1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

    八年級數(shù)學教案

    時間:2022-09-02 00:15:47 八年級數(shù)學教案 我要投稿

    關(guān)于八年級數(shù)學教案匯編五篇

      在教學工作者開展教學活動前,編寫教案是必不可少的,教案是教材及大綱與課堂教學的紐帶和橋梁。來參考自己需要的教案吧!以下是小編收集整理的八年級數(shù)學教案5篇,僅供參考,歡迎大家閱讀。

    關(guān)于八年級數(shù)學教案匯編五篇

    八年級數(shù)學教案 篇1

      菱形

      學習目標(學習重點):

      1.經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習慣;

      2.運用菱形的識別方法進行有關(guān)推理.

      補充例題:

      例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

      例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.

      四邊形AFCE是菱形嗎?說明理由.

      例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

      (1)試說明四邊形AECG是平行四邊形;

      (2)若AB=4cm,BC=3cm,求線段EF的長;

      (3)當矩形兩邊AB、BC具備怎樣的關(guān)系時,四邊形AECG是菱形.

      課后續(xù)助:

      一、填空題

      1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

      2.如圖,D、E、F分別是△ABC的'邊BC、CA、AB上的點,

      且DE∥BA,DF∥ CA

      (1)要使四邊形AFDE是菱形,則要增加條件______________________

      (2)要使四邊形AFDE是矩形,則要增加條件______________________

      二、解答題

      1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

      2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

      (1) AC,BD互相垂直嗎?為什么?

      (2) 四邊形ABCD是菱形 嗎?

      3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

      4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

      ⑴求證:ABF≌

      ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

    八年級數(shù)學教案 篇2

      一、教學目標

      (一)、知識與技能:

      (1)使學生了解因式分解的意義,理解因式分解的概念。

      (2)認識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。

      (二)、過程與方法:

      (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。

      (2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。

      (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應(yīng)用能力。

      (三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。

      二、教學重點和難點

      重點:因式分解的概念及提公因式法。

      難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

      三、教學過程

      教學環(huán)節(jié):

      活動1:復習引入

      看誰算得快:用簡便方法計算:

      (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

      (2)-2.67×132+25×2.67+7×2.67= ;

      (3)992–1= 。

      設(shè)計意圖:

      如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應(yīng)該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

      注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的`平方差公式,幫助他們順利地逆向運用平方差公式。

      活動2:導入課題

      P165的探究(略);

      2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

      設(shè)計意圖:

      引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。

      活動3:探究新知

      看誰算得準:

      計算下列式子:

      (1)3x(x-1)= ;

      (2)(a+b+c)= ;

      (3)(+4)(-4)= ;

      (4)(-3)2= ;

      (5)a(a+1)(a-1)= ;

      根據(jù)上面的算式填空:

      (1)a+b+c= ;

      (2)3x2-3x= ;

      (3)2-16= ;

      (4)a3-a= ;

      (5)2-6+9= 。

      在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。

      活動4:歸納、得出新知

      比較以下兩種運算的聯(lián)系與區(qū)別:

      a(a+1)(a-1)= a3-a

      a3-a= a(a+1)(a-1)

      在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

    八年級數(shù)學教案 篇3

      一、知識與技能

      1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.

      2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.

      二、過程與方法

      1、經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學生的辨別唯物主義觀點.

      2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學生的抽象思維能力,提高數(shù)學化意識.

      三、情感態(tài)度與價值觀

      1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學學習的重要性,提高學生的學習數(shù)學的興趣.

      2、通過分組討論,培養(yǎng)學生合作交流意識和探索精神.

      教學重點:理解和領(lǐng)會反比例函數(shù)的概念.

      教學難點:領(lǐng)悟反比例的概念.

      教學過程

      一、創(chuàng)設(shè)情境,導入新課

      活動1

      問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點?

      (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

      (2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的.長為y隨寬x的變化;

      (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

      師生行為:

      先讓學生進行小組合作交流,再進行全班性的問答或交流.學生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達形式.

      教師組織學生討論,提問學生,師生互動.

      在此活動中老師應(yīng)重點關(guān)注學生:

      ①能否積極主動地合作交流.

      ②能否用語言說明兩個變量間的關(guān)系.

      ③能否了解所討論的函數(shù)表達形式,形成反比例函數(shù)概念的具體形象.

      分析及解答:(1)

      ;(2)

      ;(3)

      其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

      上面的函數(shù)關(guān)系式,都具有

      的形式,其中k是常數(shù).

      二、聯(lián)系生活,豐富聯(lián)想

      活動2

      下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?

      (1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;

      (2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;

      (3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.

      師生行為

      學生先獨立思考,在進行全班交流.

      教師操作課件,提出問題,關(guān)注學生思考的過程,在此活動中,教師應(yīng)重點關(guān)注學生:

      (1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關(guān)系;

      (2)能否積極主動地參與小組活動;

      (3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.

