1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-09-05 14:07:59 八年級數學教案 我要投稿

    關于八年級數學教案范文8篇

      作為一位杰出的教職工,很有必要精心設計一份教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。來參考自己需要的教案吧!下面是小編為大家收集的八年級數學教案8篇,歡迎閱讀,希望大家能夠喜歡。

    關于八年級數學教案范文8篇

    八年級數學教案 篇1

      總課時:7課時 使用人:

      備課時間:第八周 上課時間:第十周

      第4課時:5、2平面直角坐標系(2)

      教學目標

      知識與技能

      1.在給定的直角坐標系下,會根據坐標描出點的位置;

      2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

      過程與方法

      1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;

      2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。

      情感態度與價值觀

      通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。

      教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

      教學過程

      第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

      在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

      練習:指出下列 各點以及所在象限或坐標軸:

      A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

      由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。

      第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)

      1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

      (-9,3),(-9,0),(-3,0),( -3,3)

      ( 學生操作完畢后)

      2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

      (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

      (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

      (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

      (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

      觀察所得的圖形,你覺得它像什么?

      分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

      (出示學生的作品)畫出是 這樣的.嗎?這幅圖畫很美,你們覺得它像什么?

      這個圖形像一棟房子旁邊還有一棵大樹。

      3.做一做

      (出示投影)

      在書上已建立的直角坐標系畫,要求每位同學獨立完成。

      (學生描點、畫圖)

      (拿出一位做對的學生的作品投影)

      你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

      (像貓臉)

      第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)

      (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

      (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

      (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

      (3)(2,0)

      觀察所得的圖形,你覺得它像什么?(像移動的菱形)

      2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

      先獨立完成,然后小組討論是否正確。

      第四環節 感悟與收獲(5分鐘,學生總結,全班交流)

      本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

      在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

      第五環節 布置作業

      習題5、4

      A組(優等生)1、2、3

      B組(中等生)1、2

      C組(后三分之一生)1、2

    八年級數學教案 篇2

      教學內容和地位:

      眾數、中位數是描述一組數據的集中趨勢的兩個統計特征量,是幫助學生學會用數據說話的基本概念。本節課的教學內容和現實生活密切相關,是培養學生應用數學意識和創新能力的最好素材。

      教學重點和難點:

      本節課的重點是眾數和中位數兩概念的形成過程及兩概念的運用。本節課的難點是對統計數據從多角度進行全面地分析。因為利用數據進行分析,對剛剛接觸統計的學生來說,他們原有的認知結構中缺乏這方面的知識經驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。

      教學目標分析:

      認知目標:

      (1)使學生認知眾數、中位數的意義;

      (2)會求一組數據的眾數、中位數。

      能力目標:

      (1)讓學生接觸并解決一些社會生活中的問題,為學生創新學數學、用數學的情境,培養學生的數學應用意識和創新意識。

      (2)在問題解決的過程中,培養學生的自主學習能力;

      (3)在問題分析的過程中,培養學生的團結協作精神。

      情感目標:

      (1)通過多媒體網絡課件,提供適當的問題情境,激發學生的學習熱情,培養學生學習數學的.興趣;

      (2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。

      教學輔助:網絡教室、多媒體輔助網絡教學課件、BBS電子公告欄、學習資源庫

      教法與學法:

      根據本節課的教學內容,主要采用了討論發現法。即課堂上,教師(或學生)提出適當的問題,通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的過程中發現概念的產生過程,體現“數學教學是數學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現他們的主體地位,而教師是通過對學生參與學習的啟發、調整、激勵來體現自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結合”、“學思結合”、“學用結合”的學法指導,這對學生的主體意識的培養和創新能力的培養都有積極的意義。

    八年級數學教案 篇3

      教學目標

      1、知識與技能目標

      學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念.

      2、過程與方法

      (1)經歷一般規律的探索過程,發展學生的抽象思維能力.

      (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.

      3、情感態度與價值觀

      (1)通過有趣的問題提高學習數學的興趣.

