1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

    <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
    <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
  2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
    現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-21 20:22:51 八年級數學教案 我要投稿

    關于八年級數學教案匯編8篇

      作為一位兢兢業業的人民教師,常常需要準備教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。我們該怎么去寫教案呢?以下是小編幫大家整理的八年級數學教案8篇,希望能夠幫助到大家。

    關于八年級數學教案匯編8篇

    八年級數學教案 篇1

      知識目標:理解函數的概念,能準確識別出函數關系中的自變量和函數

      能力目標:會用變化的量描述事物

      情感目標:回用運動的觀點觀察事物,分析事物

      重點:函數的概念

      難點:函數的概念

      教學媒體:多媒體電腦,計算器

      教學說明:注意區分函數與非函數的關系,學會確定自變量的取值范圍

      教學設計:

      引入:

      信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的嗎?

      新課:

      問題:(1)如圖是某日的氣溫變化圖。

     、 這張圖告訴我們哪些信息?

     、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規律的?

      (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

      ① 這表告訴我們哪些信息?

     、 這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

      一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的`函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

      范例:例1 判斷下列變量之間是不是函數關系:

      (5) 長方形的寬一定時,其長與面積;

      (6) 等腰三角形的底邊長與面積;

      (7) 某人的年齡與身高;

      活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發現變量和函數的關系

      思考:自變量是否可以任意取值

      例2 一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

      (1) 寫出表示y與x的函數關系式.

      (2) 指出自變量x的取值范圍.

      (3) 汽車行駛200km時,油箱中還有多少汽油?

      解:(1)y=50-0.1x

      (2)0500

      (3)x=200,y=30

      活動2:練習教材9頁練習

      小結:(1)函數概念

      (2)自變量,函數值

      (3)自變量的取值范圍確定

      作業:18頁:2,3,4題

    八年級數學教案 篇2

      教學建議

      知識結構

      重難點分析

      本節的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.

      本節的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

      教法建議

      1. 對于中位線定理的引入和證明可采用發現法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據學生情況參考采用

      2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

      教學設計示例

      一、教學目標

      1.掌握中位線的概念和三角形中位線定理

      2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

      3.能夠應用三角形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力

      4.通過定理證明及一題多解,逐步培養學生的分析問題和解決問題的能力

      5. 通過一題多解,培養學生對數學的興趣

      二、教學設計

      畫圖測量,猜想討論,啟發引導.

      三、重點、難點

      1.教學重點:三角形中位線的概論與三角形中位線性質.

      2.教學難點:三角形中位線定理的證明.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、膠片、常用畫圖工具

      六、教學步驟

      【復習提問】

      1.敘述平行線等分線段定理及推論的內容(結合學生的敘述,教師畫出草圖,結合圖形,加以說明).

      2.說明定理的證明思路.

      3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

      分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

      4.什么叫三角形中線?(以上復習用投影儀打出)

      【引入新課】

      1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.

      (結合三角形中線的定義,讓學生明確兩者區別,可做一練習,在 中,畫出中線、中位線)

      2.三角形中位線性質

      了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.

      如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

      三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

      應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的.數量關系,在應用時可根據需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

      由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).

      (l)延長DE到F,使 ,連結CF,由 可得AD FC.

      (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

      (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

      上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

      (證明過程略)

      例 求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.

      (由學生根據命題,說出已知、求證)

      已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

      求證:四邊形EFGH是平行四邊形.‘

      分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.

      證明:連結AC.

      ∴ (三角形中位線定理).

      同理,

      ∴GH EF

      ∴四邊形EFGH是平行四邊形.

      【小結】

      1.三角形中位線及三角形中位線與三角形中線的區別.

      2.三角形中位線定理及證明思路.

      七、布置作業

      教材P188中1(2)、4、7

    八年級數學教案 篇3

      知識結構:

      重點與難點分析:

      本節內容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據,此定理為證明線段相等提供了又一種方法,這是本節的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質,在直角三角形中找邊和角的等量關系經常用到此推論.

