1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-09-08 03:54:46 八年級數學教案 我要投稿

    有關八年級數學教案模板匯編五篇

      在教學工作者實際的教學活動中,就有可能用到教案,編寫教案有利于我們科學、合理地支配課堂時間。那么問題來了,教案應該怎么寫?以下是小編整理的八年級數學教案5篇,僅供參考,歡迎大家閱讀。

    有關八年級數學教案模板匯編五篇

    八年級數學教案 篇1

      教學指導思想與理論依據

      《基礎教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術在教學過程中的普遍應用,促進信息技術與學科課程的整合,逐步實現教學內容的呈現方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發揮信息技術的優勢,為學生的學習和發展提供豐富多彩的教育環境和有力的學習工具! 教師運用現代多媒體信息技術對教學活動進行創造性設計,發揮計算機輔助教學的特有功能,把信息技術和數學教學的學科特點結合起來,可以使教學的表現形式更加形象化、多樣化、視覺化,有利于充分揭示數學概念的形成與發展,數學思維的過程和實質,展示數學思維的形成過程,使數學課堂教學收到事半功倍的效果。

      教學內容分析:

      本節課內容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎上進行的,在知識結構上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質。運用多媒體教學體現出直觀、課容量大、容易接受的特點,為進一步的理論證明及應用起著提供數據和宏觀指導作用,使學生學習本章具體內容時知道身在何處,使知識體系更加系統。本節課內容是四邊形這章的理論基礎,在該章占有非常重要的.地位。

      學生情況分析:

      本班經歷了一年多課改實踐,學生對運用現代多媒體信息技術的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發現、歸納、經歷數學知識于實踐的過程。

      教學方式與教學手段說明:

      本節課充分利用現有的先進教學設備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經驗出發,讓學生親身經歷數學知識的形成并進行解釋與應用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數據,并總結其性質,通過人機對話方式把靜態、抽象的幾何圖形變為動態、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創造者和參與者,教給學生自覺主動地探究新知識的方法,激發學生的思維,培養學生的科學精神和創新思維習慣,使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到發展。

      知識與技能:

      1、初步理解特殊四邊形性質;

      2、培養學生自主收集、描述和分析數據的能力;

      過程與方法:

      1、了解特殊四邊形性質的形成過程;

      2、初步了解探究新知識的一些方法;

      情感與價值觀:

      1、了解特殊四邊形在日常生活中的應用;

      2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;

      3、初步具有感性認識上升到理性認識的辯證唯物主義思想。

      教學環境:

      多媒體計算機網絡教室

      教學課型:

      試驗探究式

      教學重點:

      特殊四邊形性質

      教學難點:

      特殊四邊形性質的發現

      一、設置情景,提出問題

      提出問題:

      知識已生活,又服務于生活。我們經過校門時,是否注意到電動門的機械工作原理(教師用幾何畫板演示)?

      1、電動門的網格和結點能組成哪些四邊形?

      2、在開(關)門過程中這些四邊形是如何變化的?

      3、你還發現了什么?

      解決問題:

      學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

      當我們學習完本節知識后,其他問題就容易解決了。

     。ㄒ鈭D:用《幾何畫板》的動態演示生活事例,充分展示了數學的美妙,可以使學生容易進入情境和保持積極學習狀態,激起學生探究解決問題的求知欲望。)

      二、整體了解,形成系統

      本節課從整體角度研究特殊四邊形性質,為今后的個體研究打下良好的基礎。我們先研究四邊形中的特殊與一般的關系。

      提出問題:

      1、本章主要研究哪些特殊四邊形?

      2、從哪幾方面研究這些特殊四邊形?

      3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設有是什么圖形呢?如果沒有,為什么?