      (2)在解決實際問題的過程中,體驗數學學習的實用性.

      教學重點:

    探索、發現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

      教學難點:

    利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

      教學準備:

    多媒體

      教學過程:

      第一環節:創設情境,引入新課(3分鐘,學生觀察、猜想)

      情景:

      如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

      第二環節:合作探究(15分鐘,學生分組合作探究)

      學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的'路線計算方法,通過具體計算,總結出最短路線。讓學生發現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算.

      學生匯總了四種方案:

      (1) (2) (3)(4)

      學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

      學生在情形(3)和(4)的比較中出現困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據兩點之間線段最短可判斷(4)最短.

      如圖:

      (1)中A→B的路線長為:AA’+d;

      (2)中A→B的路線長為:AA’+A’B>AB;

      (3)中A→B的路線長為:AO+OB>AB;

      (4)中A→B的路線長為:AB.

      得出結論:利用展開圖中兩點之間,線段最短解決問題.在這個環節中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?

      在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

      第三環節:做一做(7分鐘,學生合作探究)

      教材23頁

      李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

      (1)你能替他想辦法完成任務嗎?

      (2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

      (3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

      第四環節:鞏固練習(10分鐘,學生獨立完成)

      1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發,他以6/h的速度向正東行走,1小時后乙出發,他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?

      2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.

      3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?

      第五環節 課堂小結(3分鐘,師生問答)

      內容:

      1、如何利用勾股定理及逆定理解決最短路程問題?

      第六 環節:布置作業(2分鐘,學生分別記錄)

      內容:

      作業:1.課本習題1.5第1,2,3題.

      要求:A組(學優生):1、2、3

      B組(中等生):1、2

      C組(后三分之一生):1

      板書設計:

      教學反思:

    八年級數學教案 篇4

      教學目標

      ①經歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結果都是整式),培養學生獨立思考、集體協作的能力。

      ②理解整式除法的算理,發展有條理的思考及表達能力。

      教學重點與難點

      重點:整式除法的運算法則及其運用。

      難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。

      教學準備

      卡片及多媒體課件。

      教學設計

      情境引入

      教科書第161頁問題:木星的質量約為1。90×1024噸,地球的質量約為5。98×1021噸,你知道木星的質量約為地球質量的多少倍嗎?

      重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

      注:教科書從實際問題引入單項式的除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數學與現實世界的聯系,同時再次經歷感受較大數據的過程。

      探究新知

      (1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據是什么?

      (2)你能利用(1)中的方法計算下列各式嗎?

      8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

      (3)你能根據(2)說說單項式除以單項式的運算法則嗎?

      注:教師可以鼓勵學生自己發現系數、同底數冪的底數和指數發生的變化,并運用自己的語言進行描述。

      單項式的除法法則的推導,應按從具體到一般的'步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質,并能運用乘除互逆的關系加以說明,也可類比分數的約分進行。在這些活動過程中,學生的化歸、符號演算等代數推理能力和有條理的表達能力得到進一步發展。重視算理算法的滲透是新課標所強調的。

      歸納法則

      單項式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

      注:通過總結法則,培養學生的概括能力,養成用數學語言表達自己想法的數學學習習慣。

      應用新知

      例2計算:

      (1)28x4y2÷7x3y;

      (2)—5a5b3c÷15a4b。

      首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成。口述和板書都應注意展示法則的應用,計算過程要詳盡,使學生盡快熟悉法則。

      注:單項式除以單項式,既要對系數進行運算,又要對相同字母進行指數運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現照看不全的情況,所以更應督促學生細心解答問題。

      鞏固新知教科書第162頁練習1及練習2。

      學生自己嘗試完成計算題,同桌交流。

      注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養學生良好的思維習慣和主動參與學習的習慣。

      作業

      1。必做題:教科書第164頁習題15。3第1題;第2題。

      2。選做題:教科書第164頁習題15。3第8題

    八年級數學教案 篇5

      一、創設情境

      在學習與生活中,經常要研究一些數量關系,先看下面的問題.

