人教版六年級下冊數學教案模板匯總八篇
作為一名無私奉獻的老師,通常需要準備好一份教案,編寫教案有利于我們科學、合理地支配課堂時間。教案要怎么寫呢?下面是小編整理的人教版六年級下冊數學教案8篇,僅供參考,歡迎大家閱讀。
人教版六年級下冊數學教案 篇1
【教學內容】《義教課標實驗教科書 數學》(人教版)六年級下冊第56-58頁例4及做一做。
【教學目標】
1、結合具體情境,使學生理解圖形按一定的比進行放大或縮小的原理。
2、能按一定的比,將一些簡單圖形進行放大或縮小。
【教學重點】圖形的放大與縮小。
【教學難點】按一定的比把圖形放大或縮小。
【教學準備】多媒體
【自學內容】見預習作業
【教學預設】
一、自學反饋
1、什么叫做比例尺?
一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
2、怎樣求比例尺?
求圖上距離和實際距離的最簡整數比。
3、一棟樓房東西方向長40,在圖紙上的長度是50c。這幅圖紙的比例尺是多少?
(1)學生嘗試獨立求比例尺。
(2)匯報交流
50c:40=50c:4000c=1:80
(3)你是怎么想的'?
二、關鍵點撥
1、求比例尺。
(1)怎樣求一幅圖的比例尺?
先寫出圖上距離與實際距離的比,再化成最簡整數比。
(2)比例尺有什么特點?
比例尺是前項或后項為1的比。
(3)比例尺可以怎樣表示?
數值比例尺和線段比例尺。(1:500000)或(線段比例尺)
2、求實際距離。
(1)在一副比例尺是1:500000的地圖上,量得兩地間的距離大約是10c,這兩地之間的實際距離大約是多少?
(2)學生嘗試獨立列比例解答。
(3)匯報交流
解:設這兩地之間的實際距離大約是x厘米。
=
=5000000
5000000c=50
(4)你覺得在求實際距離時要注意什么問題?
實際距離一般用千米做單位。
3、求圖上距離
(1)學校要建一個長80米,寬60米的長方形操場,你會畫操場的平面圖嗎?
(2)學生嘗試畫操場的平面圖。
(3)匯報交流
你是怎么畫的?【根據圖紙大小確定比例尺,可以是數值比例尺也可以是線段比例尺,根據所確定的比例尺求出圖上距離,再畫圖,畫圖后還要標上比例尺。】
三、鞏固練習
1、課本第53頁練習八第1題求比例尺。
2、課本第52頁做一做第1題。
3、課本第52頁做一做第2題。
四、分享收獲 暢談感想
這節課,你有什么收獲?聽課隨想
人教版六年級下冊數學教案 篇2
(1)兩個質數的和是39,這兩個質數的積是( )。
分析 本題考查的是質數的意義及數的奇偶性等知識。
兩個數的和是39,說明這兩個數一個數是奇數,一個數是偶數,因為它們都是質數,所以其中的偶數只能是2,則奇數是39-2=37,37×2=74。
解答 74
(2)120的因數有( )個。
分析 求一個較小數的因數的個數一般用列舉法,但求較大數的因數的個數時,一般用分解質因數法,即先把120分解質因數:120=2×2×2×3×5,然后借助每個因數的個數來計算。因數2的個數是3個,因數3的個數是1個,因數5的個數也是1個,120的因數的個數為(3+1)×(1+1)×(1+1)=16(個)。
解答 16
⊙探究活動
1.課件出示題目。
(1)一個長方體木塊,長2.7 m,寬1.8 m,高1.5 m。要把它切成大小相等的正方體木塊,不許有剩余,正方體的棱長最大是多少分米?
(2)學校六年級有若干名同學排隊做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年級最少有多少人?
2.明確探究要求。(小組合作、思考、交流)
(1)這兩道題分別考查什么知識?
(2)怎樣解決這兩個問題?
(3)具體的解答過程是怎樣的'?