      本節內容的難點是性質與判定的區別。等腰三角形的性質定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經常混淆,幫助學生認識判定與性質的區別,這是本節的難點.另外本節的文字敘述題也是難點之一,和上節結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

      教法建議:

      本節課教學方法主要是“以學生為主體的討論探索法”。在數學教學中要避免過多告訴學生現成結論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數學的內在規律。具體說明如下:

      (1)參與探索發現,領略知識形成過程

      學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發言.最后找一名學生用文字口述定理的內容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學生親自動手實踐,積極參與發現,滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

      (2)采用“類比”的學習方法,獲取知識。

      由性質定理的學習,我們得到了幾個推論,自然想到:根據等腰三角形的判定定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學生提到的不完整,教師可以做適當的點撥引導。

      (3)總結,形成知識結構

      為了使學生對本節課有一個完整的認識,便于今后的'應用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據?(2)怎樣判定一個三角形是等邊三角形?

      一.教學目標:

      1.使學生掌握等腰三角形的判定定理及其推論;

      2.掌握等腰三角形判定定理的運用;

      3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;

      4.通過自主學習的發展體驗獲取數學知識的感受;

      5.通過知識的縱橫遷移感受數學的辯證特征.

      二.教學重點:等腰三角形的判定定理

      三.教學難點:性質與判定的區別

      四.教學用具:直尺,微機

      五.教學方法:以學生為主體的討論探索法

      六.教學過程:

      1、新課背景知識復習

      (1)請同學們說出互逆命題和互逆定理的概念

      估計學生能用自己的語言說出,這里重點復習怎樣分清題設和結論。

      (2)等腰三角形的性質定理的內容是什么?并檢驗它的逆命題是否為真命題?

      啟發學生用自己的語言敘述上述結論,教師稍加整理后給出規范敘述:

      1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

      (簡稱“等角對等邊”).

      由學生說出已知、求證,使學生進一步熟悉文字轉化為數學語言的方法.

      已知:如圖,△ABC中,∠B=∠C.

      求證:AB=AC.

      教師可引導學生分析:

      聯想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形.因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

      注意:(1)要弄清判定定理的條件和結論,不要與性質定理混淆.

      (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

      (3)判定定理得到的結論是三角形是等腰三角形,性質定理是已知三角形是等腰三角形,得到邊邊和角角關系.

      2.推論1:三個角都相等的三角形是等邊三角形.

      推論2:有一個角等于60°的等腰三角形是等邊三角形.

      要讓學生自己推證這兩條推論.

      小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

      證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

      3.應用舉例

      例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

      分析:讓學生畫圖,寫出已知求證,啟發學生遇到已知中有外角時,常?紤]應用外角的兩個特性①它與相鄰的內角互補;②它等于與它不相鄰的兩個內角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設法找出∠B、∠C與∠1、∠2的關系.

      已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

      求證:AB=AC.

      證明:(略)由學生板演即可.

      補充例題:(投影展示)

      1.已知:如圖,AB=AD,∠B=∠D.

      求證:CB=CD.

      分析:解具體問題時要突出邊角轉換環節,要證CB=CD,需構造一個以 CB、CD為腰的等腰三角形,連結BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

      證明:連結BD,在 中, (已知)

      (等邊對等角)

      (已知)

      即

      (等教對等邊)

      小結:求線段相等一般在三角形中求解,添加適當的輔助線構造三角形,找出邊角關系.

      2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

      分析:對于三個線段間關系,盡量轉化為等量關系,由于本題有兩個角平分線和平行線,可以通過角找邊的關系,BE=DE,DF=CF即可證明結論.

      證明: DE//BC(已知)

      ,

      BE=DE,同理DF=CF.

      EF=DE-DF

      EF=BE-CF

      小結:

      (1)等腰三角形判定定理及推論.

      (2)等腰三角形和等邊三角形的證法.

      七.練習

      教材 P.75中1、2、3.

      八.作業

      教材 P.83 中 1.1)、2)、3);2、3、4、5.

      九.板書設計

    八年級數學教案 篇4

      知識要點

      1、函數的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,

      相應地就確定了一個y值,那么稱y是x的函數,其中x是自變量,y是因變量。

      2、一次函數的概念:若兩個變量x,y間的關系式可以表示成y=kx+b(k0,b為常數)的形式,則稱y是x的一次函數, x為自變量,y為因變量。特別地,當b=0 時,稱y 是x的正比例函數。正比例函數是一次函數的特殊形式,因此正比例函數都是一次函數,而 一次函 數不一定都是正比例函數.