      解決問題:

      學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。

      1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形

      2、從邊、角、對角線、面積、周長、……等方面研究。本節課主要從邊、角、對角線三方面考慮;

      3、等腰梯形和直角梯形后面應該是矩形,但不符合梯形定義,所以沒有圖形。

     。ㄒ鈭D: 學生自主觀察、分組討論了解本章知識結構,從而形成系統;通過假設、猜想、推理、論證、否定假設獲得新知識)

      三、個體研究、總結性質

      1、平行四邊形性質

      提出問題:

      在平行四邊形的形狀、位置、大小變化過程中,請觀察數據并找出邊長、角度、對角線長度相對不變的性質。

      解決問題:

      教師引導學生拖動B點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數據的變化,從中找出相對不變的要素。

      在圖形變化過程中,

     。1)對邊相等;

      (2)對角相等;

      (3)通過AO=CO 、BO=DO,可得對角線互相平分;

     。4)通過鄰角互補,可得對邊平行;

     。5)內外角和都等于360度;

     。6)鄰角互補;

      ……

      指導學生填表:

      平行四邊形性質矩形性質正方形性質

      菱形性質

      梯形性質等腰梯形性質

      直角梯形性質

     。葘儆谄叫兴倪呅涡再|又屬于矩形性質可以畫箭頭)

      按照平行四邊形性質的探索思路,分別研究:

      2、矩形性質;

      3、菱形性質;

      4、正方形性質;

      5、梯形性質;

      6、等腰梯形性質;

      7、直角梯形的性質。

     。ㄒ鈭D: 學生運用電腦自主收集、描述、分析數據,把抽象的性質變為直觀化、形象化,培養獨立探究,自主自信,使學生體驗到科學探索的樂趣。)

      教師總結:

      (意圖: 掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質,又有自己的特點。既清楚地表達,又節省時間。)

      四、聯系生活,解決問題

      解決問題:

      學生操作電腦,觀察圖形、分組討論,教師個別指導。

      學生在分別演示開(關)門過程中,觀察數據并總結:邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。

      四邊形具有不穩定性,而三角形沒有這個特點……

      (意圖:使學生體會到數學于生活、又服務于生活,更重要的是培養學生應用知識解決實際問題的能力,體會成功后的喜悅。)

      五、小結

      1.研究問題從整體到局部的方法;

      2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質。

      六、作業

      1.平行四邊形內角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

      2.觀察實際生活中的電動門,在開(關)門過程中特殊四邊形的變化。

      學習效果評價

      針對教學內容、學生特點及設計方案,預計下列學習效果:

      利用多媒體信息技術圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數據并總結其性質,培養學生收集、描述和分析數據的能力,并達到初步理解特殊四邊形性質的目標。

      在問題引入、了解整體、測量個體、總結性質的過程中,符合事物的認識規律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。

      學生演示開(關)門過程中,了解特殊四邊形在日常生活中的應用,并用所學的知識解釋實際問題,使自身價值得以實現并體會成功后的喜悅;

      由于個體差異,針對教學目標難以達到的個別學生,根據教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現。

    八年級數學教案 篇2

      課題:一元二次方程實數根錯例剖析課

      【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

      【課前練習】

      1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

      2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

      【典型例題】

      例1 下列方程中兩實數根之和為2的方程是()

      (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

      錯答: B

      正解: C

      錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

      例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

      (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

      錯解 :B

      正解:D

      錯因剖析:漏掉了方程有實數根的前提是△≥0

      例3(20xx廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

      錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

      錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

      正解: -1≤k<2且k≠

      例4 (20xx山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

      錯解:由根與系數的關系得

      x1+x2= -(2m+1), x1x2=m2+1,

      ∵x12+x22=(x1+x2)2-2 x1x2

      =[-(2m+1)]2-2(m2+1)