3.匯報。
(1)先匯報前兩個問題。
預設
生1:第(1)題考查的是應用因數的知識解決問題的能力。
生2:第(2)題考查的是應用倍數的知識解決問題的能力。
生3:根據題意,正方體的最大棱長應該是長方體長、寬、高的最大公因數,所以先把相關長度轉換單位,用整數表示,然后求長、寬、高的最大公因數。
生4:根據題意,六年級人數比3、7、11的最小公倍數多2,所以先求出3、7、11的最小公倍數,再加2就可以了。
(2)嘗試解答。(關注學生求三個數的最大公因數或最小公倍數的情況,發現問題并及時點撥)
(3)匯報解答過程。(指名板演,集體訂正)
預設
生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因為27、18、15的最大公因數是3,所以正方體的棱長最大是3 dm。
生2:因為3、7、11的最小公倍數是3×7×11=231,231+2=233(人),所以六年級最少有233人。
4.小結。
解答此類問題,關鍵要弄清考查的是因數的知識還是倍數的知識,同時要會求兩個或三個數的最大公因數及最小公倍數。
⊙課堂總結
通過本節課的學習,掌握了因數與倍數的相關知識,我們學會應用這些知識解決實際問題,學以致用。
⊙布置作業
教材75頁5、9題。
板書設計
因數、倍數、質數、合數
因數和倍數質數——質因數合數——分解質因數1公因數互質數最大公因數倍數——公倍數——最小公倍數能被2、5、3整除的數的特征。
人教版六年級下冊數學教案 篇3
一、學習目標
(一)學習內容
《義務教育教科書數學》(人教版)六年級下冊第五單元第68~69頁的例1、2。“抽屜原理”是一類較為抽象和艱澀的數學問題,對全體學生而言具有一定的挑戰性。為此,教材選擇了一些常見的、熟悉的事物作為學習內容,經歷將具體問題“數學化”的過程。
(二)核心能力
經歷將具體問題“數學化”的過程,初步形成模型思想,發展抽象能力、推理能力和應用能力。
(三)學習目標
1.理解“鴿巢原理”的基本形式,并能初步運用“鴿巢原理”解決相關的實際問題或解釋相關的現象。
2.通過操作、觀察、比較、說理等數學活動,經歷鴿巢原理的形成活動,初步形成模型思想,發展抽象能力、推理能力和應用能力。
(四)學習重點
了解簡單的鴿巢問題,理解“總有”和“至少”的含義。
(五)學習難點
運用“鴿巢原理”解決相關的實際問題或解釋相關的現象。
(六)配套資源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
(一)課堂設計
1.談話導入
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請一位同學任意抽5張,不要讓我看到你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個學生再次證明。
師:看來我兩次都猜對了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學習完這節課以后大家就知道了。
2.問題探究
(1)呈現問題,引出探究
出示例1:小明說“把4支鉛筆放進3個筆筒里。不管怎么放,總有一個筆筒里至少放進2支鉛筆”,他說得對嗎?請說明理由。
師:“總有”是什么意思?“至少”有2支是什么意思?
學生自由發言。
預設:一定有
不少于兩只,可能是2支,也可能是多于2支。
就是不能少于2支。
(2)體驗探究,建立模型
師:好的,看來大家已經理解題目的意思了。那么把4支鉛筆放進3個筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請大家擺擺看,看有什么發現?
小組活動:學生思考,擺放。
①枚舉法
師:大部分同學都擺完了,誰能說說你們是怎么擺的。能不能邊擺邊給大家說。
預設1:可以在第一個筆筒里放4支鉛筆,其它兩個空著。
師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個筆筒里嗎?
(不一定,也可能放在其它筆筒里。)
師:對,也可以記作(0,4,0)或者(0,0,4),但是,不管放在哪個筆筒里,總有一個筆筒里放進4支鉛筆。還可以怎么放?
預設2:第一個筆筒里放3支鉛筆,第二個筆筒里放1支,第三個筆筒空著。
師:這種放法可以記作(3,1,0)
師:這3支鉛筆一定要放在第一個筆筒里嗎?
(不一定)
師:但是不管怎么放——總有一個筆筒里放進3支鉛筆。
預設3:還可以在第一個筆筒里放2支,第二個筆筒里也放2支,第三個筆筒空著,記作(2,2,0)。
師:這2支鉛筆一定要放在第一個和第二個筆筒里嗎?還可以怎么記?
預設:也可能放在第三個筆筒里,可以記作(2,0,2)、(0,2,2)。
預設4:還可以(2,1,1)
或者(1,1,2)、(1,2,1)
師:還有其它的放法嗎?
(沒有了)
師:在這幾種不同的放法中,裝得最多的那個筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒有)
師:這幾種放法如果用一句話概括可以怎樣說?
(裝得最多的筆筒里至少裝2支。)
師:裝得最多的那個筆筒一定是第一個筆筒嗎?
(不一定,哪個筆筒都有可能。)
【設計意圖:在理解題目要求的基礎上,通過操作活動,用畫圖和數的分解來表示上述問題的結果,更直觀。再通過對“總有”“至少”的.意思的單獨說明,讓學生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話。】
②假設法
師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進了幾支鉛筆。怎樣能使這個放得最多的筆筒里盡可能的少放?
預設:先把鉛筆平均放,然后剩下的再放進其中一個筆筒里。
師:“平均放”是什么意思?
預設:先在每個筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進一個筆筒里。
師:為什么要先平均分?