      3、正比例函數y=kx的性質

      (1)、正比例函數y=kx的圖象都經過

      原點(0,0),(1,k)兩點的一條直線;

      (2)、當k0時,圖象都經過一、三象限;

      當k0時,圖象都經過二、四象限

      (3)、當k0時,y隨x的增大而增大;

      當k0時,y隨x的增大而減小。

      4、一次函數y=kx+b的性質

      (1)、經過特殊點:與x軸的交點坐標是 ,

      與y軸的交點坐標是 .

      (2)、當k0時,y隨x的增大而增大

      當k0時,y隨x的增大而減小

      (3)、k值相同,圖象是互相平行

      (4)、b值相同,圖象相交于同一點(0,b)

      (5)、影響圖象的兩個因素是k和b

     、賙的正負決定直線的方向

      ②b的正負決定y軸交點在原點上方或下方

      5.五種類型一次函數解析式的確定

      確定一次函數的解析式,是一次函數學習的重要內容。

      (1)、根據直線的解析式和圖像上一個點的坐標,確定函數的解析式

      例1、若函數y=3x+b經過點(2,-6),求函數的解析式。

      解:把點(2,-6)代入y=3x+b,得

      -6=32+b 解得:b=-12

      函數的解析式為:y=3x-12

      (2)、根據直線經過兩個點的坐標,確定函數的解析式

      例2、直線y=kx+b的圖像經過A(3,4)和點B(2,7),

      求函數的表達式。

      解:把點A(3,4)、點B(2,7)代入y=kx+b,得

      ,解得:

      函數的解析式為:y=-3x+13

      (3)、根據函數的圖像,確定函數的解析式

      例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x

      (小時)之間的關系.求油箱里所剩油y(升)與行駛時間x

      (小時)之間的函數關系式,并且確定自變量x的取值范圍。

      (4)、根據平移規律,確定函數的解析式

      例4、如圖2,將直線 向上平移1個單位,得到一個一次

      函數的圖像,那么這個一次函數的解析式是 .

      解:直線 經過點(0,0)、點(2,4),直線 向上平移1個單位

      后,這兩點變為(0,1)、(2,5),設這個一次函數的解析式為 y=kx+b,

      得 ,解得: ,函數的解析式為:y=2x+1

      (5)、根據直線的對稱性,確定函數的解析式

      例5、已知直線y=kx+b與直線y=-3x+6關于y軸對稱,求k、b的值。

      例6、已知直線y=kx+b與直線y=-3x+6關于x軸對稱,求k、b的值。

      例7、已知直線y=kx+b與直線y=-3x+6關于原點對稱,求k、b的值。

      經典訓練:

      訓練1:

      1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。

      (1)梯形的面積y與上底的長x之間的關系是否是函數關系?為什么?

      (2)若y是x的函數,試寫出y與x之間的函數關系式 。

      訓練2:

      1.函數:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

      一次函數有___ __;正比例函數有____________(填序號).

      2.函數y=(k2-1)x+3是一次函數,則k的取值范圍是( )

      A.k1 B.k-1 C.k1 D.k為任意實數.

      3.若一次函數y=(1+2k)x+2k-1是正比 例函數,則k=_______.

      訓練3:

      1 . 正比例函數y=k x,若y隨x的增大而減 小,則k______.

      2. 一次函數y=mx+n的圖象如圖,則下面正確的是( )

      A.m0 B.m0 C.m0 D.m0

      3.一次函數y=-2x+ 4的圖象經過的象限是____,它與x軸的交 點坐標是____,與y軸的交點坐標是____.

      4.已知一次函 數y =(k-2)x+(k+2),若它的圖象經過原點,則k=_____;

      若y隨x的增大而增大,則k__________.

      5.若一次函數y=kx-b滿足kb0,且函數值隨x的減小而增大,則它的大致圖象是圖中的( )

      訓練4:

      1、 正比例函數的圖象經過點A(-3,5),寫出這正比例函數的解析式.

      2、已知一次函數的圖象經過點(2,1)和(-1,-3).求此一次函數的解析式 .