      =2 m2+4 m-1

      又∵ x12+x22=15

      ∴ 2 m2+4 m-1=15

      ∴ m1 = -4 m2 = 2

      錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

      正解:m = 2

      例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

      錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

      ∵ △≥0

      ∴ 16 m+20≥0,

      ∴ m≥ -5/4

      又 ∵ m2-1≠0,

      ∴ m≠±1

      ∴ m的.取值范圍是m≠±1且m≥ -

      錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

      正解:m的取值范圍是m≥-

      例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

      錯解:∵方程有整數根,

      ∴△=9-4a>0,則a<2.25

      又∵a是非負數,∴a=1或a=2

      令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

      ∴方程的整數根是x1= -1, x2= -2

      錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

      正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

      【練習】

      練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

      (1)求k的取值范圍;

     。2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

      解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

      ∴當k< 時,方程有兩個不相等的實數根。

      (2)存在。

      如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

      ∴當k= 時,方程的兩實數根x1、x2互為相反數。

      讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

      解:上面解法錯在如下兩個方面:

     。1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

      (2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

      練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

      解:(1)當a=0時,方程為4x-1=0,∴x=

     。2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

      ∴當a≥ -4且a≠0時,方程有實數根。

      又因為方程只有正實數根,設為x1,x2,則:

      x1+x2=- >0 ;

      x1. x2=- >0 解得 :a<0

      綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

      【小結】

      以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

      1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

      2、運用根與系數關系時,△≥0是前提條件。

      3、條件多面時(如例5、例6)考慮要周全。

      【布置作業】

      1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

      2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

      求證:關于x的方程

      (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

      考題匯編

      1、(20xx年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

      2、(20xx年廣東省中考題)已知關于x的方程x2-2x+m-1=0

     。1)若方程的一個根為1,求m的值。

      (2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

      3、(20xx年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

      4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

    八年級數學教案 篇3

      1.展示生活中一些平行四邊形的實際應用圖片(推拉門,活動衣架,籬笆、井架等),想一想:這里面應用了平行四邊形的什么性質?

      2.思考:拿一個活動的平行四邊形教具,輕輕拉動一個點,觀察不管怎么拉,它還是一個平行四邊形嗎?為什么?(動畫演示拉動過程如圖)

      3.再次演示平行四邊形的移動過程,當移動到一個角是直角時停止,讓學生觀察這是什么圖形?(小學學過的長方形)引出本課題及矩形定義.

      矩形定義:有一個角是直角的平行四邊形叫做矩形(通常也叫長方形).

      矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

      【探究】在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上(作出對角線),拉動一對不相鄰的頂點,改變平行四邊形的形狀.

     、匐S著∠α的變化,兩條對角線的長度分別是怎樣變化的?

      ②當∠α是直角時,平行四邊形變成矩形,此時它的其他內角是什么樣的角?它的'兩條對角線的長度有什么關系?

      操作,思考、交流、歸納后得到矩形的性質.

      矩形性質1 矩形的四個角都是直角.

      矩形性質2 矩形的對角線相等.

      如圖,在矩形ABCD中,AC、BD相交于點O,由性質2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個性質:直角三角形斜邊上的中線等于斜邊的一半.

      例習題分析

      例1(教材P104例1)已知:如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=4cm,求矩形對角線的長.

      分析:因為矩形是特殊的平行四邊形,所以它具有對角線相等且互相平分的特殊性質,根據矩形的這個特性和已知,可得△OAB是等邊三角形,因此對角線的長度可求.

      解:∵ 四邊形ABCD是矩形,

      ∴ AC與BD相等且互相平分.

      ∴ OA=OB.

      又∠AOB=60°,

      ∴△OAB是等邊三角形.

      ∴矩形的對角線長AC=BD=2OA=2×4=8(cm).

      例2(補充)已知:如圖,矩形ABCD,AB長8cm,對角線比AD邊長4cm.求AD的長及點A到BD的距離AE的長.

      分析:(1)因為矩形四個角都是直角,因此矩形中的計算經常要用到直角三角形的性質,而此題利用方程的思想,解決直角三角形中的計算,這是幾何計算題中常用的方法

    八年級數學教案 篇4

      11.1 與三角形有關的線段

      11.1.1 三角形的邊

      1.理解三角形的概念,認識三角形的頂點、邊、角,會數三角形的個數.(重點)

      2.能利用三角形的三邊關系判斷三條線段能否構成三角形.(重點)

      3.三角形在實際生活中的應用.(難點)

      一、情境導入

      出示金字塔、戰機、大橋等圖片,讓學生感受生活中的三角形,體會生活中處處有數學.