學生自由發言。
引導小結:因為這樣分,只分一次就能確定總有一個筆筒至少有幾支筆了。
師:好!先平均分,每個筆筒中放1支,余下1支,不管放在哪個筆筒里,一定會出現總有一個筆筒里至少有2支鉛筆。
師:這種思考方法其實是從最不利的情況來考慮,先平均分,每個筆筒里都放一支,就可以使放得較多的這個筆筒里的鉛筆盡可能的少。這樣,就能很快得出不管怎么放,總有一個筆筒里至少放進2支鉛筆。我們可以用算式把這種想法表示出來。
【設計意圖:讓學生自己通過觀察比較得出“平均分”的方法,將解題經驗上升為理論水平,進一步強化方法、理清思路。】
(3)提升思維,建立模型
①加深感悟
師:如果把5支筆放進4個筆筒里呢?大家討論討論。
預設:5支鉛筆放在4個筆筒里,先平均分,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:把7支筆放進6個筆筒里呢?還用擺嗎?
學生自由發言。
師:把10支筆放進9個筆筒里呢?把100支筆放進99個筆筒里呢?
師:你發現了什么?
預設:我發現鉛筆的支數比筆筒數多1,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:你的發現和他一樣嗎?
學生自由發言。
師:你們太了不起了!
師:難道這個規律只有在鉛筆的支數比筆筒數多1的情況下才成立嗎?你認為還有什么情況?
練一練:
師:我們來看這道題“5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子,為什么?”
師:說說你的想法。
師:由此看來,只要分的物體比抽屜的數量多,就總有一個抽屜里至少放進2個物體。這就是最簡單的鴿巢原理。【板書課題】
介紹狄利克雷:
師:鴿巢原理最先是由19世紀的德國數學家狄利克雷提出來應用于解決問題的,后來人們為了紀念他從這么平凡的事情中發現的規律,就把這個規律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。
②建立模型
出示例2:一位同學學完了“鴿巢原理”后說:把7本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有3本書。他說得對嗎?
學生獨立思考、討論后匯報:
師:怎樣用算式表示我們的想法呢?生答,板書如下。
7÷3=2本……1本(2+1=3)
師:如果有10本書會怎么樣能?會用算式表示嗎?寫下來。
出示:
把10本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
10÷3=3本……1本(3+1=4)
師:觀察板書你有什么發現?
預設:我發現“總有一個抽屜里至少有2本”,只要用“商+1”就可以得到。
師:那如果把8本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?請大家算一算。
學生討論,匯報:
8÷3=2……22+1=3
8÷3=2……22+2=4
師:到底是“商+1”還是“商+余數”呢?誰的結論對呢?在小組里進行研究、討論。
師:認真觀察,你認為“抽屜里至少有幾本書”或“鴿籠里至少有幾只鴿子”可能與什么有關?
預設:我認為根“商”有關,只要用“商+1”就可以得到。
師:我們一起來看看是不是這樣(引導學生再觀察幾個算式)啊!果然是只要用“商+1”就可以了。
引導總結:我們把要分的物體數量看做a,抽屜的個數看做n,如果滿足【a÷n=b……c(c≠0)】,那么不管怎樣放,總有一個抽屜里至少放(b+1)本書。這就是抽屜原理的一般形式。
鴿巢原理可以廣泛地運用于生活中,來解決一些簡單的實際問題。解決這類問題時要注意把誰看做“抽屜”。
【設計意圖:借助直觀操作和假設法,將問題轉化為“有余數的除法”的形式。可以使學生更好地理解“抽屜原理”的一般思路,經歷將具體問題“數學化”的過程,初步形成模型思想,發展抽象能力、推理能力和應用能力。考查目標1、2】
3.鞏固練習
(1)學習了“鴿巢原理”,我們再回到課前的“撲克牌”游戲,你現在能解釋一下嗎?(出示課件)學生思考,討論。
(2)第69頁的做一做第1、2題。
4.全課總結
師:通過這節的學習,你有什么收獲?
小結:今天這節課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問題關鍵就是找準物體和抽屜,在一些復雜的題中,還需要我們去制造抽屜。
(三)課時作業
1.一個小組共有13名同學,其中至少有幾名同學同一個月出生?
答案:2名。
解析:把1—12月看作是12個抽屜,13÷12=1…11+1=2【考查目標1、2】
2.希望小學籃球興趣小組的同學中,最大的12歲,最小的6歲,最少從中挑選幾名學生,就一定能找到兩個學生年齡相同。
答案:8名。
解析:從6歲到12歲一共有7個年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標1、2】
第二課時鴿巢原理
中原區汝河新區小學師芳
一、學習目標
(一)學習內容
《義務教育教科書數學》(人教版)六年級下冊教材第70頁例3。本例是“鴿巢原理”的具體應用,也是運用“鴿巢原理”進行逆向思維的一個典型例子。要解決這個問題,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”,這樣就把“摸球問題”轉化為“抽屜問題”。
(二)核心能力
在理解鴿巢原理的基礎上,利用轉化的思想,把新知轉化為鴿巢問題,提高分析和推理的能力。
(三)學習目標
1.進一步理解“抽屜原理”,運用“抽屜原理”進行逆向思維,解決實際問題,體會轉化思想。
2.經歷運用“抽屜原理”解決問題的過程,體驗觀察猜想,實踐操作的學習方法,提高分析和推理的能力。
(四)學習重點
引導學生把具體問題轉化為“抽屜原理”。
(五)學習難點
找出“抽屜”有幾個,再應用“抽屜原理”進行反向推理。
(六)配套資源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
(一)課堂設計
1.情境導入
師:同學們,你們喜歡魔術嗎?今天老師給你們表演一個怎么樣?看,這是一副撲克牌,去掉兩張王牌,還剩下52張,請同學們任意挑出5張。(讓5名學生抽牌)好,見證奇跡的時刻到了!你們手里的牌至少有2張是同花色的。
師:神奇吧!你們想不想表演一個呢?