      3、一次函數y=kx+b的圖象如上圖所示,求此一次函數的解析式。

      4、已知一次函數y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數的解析式。

      5、已知y-1與x成正比例,且 x=-2時,y=-4.

      (1)求出y與x之間的函數關系式;

      (2)當x=3時,求y的值.

      一、填空題(每題2分,共26分)

      1、已知 是整數,且一次函數 的圖象不過第二象限,則 為 .

      2、若直線 和直線 的`交點坐標為 ,則 .

      3、一次函數 和 的圖象與 軸分別相交于 點和 點, 、 關于 軸對稱,則 .

      4、已知 , 與 成正比例, 與 成反比例,當 時 , 時, ,則當 時, .

      5、函數 ,如果 ,那么 的取值范圍是 .

      6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設長增加 ,寬增加 ,則 與 的函數關系是 .自變量的取值范圍是 .且 是 的 函數.

      7、如圖 是函數 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內, 隨 的增大而 .

      8、已知一次函數 和 的圖象交點的橫坐標為 ,則 ,一次函數 的圖象與兩坐標軸所圍成的三角形的面積為 ,則 .

      9、已知一次函數 的圖象經過點 ,且它與 軸的交點和直線 與 軸的交點關于 軸對稱,那么這個一次函數的解析式為 .

      10、一次函數 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .

      11、一次函數 的圖象如圖 ,則 與 的大小關系是 ,當 時, 是正比例函數.

      12、 為 時,直線 與直線 的交點在 軸上.

      13、已知直線 與直線 的交點在第三象限內,則 的取值范圍是 .

      二、選擇題(每題3分,共36分)

      14、圖3中,表示一次函數 與正比例函數 、 是常數,且 的圖象的是( )

      15、若直線 與 的交點在 軸上,那么 等于( )

      A.4 B.-4 C. D.

      16、直線 經過一、二、四象限,則直線 的圖象只能是圖4中的( )

      17、直線 如圖5,則下列條件正確的是( )

      18、直線 經過點 , ,則必有( )

      A.

      19、如果 , ,則直線 不通過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      20、已知關于 的一次函數 在 上的函數值總是正數,則 的取值范圍是

      A. B. C. D.都不對

      21、如圖6,兩直線 和 在同一坐標系內圖象的位置可能是( )

      圖6

      22、已知一次函數 與 的圖像都經過 ,且與 軸分別交于點B, ,則 的面積為( )

      A.4 B.5 C.6 D.7

      23、已知直線 與 軸的交點在 軸的正半軸,下列結論:① ;② ;③ ;④ ,其中正確的個數是( )

      A.1個 B.2個 C.3個 D.4個

      24、已知 ,那么 的圖象一定不經過( )

      A.第一象限 B.第二象限 C.第三象限 D.第四象限

      25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設甲從P處出發 小時,距A站 千米,則 與 之間的關系可用圖象表示為( )

      三、解答題(1~6題每題8分,7題10分,共58分)

      26、如圖8,在直角坐標系內,一次函數 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是 ,求這個一次函數解析式.

      27、一次函數 ,當 時,函數圖象有何特征?請通過不同的取值得出結論?

      28、某油庫有一大型儲油罐,在開始的8分鐘內,只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內的油從24噸增至40噸,隨后又關閉進油管,只開出油管,直到將油罐內的油放完,假設在單位時間內進油管與出油管的流量分別保持不變.

      (1)試分別寫出這一段時間內油的儲油量Q(噸)與進出油的時間t(分)的函數關系式.

      (2)在同一坐標系中,畫出這三個函數的圖象.

      29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標準收費;超過部分按每度0.50元計費.

      (1)設用電 度時,應交電費 元,當 100和 100時,分別寫出 關于 的函數關系式.

      (2)小王家第一季度交納電費情況如下:

      月份 一月份 二月份 三月份 合計

      交費金額 76元 63元 45元6角 184元6角

      問小王家第一季度共用電多少度?

      30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當 =0.65時, =0.8.

      (1)求 與 之間的函數關系式;

      (2)若每度電的成本價為0.3元,則電價調至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]

      31、汽車從A站經B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關系;(2)如果汽車再行駛30分,離A站多少千米?

