若每度電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]

      31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?

      32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)

      路程/千米 運費(元/噸、千米)

      甲庫 乙?guī)?甲庫 乙?guī)?/p>

      A地 20 15 12 12

      B地 25 20 10 8

      (1)設(shè)甲庫運往A地水泥 噸,求總運費 (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫出它的圖象(草圖).

      (2)當(dāng)甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?

    八年級數(shù)學(xué)教案 篇6

      教學(xué)目標(biāo):

      1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣;

      2。索并掌握平行四邊形的性質(zhì),并能簡單應(yīng)用;

      3。在探索活動過程中發(fā)展學(xué)生的探究意識。

      教學(xué)重點:平行四邊形性質(zhì)的探索。

      教學(xué)難點:平行四邊形性質(zhì)的理解。

      教學(xué)準(zhǔn)備:多媒體課件

      教學(xué)過程

      第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學(xué)生進一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

      1。小組活動一

      內(nèi)容:

      問題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

      (1)你拼出了怎樣的四邊形?與同桌交流一下;

      (2)給出小明拼出的四邊形,它們的對邊有怎樣的.位置關(guān)系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

      2。小組活動二

      內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

      第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動手、動嘴,全班交流)

      小組活動3:

      用 一張半透明的紙復(fù)制你剛才畫的平行四邊形,并將復(fù)制 后的四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關(guān)系?能用別的方法驗證你的結(jié)論嗎?

      (1)讓學(xué)生動手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;

      (2)學(xué)生交流、議論;

      (3)教師利用多媒體展示實踐的過程。

      第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)

      實踐 探索內(nèi)容

      (1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

      (2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。

      ∵ 四邊形ABCD是平行四邊形

      AD // BC, AB // CD

      2,4

      △AB C和△CDA中

      1

      AC=C A

      4

      △ABC≌△CDA(ASA)

      AB=DC, AD=CB,B

      又∵2

      4

      3=4

      即BAD=DCB

      第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過議一議,練一練,學(xué)生進一步理解平行四邊形的性質(zhì),并進行簡單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識平行四邊形的本質(zhì)特征。)

      1。活動內(nèi)容:

      (1)議一議:如果已知平行四邊形的一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?

      A(學(xué)生思考、議論)

      B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。

      由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。

      (2)練一練(P99隨堂練習(xí))

      練1 如圖:四邊形ABCD是平行四邊形。

      (1)求ADC、BCD度數(shù)

      (2)邊AB、BC的度數(shù)、長度。

      練2 四邊形ABCD是平行四邊形

      (1)它的四條邊中哪些 線段可以通過平移相到得到?

      (2)設(shè)對角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。

      歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。

      第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)

      活動內(nèi)容

      師生相互交流、反思、總結(jié)。

      (1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

      (2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

      (3)本節(jié)學(xué)習(xí)到了什么?(知識上、方法上)

      考一考:

      1。 ABCD中,B=60,則A= ,C= ,D= 。

      2。 ABCD中,A比B大20,則C= 。

      3。 ABCD中,AB=3,BC=5,則AD= CD= 。

      4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

      布置作業(yè)

      課本習(xí)題4。1

      A組(學(xué)優(yōu)生)1 、2

      B組(中等生)1、2

      C組(后三分之一生)1、2

      教學(xué)反思

    八年級數(shù)學(xué)教案 篇7

      一、素質(zhì)教育目標(biāo)

      (一)知識教學(xué)點

      1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.

      2.使學(xué)生理解判定定理與性質(zhì)定理的`區(qū)別與聯(lián)系.

      3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.

      (二)能力訓(xùn)練點

      1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.

      2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的能力.

      (三)德育滲透點

      通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.

      (四)美育滲透點

      通過學(xué)習(xí),體會幾何證明的方法美.

      二、學(xué)法引導(dǎo)

      構(gòu)造逆命題,分析探索證明,啟發(fā)講解.

      三、重點·難點·疑點及解決辦法

      1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用.