師:現在老師這里還是剛才這副牌,請你抽牌,至少抽多少張牌才能保證至少有2張牌的點數相同呢?
在學生抽的基礎上揭示課題。教師:這節課我們學習利用“鴿巢原理”解決生活中的實際問題。(板書課題:鴿巢原理)
2.探究新知
(1)學習例3
①猜想
出示例3:盒子里有同樣大小的紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?
預設:2個、3個、5個…
②驗證
師:我們的猜想是不是正確呢?我們可以用畫一畫、寫一寫的方法來說明理由,并把驗證的過程進行整理。
可以用表格進行整理,課件出示空白表格:
學生獨立思考填表,小組交流。
全班匯報。
匯報時,指名按猜測的不同情況逐一驗證,說明理由,看看解決這個問題是否有規律可循。
課件匯總,思考:從這里你能發現什么?
教師:通過驗證,說說你們得出什么結論。
小結:盒子里有同樣大小的紅球和藍球各4個。想要摸出的球一定有2個同色的,最少要摸3個球。
③小結
師:為什么球的個數一定要比抽屜數多?而且是多1呢?
預設:球有兩種顏色,就是兩個抽屜,從最不利的情況考慮摸2個球都不同色,就必須多摸一個,所以球一定要比抽屜數多1。其實摸4個球、5個球或者更多球,都能保證一定有2個球同色,但問題中要求摸的球數必須“至少”,所以摸3個球就夠了。
師:說得好!運用學過的知識、逆推的方法說明了“只要摸出的球比球的顏色種數至少多1,就能保證有2個球同色”。這一結論是正確的。
板書:只要摸出的球比球的顏色種數至少多1,就能保證有2個球同色。或者說只要物體數比抽屜數至少多1,就能保證有一個抽屜至少放2個物體。
(2)引導學生把具體問題轉化成“抽屜原理”。
師:生活中像這樣的例子很多,我們不能總是猜測或動手試驗,能不能把這道題與前面講的“抽屜原理”聯系起來思考呢?
思考:①摸球問題與“抽屜原理”有怎樣的聯系?
②應該把什么看成“抽屜”?有幾個“抽屜”?要分別放的東西是什么?
學生討論,匯報結果,教師講評:因為有紅、藍兩種顏色的球,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”。這樣把“摸球問題”轉化成“抽屜問題”,即“只要分的物體比抽屜多1,就能保證有一個抽屜至少有2個同色球”。
從最特殊的情況想起,假設兩種顏色的球各拿了1個,也就是在兩個抽屜里各拿了1個球,不管從哪個抽屜里再拿1個球,都有2個球是同色的。假設至少摸a個球,即a÷2=1……b,當b=1時,a就最小。所以一次至少應拿出1×2+1=3個球,就能保證有2個球同色。
結論:要保證摸出的球有兩個同色,摸出的球數至少要比抽屜數多1。
3.鞏固練習
(1)完成教材第70頁“做一做”第1題。
(2)完成教材第70頁“做一做”第2題。
4.課堂總結
師:這節課你學到了什么知識?談談你的收獲和體驗。
(三)課時作業
1.有黑色、白色、藍色、紅色手套各10只(不分左、右手),至少要拿出多少只(拿的時候不看顏色),才能在拿出的手套中,一定有兩只不同顏色的手套?
答案:5只。
解析:4個顏色相當于4個抽屜,保證一定有兩只不同的顏色,相當于分的物體個數比抽屜多1。【考查目標1、2】
2.一個魚缸里有很多條魚,共有5個品種。至少撈出多少條魚,才能保證有4條魚的品種相同?
答案:16條。
解析:5個品種相當于5個抽屜,保證有4條魚品種相同,所放物品的個數是:5×3+1=16。【考查目標1、2】
人教版六年級下冊數學教案 篇4
教學內容:
人教版小學數學教材六年級下冊第107~108頁例2及相關練習。
教學目標:
1.在學習過程中引導學生探索研究數與形之間的聯系,尋找規律,發現規律,學會利用圖形來解決一些有關數的問題。
2.讓學生經歷猜想與驗證的過程,體會和掌握數形結合、歸納推理、極限等基本數學思想。
重點難點:
探索數與形之間的聯系,尋找規律,并利用圖形來解決有關數的問題。
教學準備:
教學課件。
教學過程:
一、直接導入,揭示課題
同學們,上節課我們探究了圖形中隱藏的數的規律,今天我們繼續研究有關數與圖形之間的聯系。(板書課題:數與形)
【設計意圖】直奔主題,簡潔明了,有利于學生清楚本節課學習的內容和方向。
二、探索發現,學習新知
(一)教師與學生比賽算題
1.教師:你知道等于多少嗎?(學生:)
教師:那等于多少呢?(學生計算需要時間)教師緊接著說:我已經算好了,是,不信你算算。
2.只要按照這個分子是1,分母依次擴大2倍的規律寫下去,不管有多少個分數相加,我都能立馬算出結果。有的同學不相信是嗎?咱們試試就知道。為了方便,我請我們班計算最快的同學跟我一起算,看看結果是否相同。誰來出題?