      問題1如圖是某地一天內的氣溫變化圖.

      看圖回答:

      (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

      (2)這一天中,最高氣溫是多少?最低氣溫是多少?

      (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

      解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

      (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

      (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

      從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數量關系呢?

      二、探究歸納

      問題2銀行對各種不同的存款方式都規定了相應的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規定的年利率:

      觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.

      解隨著存期x的增長,相應的年利率y也隨著增長.

      問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數值:

      觀察上表回答:

      (1)波長l和頻率f數值之間有什么關系?

      (2)波長l越大,頻率f就________.

      解(1)l與f的乘積是一個定值,即

      lf=300000,

      或者說.

      (2)波長l越大,頻率f就 越小 .

      問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的.半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.

      利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:

      由此可以看出,圓的半徑越大,它的面積就_________.

      解S=πr2.

      圓的半徑越大,它的面積就越大.

      在上面的問題中,我們研究了一些數量關系,它們都刻畫了某些變化規律.這里出現了各種各樣的量,特別值得注意的是出現了一些數值會發生變化的量.例如問題1中,刻畫氣溫變化規律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數值.像這樣在某一變化過程中,可以取不同數值的量,叫做變量(variable).

      上面各個問題中,都出現了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

    八年級數學教案 篇6

      教材分析

      1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

      1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

      2、用標準的數學語言得出結論,使學生感受科學的.嚴謹,啟迪學習態度和方法。

      學情分析

      1、在學習本課之前應具備的基本知識和技能:

      ①同類項的定義。

      ②合并同類項法則

      ③多項式乘以多項式法則。

      2、學習者對即將學習的內容已經具備的水平:

      在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

      教學目標

      (一)教學目標:

      1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

      2、會推導完全平方公式,并能運用公式進行簡單的計算。

      (二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

      數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。

      (四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

      (五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

      教學重點和難點

      重點:能運用完全平方公式進行簡單的計算。

      難點:會推導完全平方公式

      教學過程

      教學過程設計如下:

      〈一〉、提出問題

      [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

      (2m+3n)2=_______________,(-2m-3n)2=______________,

      (2m-3n)2=_______________,(-2m+3n)2=_______________。

      〈二〉、分析問題

      1、[學生回答]分組交流、討論

      (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

      (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

      (1)原式的特點。

      (2)結果的項數特點。

      (3)三項系數的特點(特別是符號的特點)。

      (4)三項與原多項式中兩個單項式的關系。

      2、[學生回答]總結完全平方公式的語言描述:

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

      3、[學生回答]完全平方公式的數學表達式:

      (a+b)2=a2+2ab+b2;

      (a-b)2=a2-2ab+b2.

      〈三〉、運用公式,解決問題

      1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

      (m+n)2=____________, (m-n)2=_______________,

      (-m+n)2=____________, (-m-n)2=______________,

      (a+3)2=______________, (-c+5)2=______________,

      (-7-a)2=______________, (0.5-a)2=______________.

      2、判斷:

      ( )① (a-2b)2= a2-2ab+b2

      ( )② (2m+n)2= 2m2+4mn+n2

      ( )③ (-n-3m)2= n2-6mn+9m2

      ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

      ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

      ( )⑥ (-a-2b)2=(a+2b)2

      ( )⑦ (2a-4b)2=(4a-2b)2

      ( )⑧ (-5m+n)2=(-n+5m)2

      3、一現身手

      ① (x+y)2 =______________;② (-y-x)2 =_______________;

      ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

      ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

      ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

      〈四〉、[學生小結]

      你認為完全平方公式在應用過程中,需要注意那些問題?

