1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-09-11 10:36:28 八年級數學教案 我要投稿

    關于八年級數學教案范文錦集8篇

      作為一名人民教師,就不得不需要編寫教案,教案有助于順利而有效地開展教學活動。那么寫教案需要注意哪些問題呢?下面是小編整理的八年級數學教案8篇,僅供參考,歡迎大家閱讀。

    關于八年級數學教案范文錦集8篇

    八年級數學教案 篇1

      第一步:情景創設

      乒乓球的標準直徑為40mm,質檢部門從A、B兩廠生產的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結果如下(單位:mm):

      A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

      B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

      你認為哪廠生產的乒乓球的直徑與標準的誤差更小呢?

      (1)請你算一算它們的平均數和極差。

      (2)是否由此就斷定兩廠生產的乒乓球直徑同樣標準?

      今天我們一起來探索這個問題。

      探索活動

      通過計算發現極差只能反映一組數據中兩個極值之間的大小情況,而對其他數據的波動情況不敏感。讓我們一起來做下列的數學活動

      算一算

      把所有差相加,把所有差取絕對值相加,把這些差的平方相加。

      想一想

      你認為哪種方法更能明顯反映數據的波動情況?

      第二步:講授新知:

      (一)方差

      定義:設有n個數據,各數據與它們的平均數的差的平方分別是,…,我們用它們的平均數,即用

      來衡量這組數據的波動大小,并把它叫做這組數據的方差(variance),記作。

      意義:用來衡量一批數據的波動大小

      在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩定

      歸納:(1)研究離散程度可用(2)方差應用更廣泛衡量一組數據的波動大小

      (3)方差主要應用在平均數相等或接近時

      (4)方差大波動大,方差小波動小,一般選波動小的

      方差的簡便公式:

      推導:以3個數為例

      (二)標準差:

      方差的算術平方根,即④

      并把它叫做這組數據的標準差.它也是一個用來衡量一組數據的波動大小的重要的量.

      注意:波動大小指的`是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。

    八年級數學教案 篇2

      一、學生起點分析

      學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

      反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

      可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

      二、學習任務分析

      本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

      并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

      ● 知識與技能目標

      1.理解勾股定理逆定理的具體內容及勾股數的概念;

      2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

      ● 過程與方法目標

      1.經歷一般規律的探索過程,發展學生的抽象思維能力;

      2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

      ● 情感與態度目標

      1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

      2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

      教學重點

      理解勾股定理逆定理的具體內容。

      三、教法學法

      1.教學方法:實驗猜想歸納論證

      本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

      但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

      (1)從創設問題情景入手,通過知識再現,孕育教學過程;

      (2)從學生活動出發,通過以舊引新,順勢教學過程;

      (3)利用探索,研究手段,通過思維深入,領悟教學過程。

      2.課前準備

      教具:教材、電腦、多媒體課件。

      學具:教材、筆記本、課堂練習本、文具。

      四、教學過程設計

      本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

      登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

      第一環節:情境引入

      內容:

      情境:1.直角三角形中,三邊長度之間滿足什么樣的`關系?

      2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

      意圖:

      通過情境的創設引入新課,激發學生探究熱情。

      效果:

      從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

      第二環節:合作探究

      內容1:探究

      下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

      1.這三組數都滿足 嗎?

      2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

      意圖:

      通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      效果:

      經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

      從上面的分組實驗很容易得出如下結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      內容2:說理

      提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

      意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      滿足 的三個正整數,稱為勾股數。

      注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

      活動3:反思總結

      提問:

      1.同學們還能找出哪些勾股數呢?

      2.今天的結論與前面學習勾股定理有哪些異同呢?