在學生出題后,老師都能立刻算出結果,并且是正確的,學生感到很驚奇。
3.知道我為什么算得那么快嗎?因為我有一件神秘的法寶,你們也想知道嗎?
【設計意圖】一方面,教師通過與學生比賽計算速度,且每次老師勝利,使學生產生好奇心,再通過教師幽默的.語言,吸引學生的注意力,激發學生的學習興趣和求知欲。另一方面,為接下來學習例題做好鋪墊。
(二)借助正方形探究計算方法
1.這件法寶就是(師邊說邊課件出示一個正方形),讓我們來把它變一變,聰明的同學們一定能看明白是怎么回事了。
2.進行演示講解。
(1)演示:用一個正方形表示1,先取它的一半就是正方形的(涂紅),再剩下部分的一半就是正方形的(涂黃)。
人教版六年級下冊數學教案 篇5
教學內容:
比較正數和負數的大小。
教學目的:
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
教學重、難點:
負數與負數的比較。
教學過程:
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
A、從0起往右依次是?從0起往左依次是?你發現什么規律?
B、在數軸上除了可以表示整數外,還可以表示分數和小數。請學生在數軸上分別找到1.5和-1.5對應的點。如果從起點分別到1.5和-1.5處,應如何運動?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的.最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“-8在-6的左邊,所以-8〈-6”
5、再通過讓另一學生比較“8〉6,但是-8〈-6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是 攝氏度。
四、全課總結
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握。可如果深入鉆研教材,其實會發現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1.5。建議此處教師補充要求學生表示出“+1.5”的位置,因為這樣便于對比發現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1.5和—1.5絕對值相等。
同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小。”即使有學生在比較—8和—6大小時是用“8>6,所以—8。
人教版六年級下冊數學教案 篇6
一、創設情境,提出問題
師:同學們,你們知道一個人去找工作時,他一般最關注什么?
生:工資。
生:工作環境和待遇。
師:找工作時工資的多少往往是人們最關心的,李叔叔看到一份超市招聘公告上寫著:本超市工作人員月平均工資1000元,現招收員工若干。李叔叔一看條件不錯,就應聘做了超市的一名工作人員。可第一個月他只拿到工資500元,第二個月也只有600元,問了一些同事大部分都是600元,少數超過600元。他找到了超市副經理說:你們欺騙了我,我已經問過其他工人沒有一個工人的工資超過1000元,平均工資怎么可能是每月1000元呢?超市副經理拿出了超市工作人員的工資表:
某超市工作人員月工資如下表單位:元經理副經理員工A員工B員工C員工D員工E員工F員工G員工H員工I
月工資30002000900800700700600600600600500
問題1請大家仔細觀察表中的數據,討論回答下面的問題:
(1)副經理說月平均工資1000元是否欺騙了李叔叔?
(2)你有什么想法?
生:剛才我算了一下,這11個數的平均數是1000,所以月平均工資1000元沒有欺騙。
師:對,我們學過平均數的知識,平均數是1000元是沒有錯。
那為什么李叔叔只能拿到600元。大家可以闡述一下自己的觀點。
生:因為兩位經理的工資很高,帶動了員工的平均公資。
師:,看來這組數據中,由于出現了兩個特別的數據,所以平均數1000不能真實反映大多數員工的工資水平,你認為應該用什么數反映這個超市的工資水平比較合理呢?請大家觀察這些數據的特點,然后說說你的想法。
【設計意圖:本環節痛過李叔叔在找工作時遇到的實際問題,使數學貼近生活,激發學生的興趣,讓學生在幫助李叔叔的過程中感受到在這里平均數和中位數不能真實反映員工的工資水平,初步感受眾數產生的必要性。】
學生小組討論:
生1:我們小組討論后認為用600元是比較好的,因為這里600元的人是最多的,有4個人。
生2:我認為700元比較合理,因為它是這組數據的中位數。
師:大家分析的不錯,很有自己的想法。平均數會受一些特別偏大或偏小的數據的影響。那么李叔叔最有可能掙到多少錢?
