- 八年級數學教案 推薦度:
- 相關推薦
精選八年級數學教案錦集9篇
作為一位杰出的老師,往往需要進行教案編寫工作,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。那么什么樣的教案才是好的呢?以下是小編為大家整理的八年級數學教案9篇,歡迎大家分享。
八年級數學教案 篇1
一、教學目標
1.理解一個數平方根和算術平方根的意義;
2.理解根號的意義,會用根號表示一個數的平方根和算術平方根;
3.通過本節的訓練,提高學生的邏輯思維能力;
4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統一的辯證關系,激發學生探索數學奧秘的興趣。
二、教學重點和難點
教學重點:平方根和算術平方根的概念及求法。
教學難點:平方根與算術平方根聯系與區別。
三、教學方法
講練結合
四、教學手段
幻燈片
五、教學過程
(一)提問
1、已知一正方形面積為50平方米,那么它的邊長應為多少?
2、已知一個數的平方等于1000,那么這個數是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?
這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節內容所要學習的。下面作一個小練習:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學生在完成此練習時,最容易出現的錯誤是丟掉負數解,在教學時應注意糾正。
由練習引出平方根的概念。
(二)平方根概念
如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。
用數學語言表達即為:若x2=a,則x叫做a的平方根。
由練習知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
( )2=—4
學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的平方為非負數。由此我們可以得到結論,負數是沒有平方根的。下面總結一下平方根的性質(可由學生總結,教師整理)。
(三)平方根性質
1.一個正數有兩個平方根,它們互為相反數。
2.0有一個平方根,它是0本身。
3.負數沒有平方根。
(四)開平方
求一個數a的平方根的運算,叫做開平方的運算。
由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。
(五)平方根的.表示方法
一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。
練習:1.用正確的符號表示下列各數的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤ 的平方根是
由學生說出上式的讀法。
例1。下列各數的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結:讓學生熟悉平方根的概念,掌握一個正數的平方根有兩個。
六、總結
本節課主要學習了平方根的概念、性質,以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。
七、作業
教材P。127練習1、2、3、4。
八、板書設計
平方根
(一)概念 (四)表示方法 例1
(二)性質
(三)開平方
探究活動
求平方根近似值的一種方法
求一個正數的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級數學教案 篇2
一、創設情境
1.一次函數的圖象是什么,如何簡便地畫出一次函數的圖象?
(一次函數y=kx+b(k≠0)的圖象是一條直線,畫一次函數圖象時,取兩點即可畫出函數的圖象).
2.正比例函數y=kx(k≠0)的圖象是經過哪一點的直線?
(正比例函數y=kx(k≠0)的圖象是經過原點(0,0)的一條直線).
3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?
4.在平面直角坐標系中,畫出函數的圖象.我們畫一次函數時,所選取的兩個點有什么特征,通過觀察圖象,你發現這兩個點在坐標系的什么地方?
二、探究歸納
1.在畫函數的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.
2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.
分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.
解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.
過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.
三、實踐應用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的`表達式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.
解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.
例2求函數與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點坐標,根據x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應的橫坐標和縱坐標?
八年級數學教案 篇3
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
①,在實踐操作過程中,逐步探索圖形之間的平移關系;
②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的.平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
創設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
八年級數學教案 篇4
教學建議
1、平行線等分線段定理
定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。
注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。
定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。
2、平行線等分線段定理的推論
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。
推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊。
記憶方法:“中點”+“平行”得“中點”。
推論的用途:(1)平分已知線段;(2)證明線段的倍分。
重難點分析
本節的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎,而且是第五章中“平行線分線段成比例定理”的基礎。
本節的難點也是平行線等分線段定理。由于學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發生,教師在教學中要加以注意。
教法建議
平行線等分線段定理的引入
生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:
①從生活實例引入,如刻度尺、作業本、柵欄、等等;
②可用問題式引入,開始時設計一系列與平行線等分線段定理概念相關的問題由學生進行思考、研究,然后給出平行線等分線段定理和推論。
教學設計示例
一、教學目標
1、使學生掌握平行線等分線段定理及推論。
2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養學生的作圖能力。
3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。
4、通過本節學習,體會圖形語言和符號語言的和諧美
二、教法設計
學生觀察發現、討論研究,教師引導分析
三、重點、難點
1、教學重點:平行線等分線段定理
2、教學難點:平行線等分線段定理
四、課時安排
l課時
五、教具學具
計算機、投影儀、膠片、常用畫圖工具
六、師生互動活動設計
教師復習引入,學生畫圖探索;師生共同歸納結論;教師示范作圖,學生板演練習
七、教學步驟
【復習提問】
1、什么叫平行線?平行線有什么性質。
2、什么叫平行四邊形?平行四邊形有什么性質?