      3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

      4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

      意圖:進一步讓學生認識該定理與勾股定理之間的關系

      第三環節:小試牛刀

      內容:

      1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

      ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

      解答:①②

      2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

      A 250 B 150 C 200 D 不能確定

      解答:B

      3.如圖1:在 中, 于 , ,則 是( )

      A 等腰三角形 B 銳角三角形

      C 直角三角形 D 鈍角三角形

      解答:C

      4.將直角三角形的三邊擴大相同的倍數后, (圖1)

      得到的三角形是( )

      A 直角三角形 B 銳角三角形

      C 鈍角三角形 D 不能確定

      解答:A

      意圖:

      通過練習,加強對勾股定理及勾股定理逆定理認識及應用

      效果

      每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

      第四環節:登高望遠

      內容:

      1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

      解答:符合要求 , 又 ,

      2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

      解答:由題意畫出相應的圖形

      AB=240海里,BC=70海里,,AC=250海里;在△ABC中

      =(250+240)(250-240)

      =4900= = 即 △ABC是Rt△

      答:船轉彎后,是沿正西方向航行的。

      意圖:

      利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

      效果:

      學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

      第五環節:鞏固提高

      內容:

      1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

      解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

      2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

      圖4 圖5

      解答:④⑤是直角三角形,①②③⑥不是直角三角形

      意圖:

      第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

      效果:

      學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

      第六環節:交流小結

      內容:

      師生相互交流總結出:

      1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

      2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

      意圖:

      鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

      效果:

      學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

      第七環節:布置作業

      課本習題1.4第1,2,4題。

      五、教學反思:

      1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

      2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

      4.注重對學習新知理解應用偏困難的學生的進一步關注。

      5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

      由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

      附:板書設計

      能得到直角三角形嗎

      情景引入 小試牛刀: 登高望遠

    八年級數學教案 篇3

      課題:一元二次方程實數根錯例剖析課

      【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

      【課前練習】

      1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

      2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

      【典型例題】

      例1 下列方程中兩實數根之和為2的方程是()

      (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

      錯答: B

      正解: C

      錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

      例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

      (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

      錯解 :B

      正解:D

      錯因剖析:漏掉了方程有實數根的前提是△≥0

      例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

      錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

      錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

      正解: -1≤k<2且k≠

      例4 (20xx山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

      錯解:由根與系數的關系得

      x1+x2= -(2m+1), x1x2=m2+1,

      ∵x12+x22=(x1+x2)2-2 x1x2

      =[-(2m+1)]2-2(m2+1)

      =2 m2+4 m-1

      又∵ x12+x22=15

      ∴ 2 m2+4 m-1=15

      ∴ m1 = -4 m2 = 2

      錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

      正解:m = 2

      例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

      錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

      ∵ △≥0

      ∴ 16 m+20≥0,

      ∴ m≥ -5/4

      又 ∵ m2-1≠0,

      ∴ m≠±1

      ∴ m的取值范圍是m≠±1且m≥ -

      錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

      正解:m的取值范圍是m≥-

      例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的'整數根。

      錯解:∵方程有整數根,

      ∴△=9-4a>0,則a<2.25

      又∵a是非負數,∴a=1或a=2

      令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

      ∴方程的整數根是x1= -1, x2= -2

      錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

      正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

      【練習】

      練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

      (1)求k的取值范圍;

      (2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

      解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

      ∴當k< 時,方程有兩個不相等的實數根。

      (2)存在。

      如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

      ∴當k= 時,方程的兩實數根x1、x2互為相反數。

      讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

      解:上面解法錯在如下兩個方面:

      (1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

      (2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

      練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

      解:(1)當a=0時,方程為4x-1=0,∴x=

      (2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

      ∴當a≥ -4且a≠0時,方程有實數根。

      又因為方程只有正實數根,設為x1,x2,則:

      x1+x2=- >0 ;

      x1. x2=- >0 解得 :a<0

      綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

      【小結】

      以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

      1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

      2、運用根與系數關系時,△≥0是前提條件。

      3、條件多面時(如例5、例6)考慮要周全。

      【布置作業】

      1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

      2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

      求證:關于x的方程

      (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

      考題匯編

      1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

      2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0

      (1)若方程的一個根為1,求m的值。

      (2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

      3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

      4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

    八年級數學教案 篇4

      知識目標:理解函數的概念,能準確識別出函數關系中的自變量和函數

      能力目標:會用變化的量描述事物

      情感目標:回用運動的觀點觀察事物,分析事物

      重點:函數的概念

      難點:函數的概念

      教學媒體:多媒體電腦,計算器

      教學說明:注意區分函數與非函數的關系,學會確定自變量的取值范圍

      教學設計:

      引入:

      信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的嗎?