生:600元
師:600在這里出現次數最多,它代表的是多數人的工資水平,所以600就是這組數據的眾數。
二、探究新知。
板書:眾數。
【設計意圖;本環節提出這樣的問題,主要想通過工資表中出現次數最多的600理解眾的含義,進而理解眾數的意義。】
師:請大家試著說一說眾數的意義;然后教師小結出示概念。齊讀概念。
師:現在,我們已經知道了三個統計量,那么,面對具體的問題,我們應該選擇哪個統計量來描述數據的集中趨勢呢、下面請看這個問題。
五(2)班要選10名同學組隊參加集體舞比賽。下面是15名候選隊員的身高情況。(單位:米)
1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49
1.51,1.51,1.51,1.51,1.52,1.54,1.54
你認為參賽隊員的身高是多少比較合適?
學生小組合作。根據學生匯報,教師小結。從審美角度以及隊伍整齊觀點來看應以眾數1.51為標準選擇隊員身高會比較均勻。
【設計意圖:本環節通過小組活動給學生提供參與數學活動的機會,使他們在思考,探究,討論。交流中充分發表自己的意見,在實際問題中體會三個統計量的區別和他們各自的適用限度,讓學生意識到生活中數學無處不在,感受和體會數學中美的因素】。
三、分析數據,嘗試統計決策。
師:同學們,全世界都關注的奧運會就要在北京召開了,我國的體育健兒正在緊張的訓練,準備迎戰奧運會。國家隊的教練想在兩名優秀的射擊運動員中選擇一名去參加比賽:(出示兩名運動員成績)
甲:9.5109.49.59.79.59.49.39.49.3
乙:109108.39.89.5109.88.79.9
看到兩名運動員的成績,大家能否猜想一下,教練會選擇誰去呢?
生1:我認為會選甲,甲的成績很高。
生2:我想會選乙,乙打中10環的多。
生3:我想應該看看他們的平均分。
師:大家說的很好,大膽的說出了自己的想法;讓我們用掌聲來鼓勵他們。那我們就先從平均數入手,大家動手做一做,看看他們的平均數是多少?(可以同桌合作)
生:老師,平均數一樣,都是9.5。
師;平均數一樣我們該怎么辦呢?
生1:看眾數。甲的眾數是9.5。
生2:9.4也出現三次,9.4也是眾數。那兩個都是眾數嗎?
師:當然,眾數可以不止一個。也可以沒有,比如說我們班前五名同學的'成績就沒有重復的,那自然就沒有眾數了。
生:乙的眾數是10,所以乙獲勝的機會大一些。
師:在平均數相同時,我們應該看眾數。
【設計意圖:通過一組練習,使學生能靈活選擇適當的統計量表示一些數據的特點,并從數據的波動大小中,體現概率的可能性。讓學生能根據統計量進行簡單的預測或作出決策。使學生充分感受到數學與生活的聯系,并從解決問題中體會到成功的喜悅,從而更加熱愛數學。】
四、學生暢談收獲。
五:教師小結。
同學們,通過本節課的學習,我們認識了眾數這一統計量,并且通過練習理解了平均數,中位數和眾數這三個統計量的聯系與區別,根據我們分析數據的不同需要,可以正確選擇合適的統計量。
案例反思:
1、創設問題情境,教學開始,我提出的是一個生活中的真實問題。讓學生在參與中引發他們的理性認識,通過學生的獨立思考和交流,引起了學生對月工資水平的認知沖突,發現單靠平均數來描述數據特征有時是不合適的。讓學生從具體問題中體會數學在生活中的重要性
2、在分析討論中促進學生對概念的理解,眾數的概念,我沒有直接給出,而是通過學生觀察、分析、討論、在共享集體思維成果的基礎上逐步建構的,這樣做使學生逐步體會到這三個統計量都反映一組數據的集中趨勢,但描述的角度并不相同,三者之間既有聯系又有區別,同時也滲透出了他們的優越性與局限性。可以比較全面、正確地理解所學知識。教學中,讓學生通過思考總結,如射擊隊員的選擇,數據越多,頻率越穩定。如能經過更多數據的收集和整理,根據方差的特點由數據的穩定性及波動大小再考慮一下其他因素,可能結果會不一樣。對不完善的地方再加以補充,充分發揮學生在學習中的主體地位,同時,教師作為參與者,主動加入到學生的討論中,對學生的認識起到幫助和促進的作用。
人教版六年級下冊數學教案 篇7
教學目標:
1.學生初步理解杠桿平衡的原理,并通過實驗探究,培養學生動手操作實踐,與人合作協調,及遷移、類推能力和抽象概括能力。
2.經過啟發、討論和獨立思考、學生主動參與、積極探究,獲得了杠桿平衡的條件,學生認識水平、實踐能力和創新意識從中得到了培養。
3.學生在實驗、實際操作中體驗學習的樂趣,并通過實際應用的練習,將課內外的知識有機結合,培養學生學以致用的應用意識和創新意識。
重點、難點:
1.教學重點:理解、掌握杠桿平衡的規律。
2.教學難點:讓學生綜合應用所學的知識和方法解決實際問題。
教學準備:
竹竿,棋子,塑料袋(多媒體課件)
教學過程
一、準備材料,導入活動:
1.檢查課前布置的制作工具(簡單杠桿)的作業。
學生對照制作要求,自查和同組互相檢查。
小黑板或媒體出示制作要求:
(1)準備的竹竿長1m,盡量做到粗細均勻。
(2)在竹竿中點打孔,拴繩子時注意繩子的長度,同時注意檢查拎起繩子后竹竿是否平衡。
(3)從中點處每隔8cm做一個刻度記號,盡量等距離。
拿出準備好的棋子和塑料袋。檢查大小是否一樣。
2.揭示課題:有趣的平衡(板書)
二、動手實踐,探索規律
1.活動一:探索特殊條件下竹竿保持平衡的規律:
(1)如果塑料袋掛在竹竿左右兩邊刻度相同的地方,怎樣放棋子才能保證平衡?
