八年級數學教案集合五篇
作為一名優秀的教育工作者,很有必要精心設計一份教案,教案是教材及大綱與課堂教學的紐帶和橋梁。來參考自己需要的教案吧!以下是小編精心整理的八年級數學教案5篇,希望對大家有所幫助。
八年級數學教案 篇1
教學目的
1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。
2. 熟識等邊三角形的性質及判定.
2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。
教學重點
等腰三角形的性質及其應用。
教學難點
簡潔的邏輯推理。
教學過程
一、復習鞏固
1.敘述等腰三角形的性質,它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質呢?
1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。
2.你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到B=C,又由B+C=180,從而推出B=C=60。
3.上面的條件和結論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數。
分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問題1:本題若將D是BC邊上的`中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?
問題2:求1是否還有其它方法?
三、練習鞏固
1.判斷下列命題,對的打,錯的打。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個角是60的等腰三角形,其它兩個內角也為60( )
2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數。
四、小結
由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60。三線合一性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。
五、作業
1.課本P127─7,9
2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數。
(一)課本P127─1、3、4、8題.
八年級數學教案 篇2
教學目標:
情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。
認知目標:了解梯形的'概念及其分類;掌握等腰梯形的性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發法、
學習方法:討論法、合作法、練習法
教學過程:
(一)導入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質的探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內角相等,對角線相等
(三)質疑反思、小結
讓學生回顧本課教學內容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級數學教案 篇3
一、教學目標:
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.
2、會求一組數據的極差.
二、重點、難點和難點的突破方法
1、重點:會求一組數據的極差.
2、難點:本節課內容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的.方法.
經計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區別嗎?說說你觀察得到的結果.
用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).
四、例習題分析
本節課在教材中沒有相應的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。
八年級數學教案 篇4
一、教學目標
1.靈活應用勾股定理及逆定理解決實際問題.
2.進一步加深性質定理與判定定理之間關系的認識.
二、重點、難點
1.重點:靈活應用勾股定理及逆定理解決實際問題.
2.難點:靈活應用勾股定理及逆定理解決實際問題.
3.難點的突破方法:
三、課堂引入
創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.
四、例習題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.
分析:⑴若判斷三角形的'形狀,先求三角形的三邊長;
⑵設未知數列方程,求出三角形的三邊長5、12、13;
⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識.
八年級數學教案 篇5
學習目標:
1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質.
2、經歷探索軸對稱的`性質的活動過程 ,積累數學活動經驗,進一步發展空間觀念和有條理地思考和表達能力.
3、利用軸對稱的基本性質解決實際問題。
學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質。
學習難點:軸對稱的性質的理解和拓展運用。
學習過程 :
一、探索活動
如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關系?
1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關系?線段AA與折痕MN之間又有什么關系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關系?線段BB與MN 有什么關系?
5.如圖,再在紙上任畫一點C,并仿照上面進行操作.
(1)線段AC與 AC有什么關系 ? BC與BC呢?線段CC與MN有什么關系?
(2)A與A有什么關系? B與B呢? △ABC 與△ABC有什么關系?為什么?
(3)軸對稱有哪些性質?
6.軸對稱的性質:
(1)成軸對稱的兩個圖形全等.
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關系?并用測量的方法驗證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?
(5)延長線段BC、FG,作直線AB、EG,你有什么發現嗎?
【八年級數學教案】相關文章:
八年級的數學教案12-14
八年級數學教案06-18
八年級上冊數學教案11-09
人教版八年級數學教案11-04
【熱門】八年級數學教案11-29
【熱】八年級數學教案12-07
八年級數學教案【薦】12-06
【推薦】八年級數學教案12-05
【薦】八年級數學教案12-03
八年級數學教案【熱門】12-03