      分析及解答:(1)

      ;(2)

      ;(3)

      概念:如果兩個變量x,y之間的關(guān)系可以表示成

      的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

      活動3

      做一做:

      一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

      師生行為:

      學生先進行獨立思考,再進行全班交流.教師提出問題,關(guān)注學生思考.此活動中教師應(yīng)重點關(guān)注:

      ①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;

      ②學生能否順利抽象反比例函數(shù)的模型;

      ③學生能否積極主動地合作、交流;

      活動4

      問題1:下列哪個等式中的y是x的反比例函數(shù)?

      問題2:已知y是x的反比例函數(shù),當x=2時,y=6

      (1)寫出y與x的函數(shù)關(guān)系式:

      (2)求當x=4時,y的值.

      師生行為:

      學生獨立思考,然后小組合作交流.教師巡視,查看學生完成的情況,并給予及時引導.在此活動中教師應(yīng)重點關(guān)注:

      ①學生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;

      ②學生能否積極主動地參與小組活動.

      分析及解答:

      1、只有xy=123是反比例函數(shù).

      2、分析:因為y是x的反比例函數(shù),所以

      ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

      解:(1)設(shè)

      ,因為x=2時,y=6,所以有

      解得k=12

      因此

      (2)把x=4代入

      ,得

      三、鞏固提高

      活動5

      1、已知y是x的反比例函數(shù),并且當x=3時,y=8.

      (1)寫出y與x之間的函數(shù)關(guān)系式.

      (2)求y=2時x的值.

      2、y是x的反比例函數(shù),下表給出了x與y的一些值:

      (1)寫出這個反比例函數(shù)的表達式;

      (2)根據(jù)函數(shù)表達式完成上表.

      學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關(guān)注“學困生”.

      四、課時小結(jié)

      反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數(shù)學對象.反比例函數(shù)具有豐富的數(shù)學含義,通過舉例、說理、討論等活動,感知數(shù)學眼光,審視某些實際現(xiàn)象.

    八年級數(shù)學教案 篇4

      教學目標:

      1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。

      2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。

      教學重點:

      算術(shù)平方根的概念。

      教學難點:

      根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。

      教學過程

      一、情境導入

      請同學們欣賞本節(jié)導圖,并回答問題,學校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

      這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念.

      二、導入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

      這個問題相當于在等式擴=25中求出正數(shù)x的值.

      一般地,如果一個正數(shù)x的`平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

      也就是,在等式 =a (x0)中,規(guī)定x = .

      2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

      3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。

      4、例1 求下列各數(shù)的算術(shù)平方根:

      (1)100;(2)1;(3) ;(4)0.0001

      三、練習

      P69練習 1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

      方法1:課本中的方法,略;

      方法2:

      可還有其他方法,鼓勵學生探究。

      問題:這個大正方形的邊長應(yīng)該是多少呢?

      大正方形的邊長是 ,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

      建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

      五、小結(jié):

      1、這節(jié)課學習了什么呢?

      2、算術(shù)平方根的具體意義是怎么樣的?

      3、怎樣求一個正數(shù)的算術(shù)平方根

      六、課外作業(yè):

      P75習題13.1活動第1、2、3題

    八年級數(shù)學教案 篇5

      學習目標:

      1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質(zhì).

      2、經(jīng)歷探索軸對稱的性質(zhì)的活動過程 ,積累數(shù)學活動經(jīng)驗,進一步發(fā)展空間觀念和有條理地思考和表達能力.

      3、利用軸對稱的基本性質(zhì)解決實際問題。

      學習重點:靈活運用對應(yīng)點所連的線段被 對稱軸垂直平分、對應(yīng)線段相等、對應(yīng)角相等等性質(zhì)。

      學習難點:軸對稱的.性質(zhì)的理解和拓展運用。

      學習過程 :

      一、探索活動

      如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.

      兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?

      1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.

      2、那么 直線MN為什么會垂直平分線段AA呢?

      3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).

      例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.

      4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?

      5.如圖,再在紙上任畫一點C,并仿照上面進行操作.

      (1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?

      (2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?

      (3)軸對稱有哪些性質(zhì)?

      6.軸對稱的性質(zhì):

      (1)成軸對稱的兩個圖形全等.

      (2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.

      二、例題講解

      例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應(yīng)線段分別是 ,CD= , CBA= ,ADC= .

      (2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測量的方法驗證.

      (3)AE與BF平行嗎?為什么?

      (4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?

      (5)延長線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?

    【八年級數(shù)學教案】相關(guān)文章:

    八年級的數(shù)學教案12-14

    八年級數(shù)學教案06-18

    人教版八年級數(shù)學教案11-04

    初中八年級數(shù)學教案11-03

    八年級上冊數(shù)學教案11-09

    【精】八年級數(shù)學教案12-04

    八年級數(shù)學教案【精】12-04

    八年級數(shù)學教案【熱門】12-03

    【薦】八年級數(shù)學教案12-03

    【熱門】八年級數(shù)學教案11-29

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      日本香港三级三级久久妇 | 亚洲阿v天堂在线观看2019 | 亚噜噜狠久久香蕉人妖 | 久久久亚洲综合久久久久87 | 亚洲精品一级在线播放 | 亚洲AV岛国动作片在线观看 |