①學生思考,回答問題。“兩邊所放的棋子要同樣多。”
②演示:如:左邊放3個棋子,右邊也必須放3個棋子,這樣才能保證平衡。
(2)如果左右兩邊塑料袋放入同樣多的棋子,它們移動到什么樣的`位置才能保證平衡?
①學生思考,說出自己的見解。“塑料袋掛在竹竿左右兩邊的刻度要相同。”
②演示。如:
左邊塑料袋掛在刻度“4”的點上,右邊塑料袋也要掛在刻度“4”的點上,這樣才能保證平衡。
(3)小結:
你有什么體會?
要保證竹竿平衡:中點左邊兩邊棋子個數相同,且所掛位置與中點,刻度(距離)要相等。
2.活動二:探索在一般條件下竹竿保持平衡的規律(A)
(1)左邊的塑料袋在刻度3上,放4個棋子,右邊的塑料袋在刻度4上,放幾個才能保證平衡?
①也放4個棋子行不行?會產生什么結果?
②應該放幾個?
“放3個。”
(2)如果左邊的塑料袋在刻度6上放1個棋子。
①右邊的塑料袋在刻度3上放幾個呢?
學生交流,各自說出自己的見解。
②右邊的塑料袋在刻度2上呢?
學生不難得出結果,放3個。
③右邊的塑料袋在刻度1上呢?
學生不難得出結果,放6個。
(3)小結:
師:你有什么體會?
左右兩邊棋子個數與刻度數的積要相等。
3.活動三:探索在一般條件下竹竿保持平衡的規律(B):
(1)問題:左邊在刻度4上放3個棋子并保持不變,右邊分別在各個刻度上放幾個棋子才能保證平衡呢?
(2)實驗活動:
①學生動手進行實驗活動。
②將實驗結果記錄下來。
③教師提供表格,引導學生展開活動。
右刻度
所放棋子數
乘積
(3)匯報結果。
學生發現:左右兩邊刻度數和所放棋子數的積相等時,竹竿才能保證平衡。
(4)從表中你發現刻度數和所放棋子數成什么比例?
學生觀察表中兩個量的變化情況,不難發現這兩種量成反比例
三、應用規律,體會揣摩
1.基本練習:
母女倆在玩蹺蹺板,女兒體重12千克,坐的地方距支點15分米,母親體重60千克,她坐的地方距支點多遠才能保持蹺蹺板的平衡?
提示:從新課探究的過程我們可以知道,體重和坐的地方距支點的長度成反比例。因此,可直接設她坐的的地方距支點的距離是x分米。可以得到方程
60x=12×15
解方程得x=3
答:她坐的地方距支點3分米才能保持平衡。
2.綜合練習:
桌子上有一個天平,天平左右兩邊各有一個可以滑動的托盤,天平的臂上各有幾個相等的刻度。現在要把1克,2克,3克,4克,5克五個砝碼放在天平上,且使天平左右兩邊保持平衡,該怎樣放?
提示:(1)根據臂長和質量成反比例
(2)先確定每個托盤中所放砝碼的總質量,在確定臂長。
四、回顧整理,反思提升
1.談收獲。
師:通過這節課,我們學到了什么知識?我們是用什么方法來研究這些知識的?
2.評價。
師:你對自己這節課的表現滿意嗎?
可采取學生自評,互評,老師評價的方式進行。
板書設計:
有趣的平衡
要保證竹竿平衡:中點左邊兩邊棋子個數相同,且所掛位置與中點,刻度(距離)要相等。
左右兩邊刻度數和所放棋子數的積相等時,竹竿才能保證平衡。
作業設計
基礎:
1.用邊長20厘米的方磚鋪一塊地,需要20xx塊,如果改用邊長為40厘米的方磚鋪地,需要多少塊?
綜合:
2.有一位菜販很不老實,他有一架動過手腳的天平。這架天平的兩臂不等長。有一天,當他向農民們購買實際重5千克的白菜時,就把白菜放在天平臂較短這一側,這樣稱起來較輕,天平顯示只有4千克重;而當他把白菜買出去的時候,他把白菜放在天平臂較長這一側,這樣稱起來白菜會有多少千克重?