      32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調出100噸水泥,乙庫可調出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)

      路程/千米 運費(元/噸、千米)

      甲庫 乙庫 甲庫 乙庫

      A地 20 15 12 12

      B地 25 20 10 8

      (1)設甲庫運往A地水泥 噸,求總運費 (元)關于 (噸)的函數關系式,畫出它的圖象(草圖).

      (2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?

    八年級數學教案 篇5

      課時目標

      1.掌握分式、有理式的概念。

      2.掌握分式是否有意義、分式的值是否等于零的識別方法。

      教學重點

      正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

      教學難點:

      正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

      教學時間:一課時。

      教學用具:投影儀等。

      教學過程:

      一.復習提問

      1.什么是整式?什么是單項式?什么是多項式?

      2.判斷下列各式中,哪些是整式?哪些不是整式?

     、伲玬2 ②1+x+y2- ③ ④

      ⑤ ⑥ ⑦

      二.新課講解:

      設問:不是整工式子中,和整式有什么區別?

      小結:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

      練習:下列各式中,哪些是分式哪些不是?

     。1)、、(2)、(3)、(4)、(5)x2、(6)+4

      強調:(6)+4帶有是無理式,不是整式,故不是分式。

      2.小結:對整式、分式的`正確區別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區別。

      練習:課后練習P6練習1、2題

      設問:(讓學生看課本上P5“思考”部分,然后回答問題。)

      例題講解:課本P5例題1

      分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

     。ò鍟忸}過程。)

      3.小結:分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。

      增加例題:當x取什么值時,分式有意義?

      解:由分母x2-4=0,得x=±2。

      ∴ 當x≠±2時,分式有意義。

      設問:什么時候分式的值為零呢?

      例:

      解:當 ① 分式的值為零

    八年級數學教案 篇6

       一、學習目標及重、難點:

      1、了解方差的定義和計算公式。

      2、理解方差概念的產生和形成的過程。

      3、會用方差計算公式來比較兩組數據的波動大小。

      重點:方差產生的必要性和應用方差公式解決實際問題。

      難點:理解方差公式

      二、自主學習:

      (一)知識我先懂:

      方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用

      來表示。

      給力小貼士:方差越小說明這組數據越 。波動性越 。

      (二)自主檢測小練習:

      1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

      2、甲、乙兩組數據如下:

      甲組:10 9 11 8 12 13 10 7;

      乙組:7 8 9 10 11 12 11 12.

      分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

      三、新課講解:

      引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

      甲:9、10、 10、13、7、13、10、8、11、8;

      乙:8、13、12、11、10、12、7、7、10、10;

      問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

      (2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

      歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用 來表示。

      (一)例題講解:

      例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、

      測試次數 第1次 第2次 第3次 第4次 第5次

      段巍 13 14 13 12 13

      金志強 10 13 16 14 12

      給力提示:先求平均數,在利用公式求解方差。

      (二)小試身手

      1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

      甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

      經過計算,兩人射擊環數的`平均數是 ,但S = ,S = ,則S S ,所以確定

      去參加比賽。

      1、求下列數據的眾數:

      (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

      2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

      四、課堂小結

      方差公式:

      給力提示:方差越小說明這組數據越 。波動性越 。

      每課一首詩:求方差,有公式;先平均,再求差;

      求平方,再平均;所得數,是方差。

      五、課堂檢測:

      1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

      小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

      小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

      如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

      六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

      七、學習小札記:

      寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

    八年級數學教案 篇7

      一、素質教育目標

      (一)知識教學點

      1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用.

      2.使學生理解判定定理與性質定理的區別與聯系.

      3.會根據簡單的條件畫出平行四邊形,并說明畫圖的'依據是哪幾個定理.

      (二)能力訓練點

      1.通過“探索式試明法”開拓學生思路,發展學生思維能力.

      2.通過教學,使學生逐步學會分別從題設或結論出發尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.

      (三)德育滲透點

      通過一題多解激發學生的學習興趣.

      (四)美育滲透點

      通過學習,體會幾何證明的方法美.

      二、學法引導

      構造逆命題,分析探索證明,啟發講解.