      新課:

      問題:(1)如圖是某日的氣溫變化圖。

      ① 這張圖告訴我們哪些信息?

      ② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規律的?

      (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

      ① 這表告訴我們哪些信息?

      ② 這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

      一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的`每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

      范例:例1 判斷下列變量之間是不是函數關系:

      (5) 長方形的寬一定時,其長與面積;

      (6) 等腰三角形的底邊長與面積;

      (7) 某人的年齡與身高;

      活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發現變量和函數的關系

      思考:自變量是否可以任意取值

      例2 一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

      (1) 寫出表示y與x的函數關系式.

      (2) 指出自變量x的取值范圍.

      (3) 汽車行駛200km時,油箱中還有多少汽油?

      解:(1)y=50-0.1x

      (2)0500

      (3)x=200,y=30

      活動2:練習教材9頁練習

      小結:(1)函數概念

      (2)自變量,函數值

      (3)自變量的取值范圍確定

      作業:18頁:2,3,4題

    八年級數學教案 篇5

      一、教學目標

      1.靈活應用勾股定理及逆定理解決實際問題.

      2.進一步加深性質定理與判定定理之間關系的認識.

      二、重點、難點

      1.重點:靈活應用勾股定理及逆定理解決實際問題.

      2.難點:靈活應用勾股定理及逆定理解決實際問題.

      3.難點的突破方法:

      三、課堂引入

      創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.

      四、例習題分析

      例1(P83例2)

      分析:⑴了解方位角,及方位名詞;

      ⑵依題意畫出圖形;

      ⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

      ⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

      ⑸∠PRS=∠QPR—∠QPS=45°.

      小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識.

      例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的.長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

      分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

      ⑵設未知數列方程,求出三角形的三邊長5、12、13;

      ⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

      解略.

      本題幫助培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識.

    八年級數學教案 篇6

      教學任務分析

      教學目標

      知識技能

      探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.

      數學思考

      能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養學生的分析問題能力和計算能力.

      解決問題

      通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.

      情感態度

      在應用等腰梯形的性質的過程養成獨立思考的習慣, 在數學學習活動中獲得成功的體驗.

      重點

      等腰梯形的性質及其應用.

      難點

      解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

      教學流程安排

      活動流程圖

      活動的內容和目的

      活動1想一想

      活動2說一說

      活動3畫一畫

      活動4做—做

      活動5練一練

      活動6理一理

      觀察梯形圖片,引入本節課的學習內容.

      了解梯形定義、各部分名稱及分類.

      通過畫圖活動,初步發現梯形與三角形的轉化關系.

      探究得到等腰梯形的性質.

      通過解決具體問題,尋找解決梯形問題的方法.

      通過整理回顧,鞏固知識、提高能力、滲透思想.

      教學過程設計

      問題與情景

      師生行為

      設計意圖

      [活動1]

      觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

      演示圖片,學生欣賞.

      結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

      由現實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養學生的觀察、概括能力.

      [活動2]

      梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

      學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區別和聯系.

      通過類比,培養學生歸納、總結的能力.

      問題與情景

      師生行為

      設計意圖

      一些基本概念

      (1)(如圖):底、腰、高.

      (2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

      (3)直角梯形:有一個角是直角的梯形叫做直角梯形.

      學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發言后, 教師可以強調:①梯形與四邊形的關系;

      ②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.

      熟悉圖形,明確概念,為探究圖形性質做準備.

      [活動3]

      畫一畫

      在下列所給圖中的每個三角形中畫一條線段,

      (1)怎樣畫才能得到一個梯形?

      (2)在哪些三角形中,能夠得到一個等腰梯形?

      在學生獨立探究的基礎上,學生分組交流.

      教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

      本次活動教師應重點關注:

      (1)學生在活動過程中能否發現梯形與三角形之間的聯系,他們之間的轉化方法.

      (2)學生能否將等腰三角形轉化為等腰梯形.