      (1)公式右邊共有3項。

      (2)兩個平方項符號永遠為正。

      (3)中間項的符號由等號左邊的兩項符號是否相同決定。

      (4)中間項是等號左邊兩項乘積的2倍。

      〈五〉、探險之旅

      (1)(-3a+2b)2=________________________________

      (2)(-7-2m) 2 =__________________________________

      (3)(-0.5m+2n) 2=_______________________________

      (4)(3/5a-1/2b) 2=________________________________

      (5)(mn+3) 2=__________________________________

      (6)(a2b-0.2) 2=_________________________________

      (7)(2xy2-3x2y) 2=_______________________________

      (8)(2n3-3m3) 2=________________________________

      板書設計

      完全平方公式

      兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

      兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

    八年級數學教案 篇7

      復習第一步::

      勾股定理的有關計算

      例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.

      析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

      勾股定理解實際問題

      例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂到地面的高度為220cm.在無風的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.

      析解:彩旗自然下垂的長度就是矩形DCEF

      的對角線DE的長度,連接DE,在Rt△DEF中,根據勾股定理,

      得DE=h=220-150=70(cm)

      所以彩旗下垂時的最低處離地面的最小高度h為70cm

      與展開圖有關的計算

      例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

      析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點A到點C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點A到頂點C’的最短距離就是在圖2中線段AC’的長度.

      在矩形ACC’A’中,因為AC=2,CC’=1

      所以由勾股定理得AC’=.

      ∴從頂點A到頂點C’的最短距離為

      復習第二步:

      1.易錯點:本節同學們的易錯點是:在用勾股定理求第三邊時,分不清直角三角形的.斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現,在解題中,同學們一定要找準直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.

      例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

      錯解:因為a=6,b=10,根據勾股定理得c=剖析:上面解法,由于審題不仔細,忽視了∠B=90°,這一條件而導致沒有分清直角三角形的斜邊和直角邊,錯把c當成了斜邊.

      正解:因為a=6,b=10,根據勾股定理得,c=溫馨提示:運用勾股定理時,一定分清斜邊和直角邊,不能機械套用c2=a2+b2

      例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

      錯解:因為Rt△ABC的兩邊長分別為3和4,根據勾股定理得:第三邊長的平方是32+42=25

      剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

      正解:當4為直角邊時,根據勾股定理第三邊長的平方是25;當4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

      溫馨提示:在用勾股定理時,當斜邊沒有確定時,應進行分類討論.

      例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數,則c=.

      錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

    八年級數學教案 篇8

      一、學生起點分析

      通過前一章《勾股定理》的學習,學生已經明白什么是勾股數,但也發現并不是所有的直角三角形的邊長都是勾股數,甚至有些直角三角形的邊長連有理數都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數,②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數,這為引入“新數”奠定了必要性.

      二、教學任務分析

      《數不夠用了》是義務教育課程標準北師大版實驗教科書八年級(上)第二章《實數》的第一節. 本節內容安排了2個課時完成,第1課時讓學生感受無理數的存在,初步建立無理數的印象,結合勾股定理知識,會根據要求畫線段;第2課時借助計算器感受無理數是無限不循環小數,會判斷一個數是無理數.本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數的客觀存在性和引入的必要性,并能判斷一個數是不是有理數.

      本節課的教學目標是:

      ①通過拼圖活動,讓學生感受客觀世界中無理數的存在;

      ②能判斷三角形的某邊長是否為無理數;

      ③學生親自動手做拼圖活動,培養學生的動手能力和探索精神;

      ④能正確地進行判斷某些數是否為有理數,加深對有理數和無理數的理解;

      三、教學過程設計

      本節課設計了6個教學環節:

      第一環節:置疑;第二環節:課題引入;第三環節:獲取新知;第四環節:應用與鞏固;第五環節:課堂小結;第六環節:作業布置.

      第一環節:質疑

      內容:【想一想】

      ⑴一個整數的平方一定是整數嗎?

      ⑵一個分數的平方一定是分數嗎?

      目的:作必要的知識回顧,為第二環節埋下伏筆,便于后續問題的說理.