      三、重點·難點·疑點及解決辦法

      1.教學重點:平行四邊形的判定定理1、2、3的應用.

      2.教學難點:綜合應用判定定理和性質定理.

      3.疑點及解決辦法:在綜合應用判定定理及性質定理時,在什么條件下用判定定理,在什么條件下用性質定理

      (強調在求證平行四邊形時用判定定理在已知平行四邊形時用性質定理).

    八年級數學教案 篇8

      教學建議

      1、平行線等分線段定理

      定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

      注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

      定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

      2、平行線等分線段定理的推論

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

      記憶方法:“中點”+“平行”得“中點”。

      推論的用途:(1)平分已知線段;(2)證明線段的倍分。

      重難點分析

      本節的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎,而且是第五章中“平行線分線段成比例定理”的基礎。

      本節的難點也是平行線等分線段定理。由于學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發生,教師在教學中要加以注意。

      教法建議

      平行線等分線段定理的引入

      生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

      ①從生活實例引入,如刻度尺、作業本、柵欄、等等;

      ②可用問題式引入,開始時設計一系列與平行線等分線段定理概念相關的問題由學生進行思考、研究,然后給出平行線等分線段定理和推論。

      教學設計示例

      一、教學目標

      1、使學生掌握平行線等分線段定理及推論。

      2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養學生的作圖能力。

      3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。

      4、通過本節學習,體會圖形語言和符號語言的和諧美

      二、教法設計

      學生觀察發現、討論研究,教師引導分析

      三、重點、難點

      1、教學重點:平行線等分線段定理

      2、教學難點:平行線等分線段定理

      四、課時安排

      l課時

      五、教具學具

      計算機、投影儀、膠片、常用畫圖工具

      六、師生互動活動設計

      教師復習引入,學生畫圖探索;師生共同歸納結論;教師示范作圖,學生板演練習

      七、教學步驟

      【復習提問】

      1、什么叫平行線?平行線有什么性質。

      2、什么叫平行四邊形?平行四邊形有什么性質?

      【引入新課】

      由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什么關系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

     。ㄒ龑W生把做實驗的條件和得到的結論寫成一個命題,教師總結,由此得到平行線等分線段定理)

      平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

      注意:定理中的“一組平行線”指的是一組具有特殊條件的`平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。

      下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。

      已知:如圖,直線 , 。

      求證: 。

      分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應用平行線間的平行線段相等得 ),通過全等三角形性質,即可得到要證的結論。

      (引導學生找出另一種證法)

      分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

      證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

      ∴

      ∵ ,

      ∴

      又∵ , ,

      ∴

      ∴

      為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態演示)。

      引導學生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

      推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

      再引導學生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

      推論2:經過三角形一邊的中點與另一邊平行的直線必平分第三邊。

      注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經常用到,因此,要求學生必須掌握好。

      接下來講如何利用平行線等分線段定理來任意等分一條線段。

      例 已知:如圖,線段 。

      求作:線段 的五等分點。

      作法:①作射線 。

     、谠谏渚 上以任意長順次截取 。

     、圻B結 。

     、苓^點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

      、 、 、 就是所求的五等分點。

      (說明略,由學生口述即可)

      【總結、擴展】

      小結:

     。╨)平行線等分線段定理及推論。

      (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

     。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

     。4)應用定理任意等分一條線段。

      八、布置作業

      教材P188中A組2、9

      九、板書設計

      十、隨堂練習

      教材P182中1、2

    国产福利萌白酱精品tv一区_日韩亚洲中字无码一区二区三区_亚洲欧洲高清无码在线_全黄无码免费一级毛片
    1. <code id="ya7qu"><span id="ya7qu"><label id="ya7qu"></label></span></code>

      <b id="ya7qu"><bdo id="ya7qu"></bdo></b>
      <wbr id="ya7qu"><optgroup id="ya7qu"><strike id="ya7qu"></strike></optgroup></wbr>
    2. <u id="ya7qu"><bdo id="ya7qu"></bdo></u>
      亚洲国产欧美一区二区三区深喉 | 亚洲色喷福利在线观看 | 亚洲欧美人成视频一区在线 | 中文字幕免费的日本精品视频 | 亚洲精品国产首次亮相 | 一区二区三区激情高清视频 |