      (3)學生能否主動參與探究活動,在討論中發表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.

      等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.

      問題與情景

      師生行為

      設計意圖

      [活動4]

      做—做

      探索等腰梯形的性質(引入用軸對稱解決問題的思想).

      在一張方格紙上作一個等腰梯形,連接兩條對角線.

      (1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發現哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;

      (2)這個等腰梯形的兩條對角線的長度有什么關系?

      學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.

      針對不同認識水平的學生,教師指導學生活動.

      師生共同歸納:

      ①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.

      ②等腰梯形兩腰相等.

      ③等腰梯形同一底上的兩個角相等.

      ④等腰梯形的.兩條對角線相等.

      教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現,可以借此機會,給學生介紹這兩種輔助線的添加方法.

      [活動5]

      練—練

      例1 (教材P118的例1)略.

      例2 如圖,梯形ABCD中,AD∥BC,

      ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

      求CD的長.

      師生共同分析,尋找解決問題的方法和策略.

      例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

      分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

      其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

      解:(略)

      通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.

      問題與情景

      師生行為

      設計意圖

      例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

      BE⊥AC于E.

      求證:BE=CD.

      分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

      證明(略)

      例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

      [活動6]

      1.小結

      2.布置作業

      (1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

      (2)已知:如圖,

      梯形ABCD中,CD//AB,,.

      求證:AD=AB—DC.

      (3)已知,如圖,

      梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)

      師生歸納總結:

      解決梯形問題常用的方法:

      (1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

      (2)“作高”:使兩腰在兩個直角三角形中(圖2);

      (3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);

      (4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

      (5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).

      盡量多地讓學生參與發言是一個交流的過程.

      梳理本節課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續探究的空間.

      學生通過獨立思考,完成課后作業,便于發現問題,及時查漏補缺.

    八年級數學教案 篇7

      一、知識與技能

      1.從現實情境和已有的知識、經驗出發、討論兩個變量之間的相依關系,加深對函數、函數概念的理解.

      2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念.

      二、過程與方法

      1、經歷對兩個變量之間相依關系的討論,培養學生的辨別唯物主義觀點.

      2、經歷抽象反比例函數概念的過程,發展學生的抽象思維能力,提高數學化意識.

      三、情感態度與價值觀

      1、經歷抽象反比例函數概念的過程,體會數學學習的重要性,提高學生的學習數學的興趣.

      2、通過分組討論,培養學生合作交流意識和探索精神.

      教學重點:理解和領會反比例函數的概念.

      教學難點:領悟反比例的概念.

      教學過程

      一、創設情境,導入新課

      活動1

      問題:下列問題中,變量間的對應關系可用怎樣的函數關系式表示?這些函數有什么共同特點?

      (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

      (2)某住宅小區要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

      (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

      師生行為:

      先讓學生進行小組合作交流,再進行全班性的問答或交流.學生用自己的語言說明兩個變量間的關系為什么可以看著函數,了解所討論的函數的表達形式.

      教師組織學生討論,提問學生,師生互動.

      在此活動中老師應重點關注學生:

      ①能否積極主動地合作交流.

      ②能否用語言說明兩個變量間的關系.

      ③能否了解所討論的函數表達形式,形成反比例函數概念的具體形象.

      分析及解答:(1)

      ;(2)

      ;(3)

      其中v是自變量,t是v的函數;x是自變量,y是x的.函數;n是自變量,s是n的函數;

      上面的函數關系式,都具有

      的形式,其中k是常數.

      二、聯系生活,豐富聯想

      活動2

      下列問題中,變量間的對應關系可用這樣的函數式表示?

      (1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;

      (2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;

      (3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.

      師生行為

      學生先獨立思考,在進行全班交流.

      教師操作課件,提出問題,關注學生思考的過程,在此活動中,教師應重點關注學生:

      (1)能否從現實情境中抽象出兩個變量的函數關系;

      (2)能否積極主動地參與小組活動;

      (3)能否比較深刻地領會函數、反比例函數的概念.

      分析及解答:(1)

      ;(2)

      ;(3)

      概念:如果兩個變量x,y之間的關系可以表示成

      的形式,那么y是x的反比例函數,反比例函數的自變量x不能為零.