【引入新課】
由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什么關系?(橫線是互相平等的,并且它們之間的距離是相等的.),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?
(引導學生把做實驗的條件和得到的結論寫成一個命題,教師總結,由此得到平行線等分線段定理)
平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。
注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。
下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。
已知:如圖,直線 , 。
求證: 。
分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應用平行線間的平行線段相等得 ),通過全等三角形性質,即可得到要證的結論。
(引導學生找出另一種證法)
分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。
證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態演示)。
引導學生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。
再引導學生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。
推論2:經過三角形一邊的中點與另一邊平行的直線必平分第三邊。
注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經常用到,因此,要求學生必須掌握好。
接下來講如何利用平行線等分線段定理來任意等分一條線段。
例 已知:如圖,線段 。
求作:線段 的五等分點。
作法:①作射線 。
②在射線 上以任意長順次截取 。
③連結 。
④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。
、 、 、 就是所求的五等分點。
(說明略,由學生口述即可)
【總結、擴展】
小結:
(l)平行線等分線段定理及推論。
(2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。
(3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。
(4)應用定理任意等分一條線段。
八、布置作業
教材P188中A組2、9
九、板書設計
十、隨堂練習
教材P182中1、2
八年級數學教案 篇5
教學任務分析
教學目標
知識技能
探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.
數學思考
能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養學生的分析問題能力和計算能力.
解決問題
通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.
情感態度
在應用等腰梯形的性質的過程養成獨立思考的習慣, 在數學學習活動中獲得成功的體驗.
重點
等腰梯形的性質及其應用.
難點
解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.
教學流程安排
活動流程圖
活動的內容和目的
活動1想一想
活動2說一說
活動3畫一畫
活動4做—做
活動5練一練
活動6理一理
觀察梯形圖片,引入本節課的學習內容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動,初步發現梯形與三角形的轉化關系.
探究得到等腰梯形的性質.
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識、提高能力、滲透思想.
教學過程設計
問題與情景
師生行為
設計意圖
[活動1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?
演示圖片,學生欣賞.
結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.
由現實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養學生的觀察、概括能力.
[活動2]
梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.
學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區別和聯系.
通過類比,培養學生歸納、總結的能力.
問題與情景
師生行為
設計意圖
一些基本概念
(1)(如圖):底、腰、高.
(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一個角是直角的梯形叫做直角梯形.
學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發言后, 教師可以強調:①梯形與四邊形的關系;
②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質做準備.
[活動3]
畫一畫
在下列所給圖中的每個三角形中畫一條線段,
(1)怎樣畫才能得到一個梯形?
(2)在哪些三角形中,能夠得到一個等腰梯形?
在學生獨立探究的基礎上,學生分組交流.
教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.
本次活動教師應重點關注:
(1)學生在活動過程中能否發現梯形與三角形之間的聯系,他們之間的轉化方法.
(2)學生能否將等腰三角形轉化為等腰梯形.
(3)學生能否主動參與探究活動,在討論中發表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.
等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.
問題與情景
師生行為
設計意圖
[活動4]
做—做
探索等腰梯形的性質(引入用軸對稱解決問題的思想).
在一張方格紙上作一個等腰梯形,連接兩條對角線.
(1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發現哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;
(2)這個等腰梯形的兩條對角線的長度有什么關系?
學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.