      2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理.

      3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理

      (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).

    八年級數(shù)學(xué)教案 篇8

      教學(xué)建議

      1、平行線等分線段定理

      定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

      注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

      定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

      2、平行線等分線段定理的推論

      推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

      推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

      記憶方法:“中點”+“平行”得“中點”。

      推論的用途:(1)平分已知線段;(2)證明線段的倍分。

      重難點分析

      本節(jié)的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

      本節(jié)的難點也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學(xué)生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

      教法建議

      平行線等分線段定理的引入

      生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

      ①從生活實例引入,如刻度尺、作業(yè)本、柵欄、等等;

      ②可用問題式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進行思考、研究,然后給出平行線等分線段定理和推論。

      教學(xué)設(shè)計示例

      一、教學(xué)目標(biāo)

      1、使學(xué)生掌握平行線等分線段定理及推論。

      2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養(yǎng)學(xué)生的作圖能力。

      3、通過定理的變式圖形,進一步提高學(xué)生分析問題和解決問題的能力。

      4、通過本節(jié)學(xué)習(xí),體會圖形語言和符號語言的和諧美

      二、教法設(shè)計

      學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

      三、重點、難點

      1、教學(xué)重點:平行線等分線段定理

      2、教學(xué)難點:平行線等分線段定理

      四、課時安排

      l課時

      五、教具學(xué)具

      計算機、投影儀、膠片、常用畫圖工具

      六、師生互動活動設(shè)計

      教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

      七、教學(xué)步驟

      【復(fù)習(xí)提問】

      1、什么叫平行線?平行線有什么性質(zhì)。

      2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

      【引入新課】

      由學(xué)生動手做一實驗:每個同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

      (引導(dǎo)學(xué)生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)

      平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

      注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的`特殊平行線組,這一點必須使學(xué)生明確。

      下面我們以三條平行線為例來證明這個定理(由學(xué)生口述已知,求證)。

      已知:如圖,直線 , 。

      求證: 。

      分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。

      (引導(dǎo)學(xué)生找出另一種證法)

      分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

      證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

      ∴

      ∵ ,

      ∴

      又∵ , ,

      ∴

      ∴

      為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認(rèn)識幾種定理的變式圖形,如圖(用計算機動態(tài)演示)。

      引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

      推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

      再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

      推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。

      注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

      接下來講如何利用平行線等分線段定理來任意等分一條線段。

      例 已知:如圖,線段 。

      求作:線段 的五等分點。

      作法:①作射線 。

      ②在射線 上以任意長順次截取 。

      ③連結(jié) 。

      ④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

      、 、 、 就是所求的五等分點。

      (說明略,由學(xué)生口述即可)

      【總結(jié)、擴展】

      小結(jié):

      (l)平行線等分線段定理及推論。

      (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

      (3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

      (4)應(yīng)用定理任意等分一條線段。

      八、布置作業(yè)

      教材P188中A組2、9

      九、板書設(shè)計

      十、隨堂練習(xí)

      教材P182中1、2

    【八年級數(shù)學(xué)教案】相關(guān)文章:

    八年級的數(shù)學(xué)教案12-14

    八年級數(shù)學(xué)教案06-18

    【熱】八年級數(shù)學(xué)教案12-07

    八年級的數(shù)學(xué)教案15篇12-14

    八年級數(shù)學(xué)教案【推薦】12-04

    八年級數(shù)學(xué)教案【薦】12-06

    【精】八年級數(shù)學(xué)教案12-04

    八年級數(shù)學(xué)教案【精】12-04

    【熱門】八年級數(shù)學(xué)教案11-29

    【推薦】八年級數(shù)學(xué)教案12-05

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      欧美亚洲国产日韩一二三区 | 中文成人免费久久久 | 婷婷丁香五月天永久在线 | 日本中文字幕在线观看全 | 最新国产·精品更多 | 日韩欧美高清中文字幕免费一区二区 |