      活動3

      做一做:

      一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數嗎?是反比例函數嗎?為什么?

      師生行為:

      學生先進行獨立思考,再進行全班交流.教師提出問題,關注學生思考.此活動中教師應重點關注:

      ①生能否理解反比例函數的意義,理解反比例函數的概念;

      ②學生能否順利抽象反比例函數的模型;

      ③學生能否積極主動地合作、交流;

      活動4

      問題1:下列哪個等式中的y是x的反比例函數?

      問題2:已知y是x的反比例函數,當x=2時,y=6

      (1)寫出y與x的函數關系式:

      (2)求當x=4時,y的值.

      師生行為:

      學生獨立思考,然后小組合作交流.教師巡視,查看學生完成的情況,并給予及時引導.在此活動中教師應重點關注:

      ①學生能否領會反比例函數的意義,理解反比例函數的概念;

      ②學生能否積極主動地參與小組活動.

      分析及解答:

      1、只有xy=123是反比例函數.

      2、分析:因為y是x的反比例函數,所以

      ,再把x=2和y=6代入上式就可求出常數k的值.

      解:(1)設

      ,因為x=2時,y=6,所以有

      解得k=12

      因此

      (2)把x=4代入

      ,得

      三、鞏固提高

      活動5

      1、已知y是x的反比例函數,并且當x=3時,y=8.

      (1)寫出y與x之間的函數關系式.

      (2)求y=2時x的值.

      2、y是x的反比例函數,下表給出了x與y的一些值:

      (1)寫出這個反比例函數的表達式;

      (2)根據函數表達式完成上表.

      學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關注“學困生”.

      四、課時小結

      反比例函數概念形成的過程中,大家充分利用已有的生活經驗和背景知識,注意挖掘問題中變量的相依關系及變化規律,逐步加深理解.在概念的形成過程中,從感性認識到理發認識一旦建立概念,即已擺脫其原型成為數學對象.反比例函數具有豐富的數學含義,通過舉例、說理、討論等活動,感知數學眼光,審視某些實際現象.

    八年級數學教案 篇8

      一、教學目標

      (一)、知識與技能:

      (1)使學生了解因式分解的意義,理解因式分解的概念。

      (2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

      (二)、過程與方法:

      (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。

      (2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。

      (3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。

      (三)、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。

      二、教學重點和難點

      重點:因式分解的概念及提公因式法。

      難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。

      三、教學過程

      教學環節:

      活動1:復習引入

      看誰算得快:用簡便方法計算:

      (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

      (2)-2.67×132+25×2.67+7×2.67= ;

      (3)992–1= 。

      設計意圖:

      如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的`難度,為下一環節的理解搭一個臺階.

      注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

      活動2:導入課題

      P165的探究(略);

      2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?

      設計意圖:

      引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。

      活動3:探究新知

      看誰算得準:

      計算下列式子:

      (1)3x(x-1)= ;

      (2)(a+b+c)= ;

      (3)(+4)(-4)= ;

      (4)(-3)2= ;

      (5)a(a+1)(a-1)= ;

      根據上面的算式填空:

      (1)a+b+c= ;

      (2)3x2-3x= ;

      (3)2-16= ;

      (4)a3-a= ;

      (5)2-6+9= 。

      在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。

      活動4:歸納、得出新知

      比較以下兩種運算的聯系與區別:

      a(a+1)(a-1)= a3-a

      a3-a= a(a+1)(a-1)

      在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級數學教案【薦】12-06

    【薦】八年級數學教案12-03

    八年級數學教案【推薦】12-04

    【推薦】八年級數學教案12-05

    八年級數學教案【熱門】12-03

    八年級的數學教案15篇12-14

    【熱】八年級數學教案12-07

    人教版八年級數學教案11-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产欧美另类在线 | 亚洲一区日韩一区欧美一区a | 青青青视频香蕉在线视频 | 婷婷综合缴情亚洲另类在线 | 日韩国产在线观看 | 亚洲综合日韩精品国产A∨ 嫩草研究所久久久精品 |