      效果:為后續環節的進行起了很好的鋪墊的作用

      第二環節:課題引入

      內容:1.【算一算】

      已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(或分數)嗎?

      2.【剪剪拼拼】

      把邊長為1的兩個小正方形通過剪、拼,設法拼成一個大正方形,你會嗎?

      目的:選取客觀存在的“無理數“實例,讓學生深刻感受“數不夠用了”.

      效果:巧設問題背景,順利引入本節課題.

      第三環節:獲取新知

      內容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

      【議一議】: 已知 ,請問:① 可能是整數嗎?② 可能是分數嗎?

      【釋一釋】:釋1.滿足 的 為什么不是整數?

      釋2.滿足 的 為什么不是分數?

      【憶一憶】:讓學生回顧“有理數”概念,既然 不是整數也不是分數,那么 一定不是有理數,這表明:有理數不夠用了,為“新數”(無理數)的學習奠定了基礎

      【找一找】:在下列正方形網格中,先找出長度為有理數的線段,再找出長度不是有理數的線段

      目的:創設從感性到理性的認知過程,讓學生充分感受“新數”(無理數)的存在,從而激發學習新知的興趣

      效果:學生感受到無理數產生的過程,確定存在一種數與以往學過的數不同,產生了學習新數的必要性.

      第四環節:應用與鞏固

      內容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

      【畫一畫1】:在右1的正方形網格中,畫出兩條線段:

      1.長度是有理數的線段

      2.長度不是有理數的線段

      【畫一畫2】:在右2的正方形網格中畫出四個三角形 (右1)

      2.三邊長都是有理數

      2.只有兩邊長是有理數

      3.只有一邊長是有理數

      4.三邊長都不是有理數

      【仿一仿】:例:在數軸上表示滿足 的

      解: (右2)

      仿:在數軸上表示滿足 的

      【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

      它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

      目的:進一步感受“新數”的存在,而且能把“新數”表示在數軸上

      效果:加深了對“新知”的理解,鞏固了本課所學知識.

      第五環節:課堂小結

      內容:

      1.通過本課學習,感受有理數又不夠用了, 請問你有什么收獲與體會?

      2.客觀世界中,的確存在不是有理數的.數,你能列舉幾個嗎?

      3.除了本課所認識的非有理數的數以外,你還能找到嗎?

      目的:引導學生自己小結本節課的知識要點及數學方法,使知識系統化.

      效果:學生總結、相互補充,學會進行概括總結.

      第六環節:布置作業

      習題2.1

      六、教學設計反思

      (一)生活是數學的源泉,興趣是學習的動力

      大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發學習者的學習積極性,學習才可能是主動的.本節課中教師首先用拼圖游戲引發學生學習的欲望,把課程內容通過學生的生活經驗呈現出來,然后進行大膽置疑,生活中的數并不都是有理數,那它們究竟是什么數呢?從而引發了學生的好奇心,為獲取新知,創設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.

      (二)化抽象為具體

      常言道:“數學是鍛煉思維的體操”,數學教師應通過一系列數學活動開啟學生的思維,因此對新數的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環節,加深對新數的理解,充分感受新數的客觀存在,讓學生覺得新數并不抽象.

      (三)強化知識間聯系,注意糾錯

      既然稱之為“新數”,那它當然不是有理數,亦即不是整數,也不是分數,所以“新數”不可以用分數來表示,這為進一步學習“新數”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數”不能表示成分數,為無理數的教學奠好基.

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    初中八年級數學教案11-03

    八年級上冊數學教案11-09

    人教版八年級數學教案11-04

    【熱】八年級數學教案12-07

    八年級數學教案【薦】12-06

    八年級數學教案【推薦】12-04

    【推薦】八年級數學教案12-05

    【精】八年級數學教案12-04

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产精品日韩AV专区 | 亚洲欧美俄罗斯在线观看 | 亚洲欧洲在线另类 | 日本久久久久中文视频字幕 | 午夜两性免费福利小视频 | 亚洲成熟少妇Aⅴ |