八年級數學教案集錦6篇
作為一位不辭辛勞的人民教師,總不可避免地需要編寫教案,教案是保證教學取得成功、提高教學質量的基本條件。那么大家知道正規的教案是怎么寫的嗎?以下是小編整理的八年級數學教案6篇,歡迎閱讀,希望大家能夠喜歡。
八年級數學教案 篇1
一、教學目標
1.靈活應用勾股定理及逆定理解決實際問題.
2.進一步加深性質定理與判定定理之間關系的認識.
二、重點、難點
1.重點:靈活應用勾股定理及逆定理解決實際問題.
2.難點:靈活應用勾股定理及逆定理解決實際問題.
3.難點的突破方法:
三、課堂引入
創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.
四、例習題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的`逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設未知數列方程,求出三角形的三邊長5、12、13;
⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識.
八年級數學教案 篇2
教學內容和地位:
眾數、中位數是描述一組數據的集中趨勢的兩個統計特征量,是幫助學生學會用數據說話的基本概念。本節課的教學內容和現實生活密切相關,是培養學生應用數學意識和創新能力的最好素材。
教學重點和難點:
本節課的重點是眾數和中位數兩概念的形成過程及兩概念的運用。本節課的難點是對統計數據從多角度進行全面地分析。因為利用數據進行分析,對剛剛接觸統計的學生來說,他們原有的認知結構中缺乏這方面的知識經驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。
教學目標分析:
認知目標:
(1)使學生認知眾數、中位數的意義;
(2)會求一組數據的眾數、中位數。
能力目標:
(1)讓學生接觸并解決一些社會生活中的'問題,為學生創新學數學、用數學的情境,培養學生的數學應用意識和創新意識。
(2)在問題解決的過程中,培養學生的自主學習能力;
(3)在問題分析的過程中,培養學生的團結協作精神。
情感目標:
(1)通過多媒體網絡課件,提供適當的問題情境,激發學生的學習熱情,培養學生學習數學的興趣;
(2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。
教學輔助:網絡教室、多媒體輔助網絡教學課件、BBS電子公告欄、學習資源庫
教法與學法:
根據本節課的教學內容,主要采用了討論發現法。即課堂上,教師(或學生)提出適當的問題,通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的過程中發現概念的產生過程,體現“數學教學是數學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現他們的主體地位,而教師是通過對學生參與學習的啟發、調整、激勵來體現自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結合”、“學思結合”、“學用結合”的學法指導,這對學生的主體意識的培養和創新能力的培養都有積極的意義。
八年級數學教案 篇3
教學目標:
1.知道負整數指數冪=(a≠0,n是正整數).
2.掌握整數指數冪的運算性質.
3.會用科學計數法表示小于1的數.
教學重點:
掌握整數指數冪的運算性質.
難點:
會用科學計數法表示小于1的數.
情感態度與價值觀:
通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.
教學過程:
一、課堂引入
1.回憶正整數指數冪的運算性質: (1)同底數的冪的.乘法:am?an = am+n (m,n是正整數); (2)冪的乘方:(am)n = amn (m,n是正整數); (3)積的乘方:(ab)n = anbn (n是正整數); (4)同底數的冪的除法:am÷an = am?n ( a≠0,m,n是正整數,m>n); (5)商的乘方:()n = (n是正整數);
2.回憶0指數冪的規定,即當a≠0時,a0 = 1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、總結: 一般地,數學中規定: 當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數) 教師啟發學生由特殊情形入手,來看這條性質是否成立. 事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n (m,n是整數)這條性質也是成立的.
三、科學記數法: 我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數. 啟發學生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發現其中的規律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1.
八年級數學教案 篇4
教學目標:
1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。
2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。
3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數據的算術平均數。
教學重點:體會平均數、中位數、眾數在具體情境中的意義和應用。
教學難點:對于平均數、中位數、眾數在不同情境中的應用。
教學方法:歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數、中位數、眾數的概念及舉例。
一般地對于n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。
如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。
中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。
眾數就是一組數據中出現次數最多的那個數據。
如3,2,3,5,3,4中3是眾數。
2、平均數、中位數和眾數的特征:
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。
3、算術平均數和加權平均數有什么區別和聯系:
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4、利用計算器求一組數據的平均數。
利用科學計算器求平均數的方法計算平均數。
二、例題講解:
例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的`月銷售定額,統計了這15人某月的銷售量如下:
每人銷售件數 1800 510 250 210 150 120
人數 113532
(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;
(2)假設銷售部負責人把每位營銷員的月銷售額定為平均數,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。
例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?
三、課堂練習:復習題A組
四、小結:
1、掌握平均數、中位數與眾數的概念及計算。
2、理解算術平均數與加權平均數的聯系與區別。
五、作業:復習題B組、C組(選做)
八年級數學教案 篇5
教學目標:
學會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。
教學重點:
去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、
教學難點:
解分式方程的.一般步驟。
教學過程:
復習引入:
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程
3、解方程(學生板演)
講授新課:
1、由上述學生的板演歸納出解分式方程的一般步驟
(1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;
(2)解這個整式方程;
(3)檢驗:將所得的解代入原方程的最簡公分母,若最簡公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、
2、范例講解
(學生嘗試練習后,教師講評)
例1:解方程例2:解方程例3:解方程講評時強調:
1、怎樣確定最簡公分母?(先將各分母因式分解)
2、解分式方程的步驟、
鞏固練習:P1471t,2t、
課堂小結:解分式方程的一般步驟
布置作業:見作業本。
八年級數學教案 篇6
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?
通過討論得到矩形的判定方法.
矩形判定方法1:對角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個角是直角的四邊形是矩形.
(指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內角和可知,這時第四個角一定是直角.)
二、例習題分析
例1(補充)下列各句判定矩形的說法是否正確?為什么?
(1)有一個角是直角的四邊形是矩形;(×)
(2)有四個角是直角的四邊形是矩形;(√)
(3)四個角都相等的四邊形是矩形;(√)
(4)對角線相等的四邊形是矩形;(×)
(5)對角線相等且互相垂直的四邊形是矩形;(×)
(6)對角線互相平分且相等的四邊形是矩形;(√)
(7)對角線相等,且有一個角是直角的四邊形是矩形;(×)
(8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)
(9)兩組對邊分別平行,且對角線相等的.四邊形是矩形.(√)
指出:
(l)所給四邊形添加的條件不滿足三個的肯定不是矩形;
(2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.
例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.
分析:首先根據△AOB是等邊三角形及平行四邊形對角線互相平分的性質判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補充)已知:如圖(1),ABCD的四個內角的平分線分別相交于點E,F,G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明
【八年級數學教案】相關文章:
八年級的數學教案12-14
八年級數學教案06-18
【熱】八年級數學教案12-07
八年級的數學教案15篇12-14
【推薦】八年級數學教案12-05
【薦】八年級數學教案12-03
八年級數學教案【薦】12-06
八年級數學教案【熱門】12-03
八年級數學教案【推薦】12-04
【精】八年級數學教案12-04