      教師利用多媒體演示三角形的形成過程,讓學生觀察.

      問:你能不能給三角形下一個完整的定義?

      二、合作探究

      探究點一:三角形的概念

      圖中的銳角三角形有( )

      A.2個

      B.3個

      C.4個

      D.5個

      解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數有2+1=3(個).故選B.

      方法總結:數三角形的個數,可以按照數線段條數的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.

      探究點二:三角形的三邊關系

      【類型一】 判定三條線段能否組成三角形

      以下列各組線段為邊,能組成三角形的是( )

      A.2c,3c,5c

      B.5c,6c,10c

      C.1c,1c,3c

      D.3c,4c,9c

      解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.

      方法總結:判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

      【類型二】 判斷三角形邊的取值范圍

      一個三角形的三邊長分別為4,7,x,那么x的取值范圍是( )

      A.3<x<11 B.4<x<7

      C.-3<x<11 D.x>3

      解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

      方法總結:判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結合不等式的知識進行解決.

      【類型三】 等腰三角形的三邊關系

      已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.

      解析:先根據等腰三角形兩腰相等的性質可得出第三邊長的兩種情況,再根據兩邊和大于第三邊來判斷能否構成三角形,從而求解.

      解:根據題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構成三角形,應舍去;4+9>9,故4,9,9能構成三角形,∴它的周長是4+9+9=22.

      方法總結:在求三角形的邊長時,要注意利用三角形的三邊關系驗證所求出的邊長能否組成三角形.

      【類型四】 三角形三邊關系與絕對值的綜合

      若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

      解析:根據三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負,然后去絕對值符號進行計算即可.

      解:根據三角形的三邊關系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

      方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.

      三、板書設計

      三角形的'邊

      1.三角形的概念:

      由不在同一直線上的三條線段首尾順次相接所組成的圖形.

      2.三角形的三邊關系:

      兩邊之和大于第三邊,兩邊之差小于第三邊.

      本節課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發學生探究的欲望,圍繞這個問題讓學生自己動手操作,發現有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發現三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既提高了學生學習的興趣,又增強了學生的動手能力.

    八年級數學教案 篇5

      活動一、創設情境

      引入:首先我們來看幾道練習題(幻燈片)

      (復習:平行線及三角形全等的知識)

      下面我們一起來欣賞一組圖片(幻燈片)

      [學生活動]觀看后答問題:你看到了哪些圖形?

     。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

      [學生活動]小組合作交流,拼出圖案的類型。

      同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質。(幻燈片出示課題)

      活動二、合作交流,探求新知

      問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

      [學生活動]認真觀察、討論、思考、推理。

      鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

      學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

      并說明:平行四邊形不相鄰的兩個頂點連成的.線段叫它的對角線。

      平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

      問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

      [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

      小結平行四邊形的性質:

      平行四邊形的對邊相等

      平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

      你能演示你的結論是如何得到的嗎?(學生演示)

      你能證明嗎?(幻燈片出示證明題)

      [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

      自己完成性質2的證明。

      活動三、運用新知

      性質掌握了嗎?一起來看一道題目:

      嘗試練習(幻燈片)例1

      [學生活動]作嘗試性解答。

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級的數學教案15篇12-14

    【熱】八年級數學教案12-07

    初中八年級數學教案11-03

    【薦】八年級數學教案12-03

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    八年級數學教案【熱門】12-03

    八年級數學教案【薦】12-06

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲精品91福利在线观看 | 中国少妇与黑人高潮了 | 日本免费人成视频在线观看 | 中文字幕亚洲第16页 | 亚洲国产日韩欧美在线播放 | 亚洲精品中文字幕乱码无线 |