提示:
(1)可以像例題中一樣,用列表的方法做。
(2)根據臂長與質量成反比,列方程求解。
人教版六年級下冊數學教案 篇8
教學目標:
1、學生通過小組合作學習對單元知識進行概括,建立知識結構;
2、會解決實際問題;
3、歸納整理的能力及解決問題的能力;
4、積極探索、團結協作的精神,獲得收獲的成功感。
教學重點:運用所學知識解決實際問題。、
教學難點:歸納整理,形成知識脈絡。
教學方法:引發矛盾,引入課題小組合作,歸納整理多元評價,建構知識應用實際,解決問題強化總結,拓展遷移。
教學過程:
一、引發矛盾,引入課題
猜一猜:老師今年多少歲了?
[投影]老師年齡數的十位上是最小的奇數型質數,個位上的數既不是質數也不是合數。你們說老師今年多少歲了?
猜這個謎語,我們需要哪些數學知識呢?
說得有理,我們學過有關數的知識很多,就像剛才我們在猜謎時就用到了數的整除中的一些知識。今天我們就一起來整理復習數的整除,板書:數的整除復習
齊讀課題,你想到什么?
那好吧,我們就開始復習。
二、梳理知識,形成脈絡
1、 集中呈現
現在請大家以小組為學習單位,按照你們的想法,把學過的數
的整除這部分知識整理在下發的紙上。(請大家認真討論商量,并由組長記錄)待會兒我們要比一比,看哪個小組整理的既完整,又科學合理。巡視
2、 逐個梳理
1)小組活動:請大家在小組中,每人挑1至2個名詞說說意思。
2)全班交流(根據學生的發言提示隨意在黑板上貼出各個名詞)
3)整理完善知識結構
在數的整除這部分首先學習的是整除,這是為什么?請大家討論一下,再推薦代表發言。(巡視,參與學生討論。)
組織學生匯報交流、討論。
提示:整除是基礎,整除前提下產生了約數與倍數,它們是相互依存的關系。(逐步引出公倍數、公約數、最小公倍數、最大公約數、互質數、合數、質數、質因數、分解質因數、奇數、偶數等。)
說得真好!這些知識之間是有密切聯系的。
對于今天整理出來的數的整除脈絡圖,大家有什么想法?
通過整理,可以使這部分知識更加條理化、系統化。
3、 自學課本,看一看還有什么不清楚的問題?
三、應用、解決問題
1、填空題
在1----20的自然數中,有( )個奇數,有( )個偶數,有( )個質數,有( )個合數,奇數中的( )是合數,偶數中的( )是質數,既不是質數也不是合數的數是( )。
2、能同時被2、5、3整除的最小兩位數是( ),最大三位數是( )。
3、選擇題
(1)一個合數的約數有( )
A) 1個 B) 2個 C) 3個 D) 4個
(2)如果a 和 b 是互質數,那么它們的最小公倍數是( )
A) a B) b C) a b D) 1
4、判斷題
(1)整除一定是除盡,除盡不一定整除。 ( )
(2)相鄰的'兩個自然數一定互質。 ( )
(3)所有偶數都是合數。 ( )
(4)24分解質因數 24 = 22231 。 ( )
(5)一個自然數的最大約數一定等于它的最小公倍數。 ( )
5、把下面的數按照不同的標準分成兩類,你能想到幾種?
2 15 8 17 20
四、強化總結,拓展遷移
今天我們共同上了一節數的整除的整理與復習課,通過這節課的學習,我覺得大家特別聰明、好學,老師很高興與大家共同渡過了這美好的40分鐘,而且我們已經是 多次合作,所以我想與大家做好朋友,你們愿意嗎?
老師想把自己的手機號碼告訴大家,大家以后有什么問題都可以和我聯系,好嗎?
老師的手機號碼是11位數字,每一位數字依次是:
1)是質數也不是合數;
2)最小奇數與最小質數的和;
3)最小的自然數;
4)質數中最小的兩個數的和;
5)既是質數,又是偶數;
6)最小質數與最小合數的積;
7)有約數2 和3 的一位數;
8)自然數中最小的奇數;
9)最大約數與最小倍數都是 7 的數;
10)所有自然數的約數;
11)最大的一位數 。
同學們以后有事需要老師幫忙,隨時call我。
這節課上到這里可以嗎?
【人教版六年級下冊數學教案】相關文章:
人教版六年級下冊數學教案06-30
人教版六年級下冊數學教案06-17
人教版六年級下冊數學教案03-14
人教版六年級下冊數學教案(通用)08-26
人教版六年級下冊數學教案 6篇05-14
關于人教版六年級下冊數學教案范文09-02
人教版六年級下冊數學教案7篇11-19
人教版六年級下冊數學教案6篇11-18
人教版六年級下冊數學教案5篇01-11
人教版六年級下冊數學教案(5篇)01-11