針對不同認識水平的學生,教師指導學生活動.
師生共同歸納:
①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.
②等腰梯形兩腰相等.
③等腰梯形同一底上的兩個角相等.
④等腰梯形的兩條對角線相等.
教學中要注意引導學生證明等腰梯形的`性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現,可以借此機會,給學生介紹這兩種輔助線的添加方法.
[活動5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長.
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.
分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.
其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.
問題與情景
師生行為
設計意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.
[活動6]
1.小結
2.布置作業
(1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.
(2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
(3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)
師生歸納總結:
解決梯形問題常用的方法:
(1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);
(2)“作高”:使兩腰在兩個直角三角形中(圖2);
(3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);
(4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);
(5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).
盡量多地讓學生參與發言是一個交流的過程.
梳理本節課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續探究的空間.
學生通過獨立思考,完成課后作業,便于發現問題,及時查漏補缺.
八年級數學教案 篇6
教學目標:
1. 掌握三角形內角和定理及其推論;
2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態
5. 通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯系與轉化的辯證思想。
教學重點:
三角形內角和定理及其推論。
教學難點:
三角形內角和定理的證明
教學用具:
直尺、微機
教學方法:
互動式,談話法
教學過程:
1、創設情境,自然引入
把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知欲,為發現新知識創造一個最佳的心理和認知環境。
問題1 三角形三條邊的關系我們已經明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?
問題2 你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節課學習的內容自然合理。
2、設問質疑,探究嘗試
(1)求證:三角形三個內角的和等于
讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1 觀察:三個內角拼成了一個
什么角?問題2 此實驗給我們一個什么啟示?
(把三角形的三個內角之和轉化為一個平角)
問題3 由圖中AB與CD的`關系,啟發我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內角之和為定值
,那么對三角形的其它角還有哪些特殊的關系呢?問題1 直角三角形中,直角與其它兩個銳角有何關系?
問題2 三角形一個外角與它不相鄰的兩個內角有何關系?
問題3 三角形一個外角與其中的一個不相鄰內角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內角關系的定理及推論
引導學生分析并嚴格書寫解題過程
八年級數學教案 篇7
一、學習目標:
1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;
2、會運用兩數差的平方公式進行計算。
二、學習過程:
請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:
(一)探索
1、計算: (a - b) =
方法一: 方法二:
方法三:
2、兩數差的平方用式子表示為_________________________;
用文字語言敘述為___________________________ 。
3、兩數差的平方公式結構特征是什么?
(二)現學現用
利用兩數差的'平方公式計算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
(三)合作攻關
靈活運用兩數差的平方公式計算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)達標訓練
1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、計算:
( a - b) ( x -2y )
3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?
(四)提升
1、本節課你學到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
八年級數學教案 篇8
教學目標:
情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的'性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發法、
學習方法:討論法、合作法、練習法
教學過程:
(一)導入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質的探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內角相等,對角線相等
(三)質疑反思、小結
讓學生回顧本課教學內容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級數學教案 篇9
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?
通過討論得到矩形的判定方法.
矩形判定方法1:對角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個角是直角的四邊形是矩形.
(指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內角和可知,這時第四個角一定是直角.)
二、例習題分析
例1(補充)下列各句判定矩形的說法是否正確?為什么?
(1)有一個角是直角的四邊形是矩形;(×)
(2)有四個角是直角的四邊形是矩形;(√)
(3)四個角都相等的四邊形是矩形;(√)
(4)對角線相等的四邊形是矩形;(×)
(5)對角線相等且互相垂直的四邊形是矩形;(×)
(6)對角線互相平分且相等的四邊形是矩形;(√)
(7)對角線相等,且有一個角是直角的'四邊形是矩形;(×)
(8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)
(9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)
指出:
(l)所給四邊形添加的條件不滿足三個的肯定不是矩形;
(2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.
例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.
分析:首先根據△AOB是等邊三角形及平行四邊形對角線互相平分的性質判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補充)已知:如圖(1),ABCD的四個內角的平分線分別相交于點E,F,G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明